

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj512ga606-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Address	All Resets	File Name	Address	All Resets	
UART (CONTINUED)	•	UART (CONTINUED)			
U3STA	03C6	0110	U5BRG	03E4	0000	
U3TXREG	03C8	xxxx	U5ADMD	03E6	0000	
U3RXREG	03CA	0000	U6MODE	03E8	0000	
U3BRG	03CC	0000	U6STA	03EA	0110	
U3ADMD	03CE	0000	U6TXREG	03EC	xxxx	
U4MODE	03D0	0000	U6RXREG	03EE	0000	
U4STA	03D2	0110	U6BRG	03F0	0000	
U4TXREG	03D4	xxxx	U6ADMD	03F2	0000	
U4RXREG	03D6	0000	SPI			
U4BRG	03D8	0000	SPI1CON1	03F4	0x00	
U4ADMD	03DA	0000	SPI1CON2	03F6	0000	
U5MODE	03DC	0000	SPI1CON3	03F8	0000	
U5STA	03DE	0110	SPI1STATL	03FC	0028	
U5TXREG	03E0	xxxx	SPI1STATH	03FE	0000	
U5RXREG	03E2	0000				

TABLE 4-7: SFR MAP: 0300h BLOCK (CONTINUED)

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset" (DS39712), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A POR will clear all bits, except for the BOR and POR (RCON<1:0>) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register values after a device Reset will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

© 2015-2016 Microchip Technology Inc.

R/W-0	R/W-0	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0
TRAPR	(1) IOPUWR ⁽¹⁾	SBOREN	RETEN ⁽²⁾	—	_	CM ⁽¹⁾	VREGS ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR ⁽¹⁾	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR ⁽¹⁾
bit 7							bit 0
l egend:							
R = Read	able bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
							-
bit 15	TRAPR: Trap	Reset Flag bit	1)				
	1 = A Trap Co	onflict Reset has	s occurred				
	0 = A Trap Co	nflict Reset has	s not occurred		(1)		
bit 14		gal Opcode or I	Jninitialized W	Access Reset	Flag bit(")	ad W/ namiatan	
	⊥ = An illegal Address I	Pointer and cau	ised a Reset	address mode		ed w register	is used as an
	0 = An illegal	opcode or Unir	nitialized W reg	gister Reset has	s not occurred		
bit 13	SBOREN: So	ftware Enable/[Disable of BOF	R bit			
	1 = BOR is tur	rned on in softw	/are				
hit 10		rnea oπ in soπw	/are				
DIL 12	1 = Retention	mode is enable	able bits / ad while device	e is in Sleen mo	ndes (1 2V regi	ilator enabled)	
	0 = Retention	mode is disable	ed		1.2 v roge		
bit 11-10	Unimplement	ted: Read as '0	3				
bit 9	CM: Configura	ation Word Misi	match Reset F	lag bit ⁽¹⁾			
	1 = A Configure	ration Word Mis	smatch Reset	has occurred	, al		
hit 8	0 = A Conligu VPECS: East		Smatch Reset	nas not occurre	ed .		
DILO	1 = Fast wake	-up is enabled	(uses more po	ower)			
	0 = Fast wake	-up is disabled	(uses less por	wer)			
bit 7	EXTR: Extern	al Reset (MCLI	R) Pin bit ⁽¹⁾				
	1 = A Master (Clear (pin) Res	et has occurre	d urred			
bit 6	SWR: Softwar	e Reset (Instru	ction) Flag bit	(1)			
	1 = A RESET i	nstruction has	been executed	i			
	0 = A reset i	nstruction has	not been exec	uted			
Note 1:	All of the Reset sta cause a device Re	atus bits may b eset.	e set or cleare	d in software. S	etting one of th	iese bits in soff	ware does not
2:	If the LPCFG Con bit has no effect.	figuration bit is Retention mode	'1' (unprograme preserves the	nmed), the rete e SRAM conten	ntion regulator ts during Sleep	is disabled and).	d the RETEN
3:	Re-enabling the re Sleep. Application	egulator after it is that do not u	enters Standb se the voltage	y mode will add regulator shoul	d a delay, T∨RE d set this bit to	G, when wakin prevent this d	g up from elay from
4:	If the FWDTEN<1 of the SWDTEN b	:0> Configurati it setting.	on bits are '11	' (unprogramme	ed), the WDT is	s always enabl	ed, regardless

REGISTER 7-1: RCON: RESET CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
NSTDIS		_	—		_	_	—				
bit 15		·					bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read a	as '0'					
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unk	nown				
bit 15	NSTDIS: Int	errupt Nesting	Disable bit								
	1 = Interrupt	t nesting is disa	abled								
	0 = Interrupt	t nesting is ena	abled								
bit 14-5	Unimpleme	nted: Read as	· '0'								
bit 4	MATHERR:	Math Error Sta	atus bit								
	1 = Math err	or trap has oc	curred								
	0 = Math err	ror trap has not	t occurred								
bit 3	ADDRERR:	Address Error	Trap Status bit								
	1 = Address	1 = Address error trap has occurred									
	0 = Address	error trap has	not occurred								
bit 2	STKERR: S	tack Error Trap	Status bit								
	1 = Stack er	1 = Stack error trap has occurred									
	0 = Stack er	ror trap has no	t occurred								
bit 1	OSCFAIL: (Oscillator Failur	re Trap Status bi	t							
	1 = Oscillato	or failure trap h	as occurred								
		or failure trap h	as not occurred								
bit 0	Unimpleme	Unimplemented: Read as '0'									

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

	K/W-U				K/W-U				
RUI	DOZE2	DOZE1	DOZEU	DUZEN	RCDIV2	KUDIV1	RCDIVU		
DIT 15							bit 8		
		DAMA	11.0	11.0	11.0	11.0			
			0-0	0-0	0-0	0-0	0-0		
CFDIV	I CPDIVU	FLLEN							
							DIL U		
l egend:									
E -genu. R = Readable bit $W = W$ ritable bit $U = U$ pimplomented bit read as '0'									
-n = Value	at POR	'1' = Rit is set		$0^{\circ} = \text{Bit is clear}$	ared	x = Bit is unkr	own		
							lowin		
bit 15	ROI: Recover	on Interrupt bi	t						
2.1.10	1 = Interrupts	clear the DOZI	EN bit and res	et the CPU peri	pheral clock ra	tio to 1:1			
	0 = Interrupts	have no effect	on the DOZEN	N bit					
bit 14-12	DOZE<2:0>:	CPU Periphera	I Clock Ratio S	Select bits					
	111 = 1:128								
	110 = 1:64								
	101 = 1.32 100 = 1.16								
	011 = 1:8 (de	fault)							
	010 = 1:4								
	001 = 1:2								
hit 11		- Enchic hit(1)							
DILTI	$1 = DOZE < 2^{\circ}$		the CPI I nerir	beral clock ratio	0				
	0 = CPU peri	pheral clock ra	tio is set to 1:1		0				
bit 10-8	RCDIV<2:0>:	System Frequ	ency Divider C	lock Source Se	elect bits				
	000 = Fast R (C Oscillator (FF	RC)						
	001 = Fast R	C Oscillator (FF	RC) with PLL n	nodule (FRCPL	L)				
	010 = Primar	y Oscillator (XT	, HS, EC)	DL modulo (V					
	100 = Second	arv Oscillator (XI	(SOSC)	PLL module (X	TPLL, HSPLL,	ECPLL)			
	101 = Low-Po	ower RC Oscilla	ator (LPRC)						
	110 = Digitally	y Controlled Os	cillator (DCO)						
	111 = Reserv	ed; do not use							
bit 7-6	CPDIV<1:0>:	System Clock	Select bits (po	stscaler select	from 96 MHz P	LL, 32 MHz clo	ock branch)		
	11 = 4 MHz (0	divide-by-8)(2							
	01 = 16 MHz	(divide-by-2)							
	00 = 32 MHz	(divide-by-1)							
bit 5	PLLEN: USB	PLL Enable bit	:						
	1 = PLL is alw	ays active							
	0 = PLL is onl	y active when a	a PLL Oscillato	or mode is seled	cted (OSCCON	<14:12> = 011	L or 001)		
bit 4-0	Unimplemen	ted: Read as ')'						
Note 1:	This bit is automa	tically cleared	when the ROI	bit is set and an	n interrupt occu	rs.			
2:	This setting is not	allowed while	the USB modu	ile is enabled.	·				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

REGISTER 10-8: PMD8: PERIPHERAL MODULE DISABLE REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
			—	<u> </u>	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
U6MD	U5MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	—	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-8	Unimplement	ted: Read as '	כ'					
bit 7	U6MD: UART	6 Module Disa	ble bit					
	1 = Module is	s disabled						
	0 = Module p	ower and clock	sources are e	enabled				
bit 6	U5MD: UART	5 Module Disa	ble bit					
	1 = Module is	s disabled						
	0 = Module p	ower and clock	sources are e	enabled				
bit 5	CLC4MD: CL	C4 Module Dis	able bit					
	1 = Module is	disabled						
	0 = Module p	ower and clock	sources are e	enabled				
bit 4	CLC3MD: CL	C3 Module Dis	able bit					
	1 = Module is	s disabled						
		ower and clock	sources are e	enabled				
bit 3	CLC2MD: CL	C2 Module Dis	able bit					
	1 = Module is	s disabled		a a la la al				
h :+ 0				INADIEU				
DIT 2	CLC1MD: CL		adie dit					
	$\perp = $ ivioaule is 0 = Module n	ower and clock	sources are e	nabled				
hit 1_0		ted: Read as '	, ocuroco are e					
	Unimplemented: Read as 10							

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾			
bit 15			I				bit 8			
<u></u>										
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0 ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	OETRIG: CCI	Px Dead-Time	Select bit							
	1 = For Trigg	ered mode (TF	RIGEN = 1): Mo	dule does not	drive enabled	output pins unti	l triggered			
	0 = Normal o	utput pin opera	ation							
bit 14-12	OSCNT<2:0>	: One-Shot Ev	ent Count bits							
	111 = Extend	s one-shot eve	nt by 7 time ba	se periods (8 1	time base perio	ods total)				
	110 = Extend 101 = Extend	s one-shot events one-shot events	nt by 6 time ba	se periods (7 1	time base perio	ods total)				
	100 = Extend	s one-shot eve	ent by 4 time ba	se periods (51	time base perio	ods total)				
	011 = Extends one-shot event by 3 time base periods (4 time base periods total)									
	010 = Extend	s one-shot eve	nt by 2 time ba	se periods (3 f	time base perio	ods total)				
	001 = Extend 000 = Does n	s one-snot event ot extend one-	shot Trigger ev	se period (2 til ent	me base period	is total)				
bit 11	Unimplemen	ted: Read as '	o'	ont						
bit 10-8	OUTM<2:0>:	PWMx Output	Mode Control	oits ⁽¹⁾						
	111 = Reserv	ved								
	110 = Output	Scan mode								
	101 = Brush I	DC Output mod	le, forward							
	100 = Brush I	DC Output mod	ie, reverse							
	010 = Half-Br	idge Output m	ode							
	001 = Push-F	Pull Output mod	le							
	000 = Steera l	ble Single Outp	out mode							
bit 7-6	Unimplemen	ted: Read as '	2'							
bit 5	POLACE: CC	Px Output Pin	s, OCMxA, OC	MxC and OCM	IxE, Polarity Co	ontrol bit				
	1 = Output pi 0 = Output pi	n polarity is ac	tive-low tive-high							
hit 4		Px Output Pin			IvE Polarity Co	ntrol hit(1)				
	1 = Output pi	n polarity is ac	tive-low							
	0 = Output pi	in polarity is ac	tive-high							
bit 3-2	PSSACE<1:0	>: PWMx Outp	out Pins, OCMx	A, OCMxC an	d OCMxE, Shu	tdown State Co	ontrol bits			
	11 = Pins are	driven active v	vhen a shutdov	n event occur	S					
	10 = Pins are	driven inactive	when a shutdo	own event occ	urs					
	0x = Pins are	tri-stated wher	n a shutdown e	vent occurs						
bit 1-0	PSSBDF<1:0	>: PWMx Outp	out Pins, OCMx	B, OCMxD, ar	id OCMxF, Shu	itdown State Co	ontrol bits"			
	11 = Pins are 10 = Pins are	driven inactive	when a shutdov		S Urs					
	0x = Pins are	in a high-impe	dance state wh	ien a shutdowi	n event occurs					

REGISTER 16-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

Note 1: These bits are implemented in MCCPx modules only.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_			_		_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_		WI	FNGTH<4.0>	(1,2)	
bit 7							bit 0
bit 7							bit 0
Logond							
R - Roadable	bit	M = M/ritable	nit	LI – Unimplon	contod bit road		
			JIL	$0^{\circ} - 0^{\circ}$			
-n = value at	PUR	= Bit is set		$0^{\circ} = Bit is clear$	ared	x = Bit is unkn	own
bit 15-5	Unimplement	ted: Read as ')'	. (1.2)			
bit 4-0	WLENGTH<4	:0>: Variable V	Vord Length bi	its ^(1,2)			
	11111 = 32-b	it data					
	11110 = 31-b	it data					
	11101 = 30-D	it data					
	11100 = 29-0 11011 = 28-b	it data					
	11011 - 20-0 11010 - 27-b	it data					
	11010 = 27-b 11001 = 26-b	it data					
	11001 = 20 b 11000 = 25 b	it data					
	10111 = 24-b	it data					
	10110 = 23-b	it data					
	10101 = 22-b	it data					
	10100 = 21-b	it data					
	10011 = 20-b	it data					
	10010 = 19-b	it data					
	10001 = 18-b	it data					
	10000 = 17-b	it data					
	01111 = 16-b	it data					
	01110 = 15-b	it data					
	01101 = 14-b	it data					
	01100 = 13-b	it data					
	01011 = 12-b	it data					
	01010 = 11-b	it data					
	01001 = 10-b	it data					
	01000 = 9-bit	data					
	00111 = 8-DII	data					
	00110 = 7 - bit	data					
	00101 - 0-bit	data					
	0.0011 = 4-hit	data					
	00010 = 3-hit	data					
	00001 = 2-bit	data					
	00000 = See	MODE<32,16>	· bits in SPIxC	ON1L<11:10>			

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 22-1: RTCC BLOCK DIAGRAM

23.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 bits
- Programmable Shift Direction (little or big-endian)
- Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

Figure 23-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 23-2.

FIGURE 23-1: CRC BLOCK DIAGRAM CRCDATH CRCDATL **FIFO Empty** Variable FIFO (4x32, 8x16 or 16x8) Event CRCISEL CRCWDATH CRCWDATL 1 CRC Interrupt LENDIAN 0 Shift Buffer **CRC Shift Engine** Shift 0 Complete Event Shifter Clock 2 * Fcy

FIGURE 23-2: CRC SHIFT ENGINE DETAIL

© 2015-2016 Microchip Technology Inc.

23.1 User Interface

23.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits.

Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit and the other a 32-bit equation.

EQUATION 23-1: 16-BIT, 32-BIT CRC POLYNOMIALS

X16 + X12 + X5 + 1

and

 $\begin{array}{c} X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + \\ X8 + X7 + X5 + X4 + X2 + X + 1 \end{array}$

To program these polynomials into the CRC generator, set the register bits, as shown in Table 23-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The '0' bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length 32, it is assumed that the 32^{nd} bit will be used. Therefore, the X<31:1> bits do not have the 32^{nd} bit.

23.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value between 1 and 32 bits using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is 4 words deep. When the DWIDTHx bits are between 15 and 8, the FIFO is 8 words deep. When the DWIDTHx bits are less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is 1 byte. For example, if the DWIDTHx bits are 5, then the size of the data is DWIDTH<4:0> + 1 or 6. The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, the MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTHx bits are 24, the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written to before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit (CRCCON1<4>) is set and the value of the VWORDx bits is greater than zero.

Each word is copied out of the FIFO into a buffer register, which decrements the VWORDx bits. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORDx bits reach zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When the VWORDx bits reach the maximum value for the configured value of the DWIDTHx bits (4, 8 or 16), the CRCFUL bit (CRCCON1<7>) becomes set. When the VWORDx bits reach zero, the CRCMPT bit (CRCCON1<6>) becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

TABLE 23-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS

CPC Control Pito	Bit Values					
	16-Bit Polynomial	32-Bit Polynomial				
PLEN<4:0>	01111	11111				
X<31:16>	0000 0000 0000 0001	0000 0100 1100 0001				
X<15:1>	0001 0000 0010 000	0001 1101 1011 011				

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	—	_	_	—	—	_	—	
bit 23							bit 16	
R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
AIVTDIS	—	—		CSS2	CSS1	CSS0	CWRP	
bit 15							bit 8	
				D / D 0_4				
R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
GSS1	GSS0	GWRP		BSEN	BSS1	BSS0	BWRP	
DIT 7							DIT U	
Logondy		DO - Drogram	n Onco hit					
R - Roadabl	o hit	W = Writable	hit	II – Unimplon	nonted bit read	d ac (1)		
		4° - Willable	DIL	$0^{\circ} = \text{Diffunction}$	arod			
-n = value at	PUR	I = DILIS SEL			areu		IOWII	
hit 23-16	Unimplemen	ted. Read as "	ı,					
bit 15		ernate Interrunt	⊥ Vector Table I	Disable hit				
DIL 15	1 = Disables		2<8> (AIVTEN	l) bit is not avail	lable			
	0 = Enables A	AIVT; INTCON2	<8> (AIVTEN)) bit is available	;			
bit 14-12	Unimplemen	ted: Read as ':	L'					
bit 11-9	CSS<2:0>: C	onfiguration Se	gment Code F	Protection Leve	l bits			
	111 = No pro	tection (other th	nan CWRP)					
	110 = Standa	ard security						
	0xx = High set	ecurity						
bit 8	CWRP: Confi	iguration Segm	ent Program V	Vrite Protection	bit			
	1 = Configura	ation Segment i	s not write-pro	tected				
	0 = Configura	ation Segment i	s write-protect	ed				
bit 7-6	GSS<1:0>: G	General Segmer	nt Code Protec	ction Level bits				
	11 = No prote	ection (other tha	an GWRP)					
	10 = Standard0x = High sec	a security curity						
bit 5	GWRP: Gene	eral Segment P	rogram Write F	Protection bit				
	1 = General S	Segment is not	write-protected	d				
	0 = General S	Segment is write	e-protected					
bit 4	Unimplemen	ted: Read as ':	l'					
bit 3	BSEN: Boot	Segment Contr	ol bit					
	1 = No Boot S	Segment is ena	bled					
h:: 0 4		ment size is de	termined by B	SLIM<12:0>				
DIT 2-1	BSS<1:0> : B	oot Segment C	Ode Protection	1 Level Dits				
	10 = Standar	d security						
	0x = High sec	curity						
bit 0	BWRP: Boot	Segment Prog	ram Write Prot	ection bit				
	1 = Boot Seg	ment can be wi	itten					
	0 = Boot Segment is write-protected							

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	_	—	_	—	—
bit 23							bit 16
U-1	R/PO-1	R/PO-1	U-1	R/PO-1	U-1	R/PO-1	R/PO-1
	WDTCLK1	WDTCLK0	—	WDTCMX	—	WDTWIN1	WDTWIN0
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	FWDTEN1	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0
Legend:		PO = Program	n Once bit				
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '1'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 23-15	Unimplemen	ted: Read as '1	,				

REGISTER 30-0. FWDI CONFIGURATION REGISTER	REGISTER 30-8:	FWDT CONFIGURATION REGISTER
--	----------------	-----------------------------

bit 12	Unimplemented: Read as '1'
	LPRC
	00 = Uses peripheral clock when system clock is not LPRC and device is not in Sleep; otherwise, uses
	01 = Always uses SOSC
	uses LPRC
	10 = Uses FRC when WINDIS = 0, system clock is not LPRC and device is not in Sleep; otherwise,
	11 = Always uses LPRC

bit 11 WDTCMX: WDT Clock MUX Control bit

1 = Enables WDT clock MUX; WDT clock is selected by WDTCLK<1:0>

WDTCLK<1:0>: Watchdog Timer Clock Select bits (when WDTCMX = 1)

- 0 = WDT clock is LPRC
- bit 10 Unimplemented: Read as '1'

bit 14-13

- bit 9-8 **WDTWIN<1:0>:** Watchdog Timer Window Width bits 11 = WDT window is 25% of the WDT period
 - 10 = WDT window is 37.5% of the WDT period
 - 01 = WDT window is 50% of the WDT period
 - 00 = WDT window is 75% of the WDT period
- bit 7 WINDIS: Windowed Watchdog Timer Disable bit 1 = Windowed WDT is disabled
 - 0 = Windowed WDT is enabled
- bit 6-5 **FWDTEN<1:0>:** Watchdog Timer Enable bits
 - 11 = WDT is enabled
 - 10 = WDT is disabled (control is placed on the SWDTEN bit)
 - 01 = WDT is enabled only while device is active and disabled in Sleep; SWDTEN bit is disabled 00 = WDT and SWDTEN are disabled
- bit 4 **FWPSA:** Watchdog Timer Prescaler bit
 - 1 = WDT prescaler ratio of 1:128
 - 0 = WDT prescaler ratio of 1:32

REGISTER 30-8: FWDT CONFIGURATION REGISTER (CONTINUED)

- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8
 - 0010 **= 1:4**
 - 0001 = 1:2 0000 = 1:1

DC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units Operating Temperature		Vdd	Conditions	
Operating C	urrent (IDD) ⁽	2)					
DC19	230	365	μA	-40°C to +85°C	2.0V	0.5 MIPS,	
	250	365	μA	-40°C to +85°C	3.3V	Fosc = 1 MHz	
DC20	430	640	μA	-40°C to +85°C	2.0V	1 MIPS,	
	440	640	μA	-40°C to +85°C	3.3V	Fosc = 2 MHz	
DC23	1.5	2.4	mA	-40°C to +85°C	2.0V	4 MIPS,	
	1.65	2.4	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz	
DC24	6.1	7.7	mA	-40°C to +85°C	2.0V	16 MIPS,	
	6.3	7.7	mA	-40°C to +85°C	3.3V	Fosc = 32 MHz	
DC31	43	130	μA	-40°C to +85°C	2.0V	LPRC (15.5 KIPS),	
	46	130	μA	-40°C to +85°C	3.3V	Fosc = 31 kHz	
DC32	1.63	2.5	mA	-40°C to +85°C	2.0V	FRC (4 MIPS),	
	1.65	2.5	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz	
DC33	1.9	3.0	mA	-40°C to +85°C	2.0V	DCO (4 MIPS),	
	2.0	3.0	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz	

TABLE 33-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Typical parameters are for design guidance only and are not tested.

2: The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail-to-rail. All I/O pins are configured as outputs driving low. MCLR = VDD; WDT and FSCM are disabled. CPU, program memory and data memory are operational. All peripheral modules are clocked but inactive (PMDx bits are all '1'). JTAG module is disabled.

TABLE 33-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units Operating Temperature		Vdd	Conditions	
Idle Current ((IIDLE) ⁽²⁾						
DC40	95	215	μA	-40°C to +85°C	2.0V	1 MIPS,	
	105	225	μA	-40°C to +85°C	3.3V	Fosc = 2 MHz	
DC43	290	720	μA	-40°C to +85°C	2.0V	4 MIPS,	
	315	750	μA	-40°C to +85°C	3.3V	Fosc = 8 MHz	
DC47	1.05	2.7	mA	-40°C to +85°C	2.0V	16 MIPS,	
	1.16	2.8	mA	-40°C to +85°C	3.3V	Fosc = 32 MHz	
DC50	350	820	μA	-40°C to +85°C	2.0V	FRC (4 MIPS),	
	360	850	μA	-40°C to +85°C	3.3V	Fosc = 8 MHz	
DC51	26	110	μA	-40°C to +85°C	2.0V	LPRC (15.5 KIPS),	
	30	110	μA	-40°C to +85°C	3.3V	Fosc = 31 kHz	

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with the core off, the clock on and all modules turned off. Peripheral Module Disable SFR registers are '1'. All I/O pins are configured as outputs driving low. JTAG module is disabled.

AC CHARACTERISTICS		Standard Op Operating te	perating (mperature	Conditions: 2	2.0V to 3.6V (unless otherwise stated) $40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
SY10	TMCL	MCLR Pulse Width (Low)	2		_	μS	
SY12	TPOR	Power-on Reset Delay	_	2	_	μs	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	Lesser of: (3 TCY + 2) or 700	_	(3 Tcy + 2)	μs	
SY25	TBOR	Brown-out Reset Pulse Width	1	—	—	μS	$VDD \leq VBOR$
SY45	TRST	Internal State Reset Time	_	50	_	μs	
SY71	Трм	Program Memory Wake-up Time	—	20	—	μS	Sleep wake-up with VREGS = 1
			—	1	—	μS	Sleep wake-up with VREGS = 0
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	90	—	μS	Sleep wake-up with VREGS = 1
		—	70	—	μS	Sleep wake-up with VREGS = 0	

TABLE 33-24: RESET AND BROWN-OUT RESET REQUIREMENTS

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

Legen	d: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

© 2015-2016 Microchip Technology Inc.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N		64			
Pitch	е	0.50 BSC				
Overall Height	Α	0.80	0.85	0.90		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	Е		9.00 BSC			
Exposed Pad Width	E2	7.60	7.70	7.80		
Overall Length	D	9.00 BSC				
Exposed Pad Length	D2	7.60	7.70	7.80		
Contact Width	b	0.20	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-213B Sheet 2 of 2