

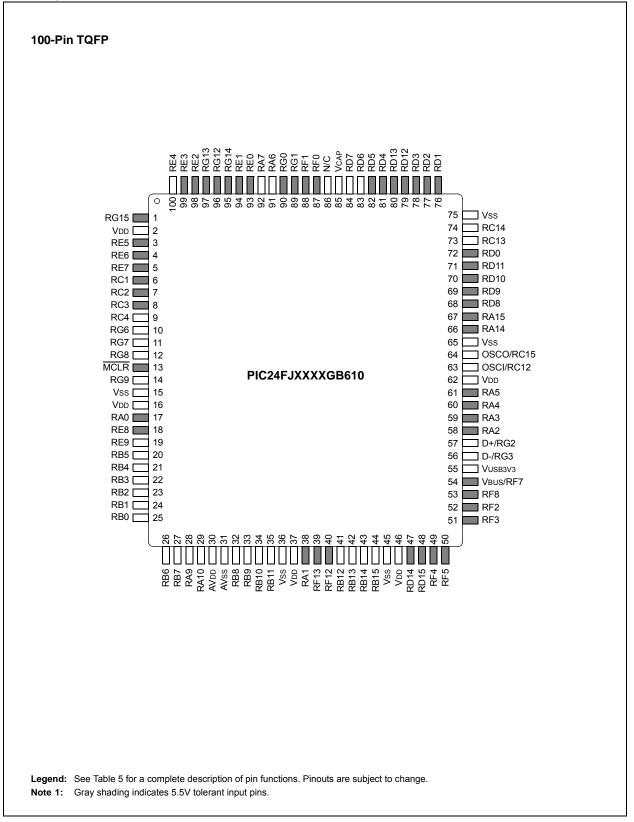
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj512gb606-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams⁽¹⁾ (Continued)

		Pin N	Number/Grid Locator							
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA		Input Buffer	Description	
RF0	58	58	87	87	B6	B6	I/O	DIG/ST	PORTF Digital I/Os	
RF1	59	59	88	88	A6	A6	I/O	DIG/ST		
RF2	34	_	52	52	K11	K11	I/O	DIG/ST		
RF3	33	33	51	51	K10	K10	I/O	DIG/ST		
RF4	31	31	49	49	L10	L10	I/O	DIG/ST		
RF5	32	32	50	50	L11	L11	I/O	DIG/ST		
RF6	35	_	55	_	H9		I/O	DIG/ST		
RF7	—	34	54	54	H8	H8	I/O	DIG/ST		
RF8	_	_	53	53	J10	J10	I/O	DIG/ST		
RF12	_	_	40	40	K6	K6	I/O	DIG/ST		
RF13	_	—	39	39	L6	L6	I/O	DIG/ST		
RG0	_	_	90	90	A5	A5	I/O	DIG/ST	PORTG Digital I/Os	
RG1	_	_	89	89	E6	E6	I/O	DIG/ST		
RG2	37	37	57	57	H10	H10	I/O	DIG/ST		
RG3	36	36	56	56	J11	J11	I/O	DIG/ST		
RG6	4	4	10	10	E3	E3	I/O	DIG/ST		
RG7	5	5	11	11	F4	F4	I/O	DIG/ST		
RG8	6	6	12	12	F2	F2	I/O	DIG/ST		
RG9	8	8	14	14	F3	F3	I/O	DIG/ST		
RG12	—	_	96	96	C3	C3	I/O	DIG/ST		
RG13	—	_	97	97	A3	A3	I/O	DIG/ST		
RG14	—	—	95	95	C4	C4	I/O	DIG/ST		
RG15	—	_	1	1	B2	B2	I/O	DIG/ST		

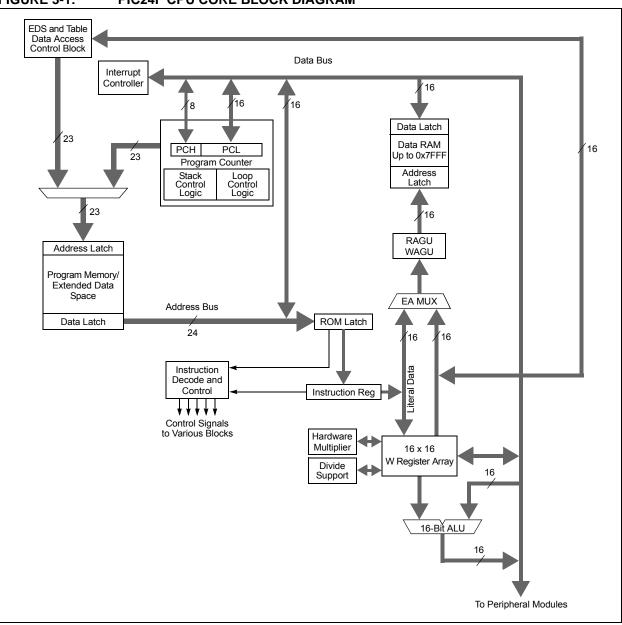
TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer

ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

		Pin N	umber/Gri							
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description	
RPI32	—	—	40	40	K6	K6	Ι	DIG/ST	Remappable Peripherals	
RPI33	—	—	18	18	G1	G1	I	DIG/ST	(input only)	
RPI34	—	_	19	19	G2	G2	Т	DIG/ST		
RPI35	—	_	67	67	E8	E8	Т	DIG/ST		
RPI36	—	_	66	66	E11	E11	Ι	DIG/ST		
RPI37	48	48	74	74	B11	B11	I	DIG/ST		
RPI38	—	—	6	6	D1	D1	I	DIG/ST		
RPI39	_	_	7	7	E4	E4	Ι	DIG/ST		
RPI40	_	—	8	8	E2	E2	Ι	DIG/ST		
RPI41	_	—	9	9	E1	E1	Ι	DIG/ST		
RPI42	_	_	79	79	A9	A9	Ι	DIG/ST		
RPI43	_	_	47	47	L9	L9	I	DIG/ST		
SCL1	37	44	57	66	H10	E11	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output	
SCL2	32	32	58	58	H11	H11	I/O	I ² C	I2C2 Synchronous Serial Clock Input/Output	
SCL3	2	2	4	4	C1	C1	I/O	I ² C	I2C3 Synchronous Serial Clock Input/Output	
SDA1	36	43	56	67	J11	E8	I/O	I ² C	I2C1 Data Input/Output	
SDA2	31	31	59	59	G10	G10	I/O	I ² C	I2C2 Data Input/Output	
SDA3	3	3	5	5	D2	D2	I/O	I ² C	I2C3 Data Input/Output	
SOSCI	47	47	73	73	C10	C10	I	ANA/ ST	Secondary Oscillator/Timer1 Clock Input	
SOSCO	48	48	74	74	B11	B11	0	ANA	Secondary Oscillator/Timer1 Clock Output	
T1CK	22	22	33	33	L4	L4	Ι	ST	Timer1 Clock	
ТСК	27	27	38	38	J6	J6	I	ST	JTAG Test Clock/Programming Clock Input	
TDI	28	28	60	60	G11	G11	I	ST	JTAG Test Data/Programming Data Input	
TDO	24	24	61	61	G9	G9	0	DIG	JTAG Test Data Output	
TMPR	22	22	33	33	L4	L4	I	ST	Tamper Detect Input	
TMS	23	23	17	17	G3	G3	I	ST	JTAG Test Mode Select Input	
U5CTS	58	58	87	87	B6	B6	I	ST	UART5 CTS Output	
U5RTS/ U5BCLK	55	55	84	84	C7	C7	0	DIG	UART5 RTS Input	
U5RX	54	54	83	83	D7	D7	I	ST	UART5 Receive Input	
U5TX	49	49	76	76	A11	A11	0	DIG	UART5 Transmit Output	
U6CTS	46	46	72	72	D9	D9	I	ST	UART6 CTS Output	
U6RTS/ U6BCLK	42	42	68	68	E9	E9	0	DIG	UART6 RTS Input	


TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL =

TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

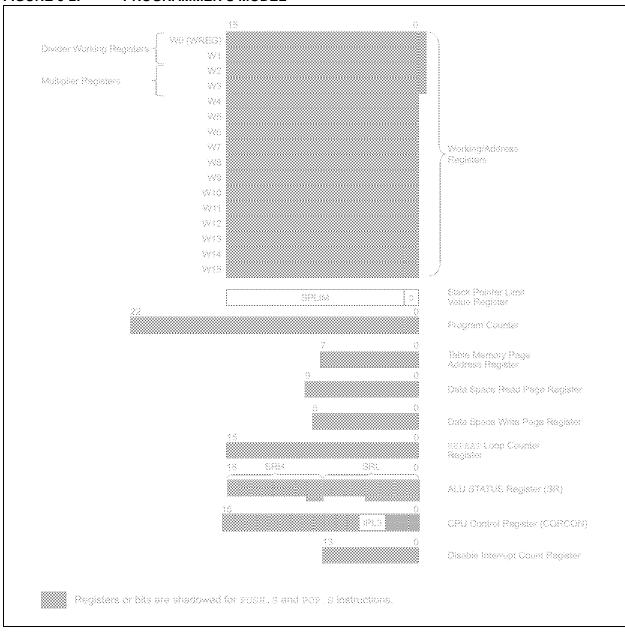


FIGURE 3-1: PIC24F CPU CORE BLOCK DIAGRAM

TABLE 3-1: CI	PU CORE REGISTERS
---------------	-------------------

Register(s) Name	Description	
W0 through W15	Working Register Array	
PC	23-Bit Program Counter	
SR	ALU STATUS Register	
SPLIM	Stack Pointer Limit Value Register	
TBLPAG	Table Memory Page Address Register	
RCOUNT	REPEAT Loop Counter Register	
CORCON	CPU Control Register	
DISICNT	Disable Interrupt Count Register	
DSRPAG	Data Space Read Page Register	
DSWPAG	Data Space Write Page Register	

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 3-2: PROGRAMMER'S MODEL

File Name	Address	All Resets	File Name	Address	All Resets			
SPI (CONTINUED))		CONFIGURABLE LOGIC CELL (CLC) (CONTINUED)					
SPI1BUFL	0400	0000	CLC3CONL	047C	0000			
SPI1BUFH	0402	0000	CLC3CONH	047E	0000			
SPI1BRGL	0404	xxxx	CLC3SELL	0480	0000			
SPI1IMSK1	0408	0000	CLC3GLSL	0484	0000			
SPI1IMSK2	040A	0000	CLC3GLSH	0486	0000			
SPI1URDTL	040C	0000	CLC4CONL	0488	0000			
SPI1URDTH	040E	0000	CLC4CONH	048A	0000			
SPI2CON1	0410	0x00	CLC4SELL	048C	0000			
SPI2CON2	0412	0000	CLC4GLSL	0490	0000			
SPI2CON3	0414	0000	CLC4GLSH	0492	0000			
SPI2STATL	0418	0028	l ² C					
SPI2STATH	041A	0000	I2C1RCV	0494	0000			
SPI2BUFL	041C	0000	I2C1TRN	0496	00FF			
SPI2BUFH	041E	0000	I2C1BRG	0498	0000			
SPI2BRGL	0420	xxxx	I2C1CON1	049A	1000			
SPI2IMSK1	0424	0000	I2C1CON2	049C	0000			
SPI2IMSK2	0426	0000	I2C1STAT	049E	0000			
SPI2URDTL	0428	0000	I2C1ADD	04A0	0000			
SPI2URDTH	042A	0000	I2C1MSK	04A2	0000			
SPI3CON1	042C	0x00	I2C2RCV	04A4	0000			
SPI3CON2	042E	0000	I2C2TRN	04A6	00FF			
SPI3CON3	0430	0000	I2C2BRG	04A8	0000			
SPI3STATL	0434	0028	I2C2CON1	04AA	1000			
SPI3STATH	0436	0000	I2C2CON2	04AC	0000			
SPI3BUFL	0438	0000	I2C2STAT	04AE	0000			
SPI3BUFH	043A	0000	I2C2ADD	04B0	0000			
SPI3BRGL	043C	xxxx	I2C2MSK	04B2	0000			
SPI3IMSK1	0440	0000	I2C3RCV	04B4	0000			
SPI3IMSK2	0442	0000	I2C3TRN	04B6	00FF			
SPI3URDTL	0444	0000	I2C3BRG	04B8	0000			
SPI3URDTH	0446	0000	I2C3CON1	04BA	1000			
CONFIGURABLE	LOGIC CELL (CLC)		I2C3CON2	04BC	0000			
CLC1CONL	0464	0000	I2C3STAT	04BE	0000			
CLC1CONH	0466	0000	I2C3ADD	04C0	0000			
CLC1SELL	0468	0000	I2C3MSK	04C2	0000			
CLC1GLSL	046C	0000	DMA					
CLC1GLSH	046E	0000	DMACON	04C4	0000			
CLC2CONL	0470	0000	DMABUF	04C6	0000			
CLC2CONH	0472	0000	DMAL	04C8	0000			
CLC2SELL	0474	0000	DMAH	04CA	0000			
CLC2GLSL	0478	0000	DMACH0	04CC	0000			
CLC2GLSH	047A	0000	DMAINT0	04CE	0000			

TABLE 4-8: SFR MAP: 0400h BLOCK

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

5.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round-Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority, based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

5.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- 2. Program DMAH and DMAL with the appropriate upper and lower address boundaries for data RAM operations.
- 3. Select the DMA channel to be used and disable its operation (CHEN = 0).
- Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA mode addressing, use the base address value.
- 5. Program the DMACNTn register for the number of Triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
- 8. Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the Trigger source interrupt.

5.3 Peripheral Module Disable

Unlike other peripheral modules, the channels of the DMA Controller cannot be individually powered down using the Peripheral Module Disable (PMD) registers. Instead, the channels are controlled as two groups. The DMA0MD bit (PMD7<4>) selectively controls DMACH0 through DMACH3. The DMA1MD bit (PMD7<5>) controls DMACH4 through DMACH7. Setting both bits effectively disables the DMA Controller.

5.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 5-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 5-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 5-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n
- DMADSTn: DMA Data Destination Source for Channel n
- DMACNTn: DMA Transaction Counter for Channel n

For PIC24FJ1024GA610/GB610 family devices, there are a total of 44 registers.

6.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user to erase blocks of eight rows (1024 instructions) at a time and to program one row at a time. It is also possible to program two instruction word blocks.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 128 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused address should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set the Table Pointer to point to the programming latches, do a series of TBLWT instructions to load the buffers and set the NVMADRU/NVMADR registers to point to the destination. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the Table Write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

6.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

6.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an onboard bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

6.5 Control Registers

There are four SFRs used to read and write the program Flash memory: NVMCON, NVMADRU, NVMADR and NVMKEY.

The NVMCON register (Register 6-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 6.6 "Programming Operations"** for further details.

The NVMADRU/NVMADR registers contain the upper byte and lower word of the destination of the NVM write or erase operation. Some operations (chip erase, Inactive Partition erase) operate on fixed locations and do not require an address value.

6.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

In Dual Partition mode, programming or erasing the Inactive Partition will not stall the processor; the code in the Active Partition will still execute during the programming operation.

It is important to mask interrupts for a minimum of 5 instruction cycles during Flash programming. This can be done in Assembly using the DISI instruction (see Example 6-1).

7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC<2:0> bits in the FOSCSEL Flash Configuration Word (see Table 7-2). The NVMCON register is only affected by a POR.

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the Master Reset Signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

7.3 Brown-out Reset (BOR)

PIC24FJ1024GA610/GB610 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN<1:0> (FPOR<1:0>) Configuration bits.

When BOR is enabled, any drop of VDD below the BOR threshold results in a device BOR. Threshold levels are described in **Section 33.1 "DC Characteristics"**.

7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator**" (DS39700).

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant				
POR	FNOSC<2:0> Configuration bits				
BOR	(FOSCSEL<2:0>)				
MCLR					
WDTO	COSC<2:0> Control bits (OSCCON<14:12>)				
SWR	(030001(14.122))				

REGISTER 9-5: DCOCON: DIGITALLY CONTROLLED OSCILLATOR ENABLE REGISTER

U-0	U-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1
		DCOEN		DCOFSEL3	DCOFSEL2	DCOFSEL1	DCOFSEL0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable b	it	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkn	own
bit 12 bit 11-8	DCOFSEL<3 0000 = 1 MH 0001 = 2 MH 0010 = 3 MH 0011 = 4 MH 0100 = 5 MH 0101 = 6 MH 0110 = 7 MH 0111 = 8 MH 1000 = Reset 1001 = Reset 1010 = Reset 1011 = Reset	z z z z	e oscillator se				
	1101 = Rese 1110 = 15 M 1111 = 30 M	∿ed; do not use Hz Hz					
bit 7-0	Unimplemen	ted: Read as '0	,				

NOTES:

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

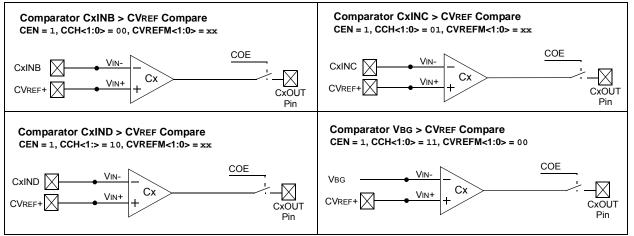
15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for Single-Shot or Continuous mode pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OCx module you are using. Otherwise, configure the dedicated OCx output pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation (= 0xx).
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure Trigger operation and TRIGSTAT to select a hardware or software Trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the Trigger or Sync source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no Sync/Trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a Trigger source event occurs.


R/W-0	U-0	R/W-0, HC	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8
		DAMA					
R/W-0		R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN bit 7	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
							bit 0
Legend:		HC = Hardwa	re Clearable bi	t			
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	12CEN: 12Cx	Enable bit (writ	able from softw	are only)			
		he I2Cx module					S
L:L 4 4		the I2Cx modul	•	are controlled b	by port functions	6	
bit 14	-	ited: Read as '					
bit 13		x Stop in Idle M		ovico ontore Id	lo modo		
		s module opera			ie mode		
bit 12		Lx Release Co)(1)		
	Module reset	s and (I2CEN =	0) sets SCLRI	EL = 1.	,		
	If STREN = 0	_					
	1 = Releases		stratab)				
	If STREN = 1	ock low (clock s	sireich)				
	1 = Releases						
	0 = Holds clo	ck low (clock st	retch); user ma	y program this	bit to '0', clock	stretch at next	SCLx low
bit 11		x Strict Reserve					
		erved addressi Mode: The dev					esos fallina ir
		gory are NACK			veu audress sp		sses iailing ii
	In Maste	r Mode: The de	vice is allowed		dresses with re	eserved addres	s space.
		d addressing w			falling in the re		anaaa Whan
		Mode: The devi a match with an					
		r Mode: Reserv	-	,	·		
bit 10	A10M: 10-Bit	Slave Address	Flag bit				
		is a 10-bit slav					
hit O		is a 7-bit slave					
bit 9		w Rate Control control is disat		rd Sneed mode	a (100 kHz also	disabled for 1	MHz mode)
		control is enab					
bit 8	SMEN: SMB	us Input Levels	Enable bit		-		
		nput logic so th SMBus-specific		ompliant with th	ne SMBus spec	fication	
Note 1:	Automatically cle of slave reception setting the SCLR as specified in Se	n. The user soft EL bit. This dela	ware must prov ay must be grea	vide a delay be ater than the m	tween writing to	o the transmit b	ouffer and

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

2: Automatically cleared to '0' at the beginning of slave transmission.

NOTES:

R/W-0	U-0	R/W-0	U-0	R/W-0	r-1	r-1	R-0, HS, HC
HLVDEN	_	LSIDL	_	VDIR	BGVST	IRVST	LVDEVT ⁽²⁾
bit 15							bit
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_		_	HLVDL3	HLVDL2	HLVDL1	HLVDL0
bit 7							bit
Legend:		HS = Hardware			e Clearable bit		
R = Readable		W = Writable t	bit	'0' = Bit is clea		x = Bit is unk	nown
-n = Value at	POR	'1' = Bit is set		U = Unimplem	ented bit, read	as '0'	
bit 15	HLVDEN: H	High/Low-Voltage	Detect Powe	r Enable bit			
	1 = HLVD i	is enabled					
	0 = HLVD i						
bit 14	Unimplem	ented: Read as 'o)'				
bit 13	LSIDL: HLVD Stop in Idle Mode bit						
		tinues module op ues module opera			dle mode		
bit 12		ented: Read as 'o					
bit 11	VDIR: Volta	age Change Direc	tion Select bi	t			
		occurs when volta					
bit 10		eserved bit (value			,	,	
bit 9		served bit (value i	• •				
bit 8		ow-Voltage Event	•				
		ent is true during					
		ent is not true dur	-	struction cycle			
bit 7-4	•	ented: Read as 'o					
bit 3-0		D>: High/Low-Volt	•				
	1111 = Ext 1110 = Trip	ernal analog inpu	t is used (inp	ut comes from th	ne HLVDIN pin))	
	1101 = Trip						
	1100 = Trip	Point 3 ⁽¹⁾					
	•						
	•						
	• 0100 = Trir	o Point 11 ⁽¹⁾					
	0100 = Inp 00xx = Unp						

REGISTER 29-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

2: The LVDIF flag cannot be cleared by software unless LVDEVT = 0. The voltage must be monitored so that the HLVD condition (as set by VDIR and HLVDL<3:0>) is not asserted.

REGISTER 30-8: FWDT CONFIGURATION REGISTER (CONTINUED)

- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8
 - 0010 **= 1:4**
 - 0001 = 1:2 0000 = 1:1

30.4 Watchdog Timer (WDT)

For PIC24FJ1024GA610/GB610 family devices, the WDT is driven by the LPRC Oscillator, the Secondary Oscillator (SOSC) or the system timer. When the device is in Sleep mode, the LPRC Oscillator will be used. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out (TWDT) period of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (FWDT<3:0>), which allows the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds, can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE (RCON<3:2>) bits will need to be cleared in software after the device wakes up. The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note:	The CLRWDT and PWRSAV instructions
	clear the prescaler and postscaler counts
	when executed.

30.4.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (FWDT<7>) to '0'.

30.4.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits (FWDT<6:5>). When the Configuration bits, FWDTEN<1:0> = 11, the WDT is always enabled.

The WDT can be optionally controlled in software when the Configuration bits, FWDTEN<1:0> = 10. When FWDTEN<1:0> = 00, the Watchdog Timer is always disabled. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical code segments for maximum power savings.

TABLE 32-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS
-------------	-------------------------------------

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016383}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388607}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 destination Working registers ∈ {W0W15}
Wns	One of 16 source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

Normally Write-Only)263Resets97BOR (Brown-out Reset)97Brown-out Reset (BOR)100Clock Source Selection100Clock Source Selection100CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97WDT (Watchdog Timer Reset)97WDT (Watchdog Timer Reset)97RtCCAlarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers320Write Lock313	UxTXREG (UARTx Transmit,	
BOR (Brown-out Reset)97Brown-out Reset (BOR)100Clock Source Selection100CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCCAlarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mapping313RTCVAL Register Mapping314Timestamp Registers324Value Registers324Value Registers324Value Registers324	Normally Write-Only)263	
Brown-out Reset (BOR)100Clock Source Selection100CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97WDT (Watchdog Timer Reset)97RCCC41srAlarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mapping313RTCVAL Register Mapping314Livent Registers324Value Registers324Value Registers324Value Registers324	Resets	
Clock Source Selection100CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCCAlarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers324		
CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCCAlarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers324	Brown-out Reset (BOR)100	
Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC41arm Configuration328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers324	Clock Source Selection 100	
Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mapping317Source Clock311Timestamp Registers324Value Registers320	CM (Configuration Mismatch Reset)97	
IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers320	Delay Times 101	
MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	Device Times 100	
POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	POR (Power-on Reset)97	
SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	RCON Flags, Operation99	
TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
Revision History455RTCCAlarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
RTCCAlarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	•	
Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320		
Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	•	
Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	1 0	
RTCVAL Register Mappings 317 Source Clock 311 Timestamp Registers 324 Value Registers 320		
Source Clock		
Timestamp Registers		
Value Registers		
8		
Write LOCK	0	
	VVIITE LOCK	

S

Secondary Oscillator Operation	132
Serial Peripheral Interface (SPI)	227
Serial Peripheral Interface. See SPI.	
Software Simulator (MPLAB SIM)	409
Software Stack	75
Special Features	22
Special Features of the CPU	389
SPI	
Audio Mode Operation	229
Control Registers	230
Master Mode Operation	228
Slave Mode Operation	228

т

Timer1	
Timer2/3 and Timer4/5	
Timing Diagrams	
CLKO and I/O Characteristics	434
DNL vs. Code (10-Bit Mode)	438
DNL vs. Code (12-Bit Mode)	439
External Clock	430
INL vs. Code (10-Bit Mode)	438
INL vs. Code (12-Bit Mode)	439
Triple Comparator	
Triple Comparator Module	

UART Baud Rate Generator (BRG)
Infrared Support
Infrared Support
Operation of UxCTS and UxRTS Pins
Receiving 8-Bit or 9-Bit Data Mode 258 Transmitting 8-Bit Data Mode 258 9-Bit Data Mode 258 Break and Sync Sequence 258 Unique Device Identifier (UDID) 402 Addresses 402 Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus. See USB OTG. USB OTG 265 Buffer Descriptors 265
Transmitting 8-Bit Data Mode
8-Bit Data Mode
9-Bit Data Mode
Break and Sync Sequence 258 Unique Device Identifier (UDID) 402 Addresses 402 Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus. See USB OTG. USB OTG 265 Buffer Descriptors
Unique Device Identifier (UDID)
Addresses
Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus. See USB OTG. USB OTG
Universal Serial Bus. See USB OTG. USB OTG
USB OTG
Buffer Descriptors
•
Assignment in Different Buffering Modes 271
Buffer Descriptors and BDT 270
Control Registers 279
Device Mode Operation 275
DMA Interface271
Hardware
Calculating
Transceiver Power Requirements
Hardware Configuration
Device Mode
Host and OTG Modes
Host Mode Operation
Interrupts
Interrupts and USB Transactions
Operation
•
HNP

w

Watchdog Timer (WDT)	404
Control Register	404
Windowed Operation	404
WWW Address	463
WWW, On-Line Support	19