

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj512gb606t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams⁽¹⁾ (Continued)

PIC24FJXXXGA610 121-Pin BGA

	1	2	3	4	5	6	7	8	9	10	11	
A	O RE4	RE3	RG13	RE0	RG0	RF1	O N/C	O N/C	RD12	RD2	RD1	
В	O N/C	RG15	RE2	RE1	O RA7	RF0	O VCAP	RD5	RD3	O Vss	O RC14	
С	RE6		RG12	RG14	O RA6	⊖ N/C	O RD7	RD4	⊖ N/C	O RC13	RD11	
D	RC1	RE7	RE5	∩ N/C	⊖ N/C	⊖ N/C	O RD6	RD13	RD0	∩ N/C	RD10	
E	O RC4	RC3	O RG6	RC2	⊖ N/C	RG1	⊖ N/C	RA15	RD8	RD9	RA14	
F		O RG8	O RG9	O RG7	O Vss	O N/C	∩ N/C		O RC12	O Vss	O RC15	
G	RE8	O RE9	RA0	⊖ N/C		O Vss	O Vss	⊖ N/C	RA5	RA3	RA4	
н	O RB5	O RB4	∩ N/C	⊖ N/C	⊖ N/C		∩ N/C	RF7	RF6	RG2	RA2	
J	O RB3	O RB2	O RB7		O RB11	RA1	O RB12	⊖ N/C	⊖ N/C	RF8	RG3	
к	O RB1	O RB0	O RA10	O RB8	⊖ N/C	RF12	O RB14		RD15	RF3	RF2	
L	O RB6	O RA9	O AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5	

Legend: See Table 6 for a complete description of pin functions. Pinouts are subject to change. Note 1: Gray shading indicates 5.5V tolerant input pins.

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
U6RX	27	27	41	41	J7	J7	I	ST	UART6 Receive Input
U6TX	18	18	27	27	J3	J3	0	DIG	UART6 Transmit Output
USBID	—	33	—	51	_	K10	Ι	ST	USB OTG ID Input
USBOEN	—	12	_	21	_	H2	0	DIG	USB Output Enable (active-low)
VBUS	_	34	_	54	_	H8	I		VBUS Supply Detect
VCAP	56	56	85	85	B7	B7	Ρ	—	External Filter Capacitor Connection (regulator enabled)
Vdd	10,26,38	10,26,38	2,16,37, 46,62	2,16,37, 46,62	C2,F8, G5,H6, K8	C2,F8, G5,H6, K8	Ρ	—	Positive Supply for Peripheral Digital Logic and I/O Pins
VREF+	16	16	25,29	25,29	K2,K3	K2,K3	I	ANA	Comparator and A/D Reference Voltage (high) Input
VREF-	15	15	24,28	24,28	K1,L2	K1,L2	I	ANA	Comparator and A/D Reference Voltage (low) Input
Vss	9,25,41	9,25,41	15,36,45, 65,75	15,36,45, 65,75	B10,F5, F10,G6, G7	B10,F5, F10,G6, G7	Ρ	—	Ground Reference for Peripheral Digital Logic and I/O Pins
VUSB3V3	_	35	_	55	_	H9	Р	_	3.3V VUSB

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL =

TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMB$ us input buffer

XCVR = Dedicated Transceiver

DS30010074D-page 40

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address while Indirect Addressing	24-Bit EA Pointing to EDS	Comment
X ⁽¹⁾	х ⁽¹⁾	0000h to 1FFFh	000000h to 001FFFh	Near Data Space ⁽²⁾
		2000h to 7FFFh	002000h to 007FFFh	
001h	001h		008000h to 00FFFEh	
002h	002h		010000h to 017FFEh	
003h	003h		018000h to	
•	•		0187FEh	EPMP Memory Space
•	•	8000h to FFFFh	•	EPIVIP MEMORY Space
•	•		•	
•	•		•	
•	•		•	
1FFh	1FFh		FF8000h to FFFFFEh	
000h	000h		Invalid Address	Address Error Trap ⁽³⁾

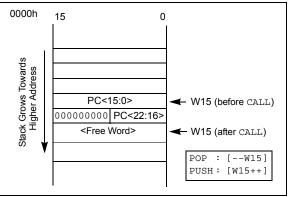
TABLE 4-13: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.

- 2: This Data Space can also be accessed by Direct Addressing.
- **3:** When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be wordaligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-7: CALL STACK FRAME

5.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction; in addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- Source and destination (SFRs and data RAM)
- · Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (fixed address or address blocks, with or without address increment/ decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

5.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 07FFh), or the data RAM space (0800h to FFFFh), can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 5-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

5.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn<1>). By default, each channel is configured for word-sized transactions. When byte-sized transactions are chosen, the LSb of the source and/or destination address determines if the data represents the upper or lower byte of the data RAM location.

5.1.3 TRIGGER SOURCE

The DMA Controller can use any one of the device's interrupt sources to initiate a transaction. The DMA Trigger sources are listed in reverse order of their natural interrupt priority and are shown in Table 5-1.

Since the source and destination addresses for any transaction can be programmed independently of the Trigger source, the DMA Controller can use any Trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

5.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each Trigger.

- One-Shot: A single transaction occurs for each Trigger.
- Continuous: A series of back-to-back transactions occur for each Trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per Trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per Trigger, until the DMA channel is disabled.

All transfer modes allow the option to have the source and destination addresses, and counter value automatically reloaded after the completion of a transaction. Repeated mode transfers do this automatically.

5.1.5 ADDRESSING MODES

The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- · Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range to source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA capable peripheral. When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.

For PIC24FJ1024GA610/GB610 family devices, the 12-bit A/D Converter module is the only PIA capable peripheral. Details for its use in PIA mode are provided in **Section 25.0 "12-Bit A/D Converter with Threshold Detect"**.

TABLE 0-2. INTERRUPT VECTOR DETAILS (CONTINUED)	TABLE 8-2:	INTERRUPT VECTOR DETAILS (CO	NTINUED)
---	-------------------	------------------------------	----------

Interrunt Source	IRQ		Int	errupt Bit Lo	ocation
Interrupt Source	#	IVT Address	Flag	Enable	Priority
I2C1BC – I2C1 Bus Collision	84	0000BCh	IFS5<4>	IEC5<4>	I2C1BCInterrupt
I2C2BC – I2C2 Bus Collision	85	0000BEh	IFS5<5>	IEC5<5>	I2C2BCInterrupt
USB1 – USB1 Interrupt	86	0000C0h	IFS5<6>	IEC5<6>	USB1Interrupt
U4E – UART4 Error	87	0000C2h	IFS5<7>	IEC5<7>	U4ErrInterrupt
U4RX – UART4 Receiver	88	0000C4h	IFS5<8>	IEC5<8>	U4RXInterrupt
U4TX – UART4 Transmitter	89	0000C6h	IFS5<9>	IEC5<9>	U4TXInterrupt
SPI3 – SPI3 General	90	0000C8h	IFS5<10>	IEC5<10>	SPI3Interrupt
SPI3TX – SPI3 Transfer Done	91	0000CAh	IFS5<11>	IEC5<11>	SPI3TXInterrupt
—	92	92	_	_	—
—	93	93	_	_	—
CCP3 – Capture/Compare 3	94	0000D0h	IFS5<14>	IEC5<14>	CCP3Interrupt
CCP4 – Capture/Compare 4	95	0000D2h	IFS5<15>	IEC5<15>	CCP4Interrupt
CLC1 – Configurable Logic Cell 1	96	0000D4h	IFS6<0>	IEC6<0>	CLC1Interrupt
CLC2 – Configurable Logic Cell 2	97	0000D6h	IFS6<1>	IEC6<1>	CLC2Interrupt
CLC3 – Configurable Logic Cell 3	98	0000D8h	IFS6<2>	IEC6<2>	CLC3Interrupt
CLC4 – Configurable Logic Cell 4	99	0000DAh	IFS6<3>	IEC6<3>	CLC4Interrupt
—	100	—	—	—	—
CCT1 – Capture/Compare Timer1	101	0000DEh	IFS6<5>	IEC6<5>	CCT1Interrupt
CCT2 – Capture/Compare Timer2	102	0000E0h	IFS6<6>	IEC6<6>	CCT2Interrupt
—	103	—	—	—	—
—	104	—	—	_	—
	105	—	—	_	—
FST – FRC Self-Tuning Interrupt	106	0000E8h	IFS6<10>	IEC6<10>	FSTInterrupt
	107	—	—	—	—
	108	—	—	_	—
I2C3BC – I2C3 Bus Collision	109	0000EEh	IFS6<13>	IEC6<13>	I2C3BCInterrupt
RTCCTS – Real-Time Clock Timestamp	110	0000F0h	IFS6<14>	IEC6<14>	RTCCTSInterrupt
U5RX – UART5 Receiver	111	0000F2h	IFS6<15>	IEC6<15>	U5RXInterrupt
U5TX – UART5 Transmitter	112	0000F4h	IFS7<0>	IEC7<0>	U5TXInterrupt
U5E – UART5 Error	113	0000F6h	IFS7<1>	IEC7<1>	U5ErrInterrupt
U6RX – UART6 Receiver	114	0000F8h	IFS7<2>	IEC7<2>	U6RXInterrupt
U6TX – UART6 Transmitter	115	0000FAh	IFS7<3>	IEC7<3>	U6TXInterrupt
U6E – UART6 Error	116	0000FCh	IFS7<4>	IEC7<4>	U6ErrInterrupt
JTAG – JTAG	117	0000FEh	IFS7<5>	IEC7<5>	JTAGInterrupt

9.8 Secondary Oscillator

9.8.1 BASIC SOSC OPERATION

PIC24FJ1024GA610/GB610 family devices do not have to set the SOSCEN bit to use the Secondary Oscillator. Any module requiring the SOSC (such as RTCC or Timer1) will automatically turn on the SOSC when the clock signal is needed. The SOSC, however, has a long start-up time (as long as 1 second). To avoid delays for peripheral start-up, the SOSC can be manually started using the SOSCEN bit.

To use the Secondary Oscillator, the SOSCSEL bit (FOSC<3>) must be set to '1'. Programming the SOSCSEL bit to '0' configures the SOSC pins for Digital mode, enabling digital I/O functionality on the pins.

9.8.2 CRYSTAL SELECTION

The 32.768 kHz crystal used for the SOSC must have the following specifications in order to properly start up and run at the correct frequency when in High-Power mode:

- 12.5 pF loading capacitance
- 1.0 pF shunt capacitance
- A typical ESR of 35K; 50K maximum

In addition, the two external crystal loading capacitors should be in the range of 18-22 pF, which will be based on the PC board layout. The capacitors should be COG, 5% tolerance and rated 25V or greater.

The accuracy and duty cycle of the SOSC can be measured on the REFO pin, and is recommended to be in the range of 40-60% and accurate to ± 0.65 Hz.

9.8.3 LOW-POWER SOSC OPERATION

The Secondary Oscillator can operate in two distinct levels of power consumption based on device configuration. In Low-Power mode, the oscillator operates in a low drive strength, low-power state. By default, the oscillator uses a higher drive strength, and therefore, requires more power. Low-Power mode is selected by Configuration bit, SOSCHP (FDEVOPT1<3>). The lower drive strength of this mode makes the SOSC more sensitive to noise and requires a longer start-up time. This mode can be used with lower load capacitance crystals (6 pF-9 pF) having higher ESR ratings (50K-80K) to reduce Sleep current in the RTCC. When Low-Power mode is used, care must be taken in the design and layout of the SOSC circuit to ensure that the oscillator starts up and oscillates properly. PC board layout issues, stray capacitance and other factors will need to be carefully controlled in order for the crystal to operate.

For 32-bit cascaded operation, these steps are also necessary:

- 1. Set the OC32 bits for both registers (OCyCON2<8> and OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the Trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSEL<4:0> (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

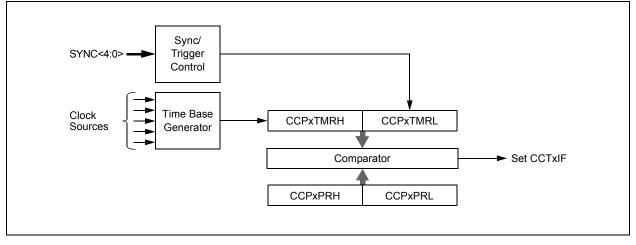
Single-Shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are doublebuffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OC module you are using. Otherwise, configure the dedicated OCx output pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 15-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer, and not the selected timer output.


Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
<u> </u>	<u> </u>	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2 ⁽²⁾	ENFLT1 ⁽²⁾
bit 15		OCCIDE	OUTOLLE	OUTOLLT	OUTOLLU		bit 8
R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT0	(2) OCFLT2 ^(2,3)	OCFLT1 ^(2,4)	OCFLT0 ^(2,4)	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
bit 7	1		L	l		•	bit 0
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13	OCSIDL: Out	put Compare x	Stop in Idle Mo	ode Control bit			
		ompare x halts					
				e in CPU Idle m	node		
bit 12-10		>: Output Com		elect bits			
	111 = Periphe 110 = Reserv	eral clock (Fcy)					
	101 = Reserv						
			hchronous cloc	k is supported)			
	011 = Timer5						
	010 = Timer4 001 = Timer3						
	001 = Timer3 000 = Timer2						
bit 9		It Input 2 Enab	e bit (2)				
		Comparator 1/2		ed ⁽³⁾			
	0 = Fault 2 is		,				
bit 8		lt Input 1 Enab					
	1 = Fault 1 (0 0 = Fault 1 is	DCFB pin) is er	abled ⁽⁴⁾				
bit 7		It Input 0 Enab	e hit(2)				
		DCFA pin) is er					
	0 = Fault 0 is						
bit 6	OCFLT2: Out	put Compare x	PWM Fault 2 ((Comparator 1/2	2/3) Condition	Status bit ^(2,3)	
	1 = PWM Fa	ult 2 has occur	ed				
		Fault 2 has oc					
bit 5				(OCFB pin) Cor	ndition Status b	bit ^(2,4)	
		ult 1 has occur Fault 1 has oc					
		1 4411 1 1143 00	curred				
Note 1:	The OCx output n "Peripheral Pin \$	Select (PPS)".	•				Section 11.4
2:	The Fault input er						
3:	The Comparator channels, Compa					put controls the	e OC4-OC6
4:	The OCFA/OCFB	Fault inputs mu	ust also be conf	figured to an av	ailable RPn/RF	In pin. For mor	e information,

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

4: The OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

FIGURE 16-4: 32-BIT TIMER MODE

16.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module, on compare match events, has the ability to generate a single output transition or a train of output pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 16-2 shows the various modes available in Output Compare modes.

TABLE 16-2: 001	PUT COMPARE/P	WM MODES					
MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode					
0001	0	Output High on Compare (16-bit)					
0001	1	Output High on Compare (32-bit)					
0010	0	Output Low on Compare (16-bit)	Single Edge Mede				
0010	1	Output Low on Compare (32-bit)	Single Edge Mode				
0011	0	Output Toggle on Compare (16-bit)					
0011	1	Output Toggle on Compare (32-bit)					
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode				
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode				
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM Mode				
0111	0	Variable Frequency Pulse (16-bit)					
1111	0	External Input Source Mode (16-bit)					

TABLE 16-2: OUTPUT COMPARE/PWM MODES

NOTES:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RXWIEN	—	RXMSK5 ⁽¹⁾	RXMSK4 ^(1,4)	RXMSK3 ^(1,3)	RXMSK2 ^(1,2)	RXMSK1 ⁽¹⁾	RXMSK0 ⁽¹⁾
bit 15		·			•		bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXWIEN	—	TXMSK5 ⁽¹⁾	TXMSK4 ^(1,4)	TXMSK3 ^(1,3)	TXMSK2 ^(1,2)	TXMSK1 ⁽¹⁾	TXMSK0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpleme	nted bit, read as	ʻ0'	
-n = Value	at POR	'1' = Bit is set	:	'0' = Bit is cleare	ed	x = Bit is unkn	own
bit 14 bit 13-8	RXMSK<5	ented: Read as :0>: RX Buffer	Mask bits ^{(1,2,3,4}				
		oits; used in con	-				
bit 7		Transmit Waterr					_
		rs transmit buffe es transmit buffe		rmark interrupt w ermark interrupt	/hen TXMSK<5:()> = TXELM<5:	0>
bit 6	Unimplem	ented: Read as	s 'O'				
bit 5-0	TXMSK<5	:0>: TX Buffer M	/lask bits ^(1,2,3,4)				
	TX mask b	its; used in conj	junction with the	e TXWIEN bit.			
Note 1:	Mask values this case.	s higher than Fl	FODEPTH are	not valid. The m	odule will not tri	gger a match fo	or any value in
2:	RXMSK2 ar	nd TXMSK2 bits	are only prese	nt when FIFODE	PTH = 8 or high	er.	
3:	RXMSK3 ar	nd TXMSK3 bits	are only prese	nt when FIFODE	PTH = 16 or hig	her.	

REGISTER 17-10: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "UART" (DS39708), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins. The UART module includes an IrDA[®] encoder/decoder unit.

The PIC24FJ1024GA610/GB610 family devices are equipped with six UART modules, referred to as UART1, UART2, UART3, UART4, UART5 and UART6.

The primary features of the UARTx modules are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Range from up to 1 Mbps and Down to 15 Hz at 16 MIPS in 16x mode

- Baud Rates Range from up to 4 Mbps and Down to 61 Hz at 16 MIPS in 4x mode
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect $(9^{th} bit = 1)$
- · Separate Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- Polarity Control for Transmit and Receive Lines
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- Includes DMA Support
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 19-1. The UARTx module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

Note: Throughout this section, references to register and bit names that may be associated with a specific UART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the Status register for either UART1, UART2, UART3, UART4, UART5 or UART6.

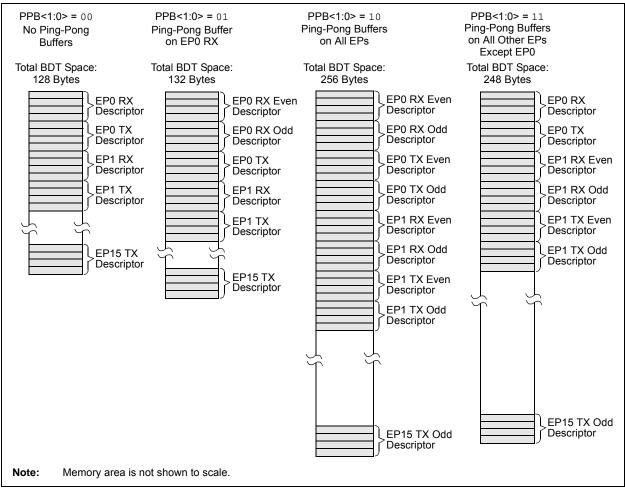
20.2 USB Buffer Descriptors and the BDT

Endpoint buffer control is handled through a structure called the Buffer Descriptor Table (BDT). This provides a flexible method for users to construct and control endpoint buffers of various lengths and configurations.

The BDT can be located in any available 512-byte, aligned block of data RAM. The BDT Pointer (U1BDTP1) contains the upper address byte of the BDT and sets the location of the BDT in RAM. The user must set this pointer to indicate the table's location.

The BDT is composed of Buffer Descriptors (BDs) which are used to define and control the actual buffers in the USB RAM space. Each BD consists of two 16-bit, "soft" (non-fixed-address) registers, BDnSTAT and BDnADR, where n represents one of the 64 possible BDs (range of 0 to 63). BDnSTAT is the status register for BDn, while BDnADR specifies the starting address for the buffer associated with BDn.

Note: Since BDnADR is a 16-bit register, only the first 64 Kbytes of RAM can be accessed by the USB module.


Depending on the endpoint buffering configuration used, there are up to 64 sets of Buffer Descriptors, for a total of 256 bytes. At a minimum, the BDT must be at least 8 bytes long. This is because the *"USB 2.0 Specification"* mandates that every device must have Endpoint 0 with both input and output for initial setup.

Endpoint mapping in the BDT is dependent on three variables:

- Endpoint number (0 to 15)
- Endpoint direction (RX or TX)
- Ping-pong settings (U1CNFG1<1:0>)

Figure 20-7 illustrates how these variables are used to map endpoints in the BDT.

In Host mode, only Endpoint 0 Buffer Descriptors are used. All transfers utilize the Endpoint 0 Buffer Descriptor and Endpoint Control register (U1EP0). For received packets, the attached device's source endpoint is indicated by the value of ENDPT<3:0> in the USB Status register (U1STAT<7:4>). For transmitted packets, the attached device's destination endpoint is indicated by the value written to the USB Token register (U1TOK).

FIGURE 20-7: BDT MAPPING FOR ENDPOINT BUFFERING MODES

20.3 USB Interrupts

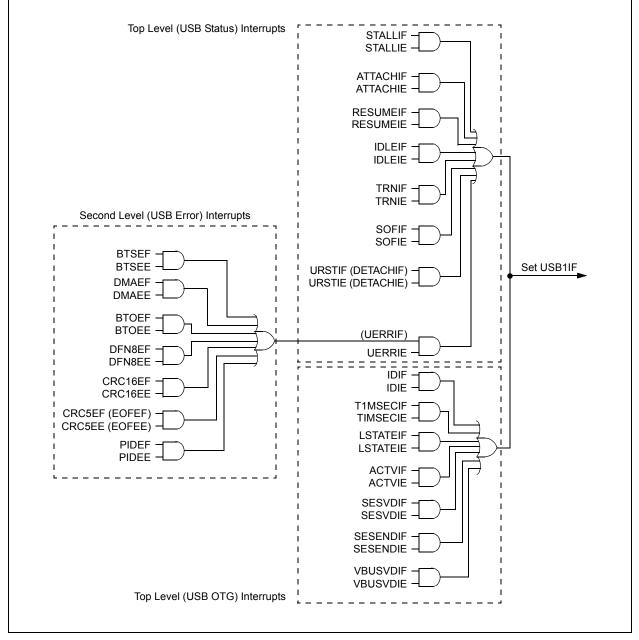

The USB OTG module has many conditions that can be configured to cause an interrupt. All interrupt sources use the same interrupt vector.

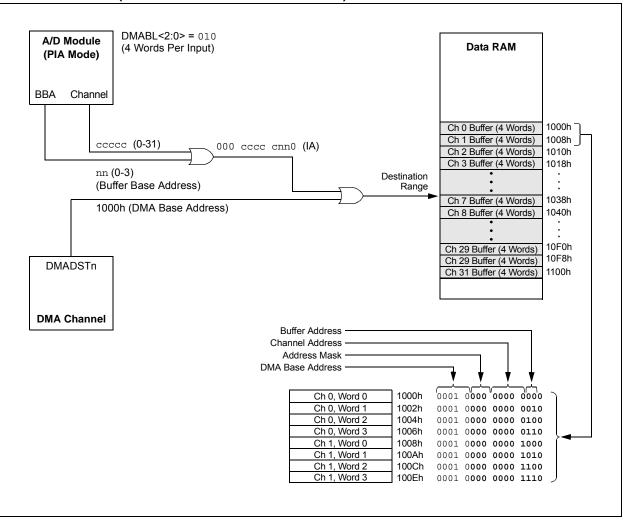
Figure 20-8 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the U1IE and U1IR registers, respectively. The second level consists of USB error conditions, which are enabled and flagged in the U1EIR and U1EIE registers.

An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the top level. Unlike the device-level interrupt flags in the IFSx registers, USB interrupt flags in the U1IR registers can only be cleared by writing a '1' to the bit position.

Interrupts may be used to trap routine events in a USB transaction. Figure 20-9 provides some common events within a USB frame and their corresponding interrupts.

FIGURE 20-8: USB OTG INTERRUPT FUNNEL

REGISTER 20-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

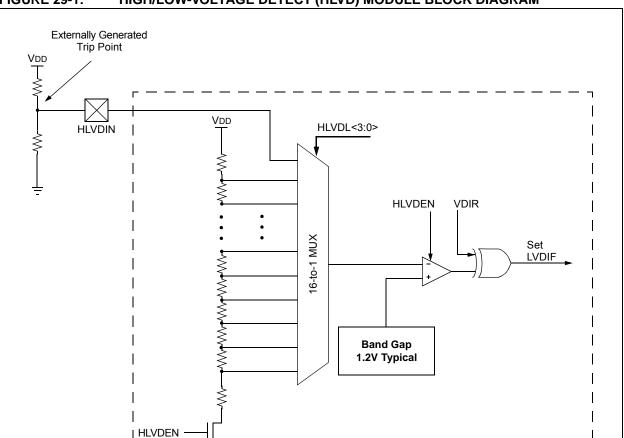

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		—				—
bit 15							bit 8
R/K-0, HS	U-0	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS
STALLIF		RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
bit 7							bit 0
Legend:		U = Unimplem	ented bit, read	d as '0'			
R = Readabl		K = Write '1' to	o Clear bit	HS = Hardwa	re Settable bit		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-8	Unimplem	ented: Read as '0)'				
bit 7	STALLIF: S	STALL Handshake	e Interrupt bit				
		LL handshake wa	s sent by the p	peripheral durin	g the handshal	ke phase of the	transaction in
		e mode LL handshake has	s not been sen	ht.			
bit 6		ented: Read as '0		it.			
bit 5	-	-: Resume Interru					
Sit 0		ate is observed on		oin for 2.5 us (d	lifferential '1' fo	r low speed, dit	fferential '0' for
	full spe						
	0 = No K-s	state is observed					
bit 4	IDLEIF: Idl	e Detect Interrupt	bit				
		ndition is detected e condition is dete	•	e state of 3 ms	or more)		
bit 3		e condition is dete		unt hit			
DIL 3		ssing of the curren	-	-	LI1STAT regist	er for endpoint	information
		ssing of the curren					
		TAT (clearing this				-	
bit 2		rt-of-Frame Toker	•				
		-of-Frame token is	s received by t	he peripheral c	or the Start-of-F	rame threshold	l is reached by
	the hos	st ırt-of-Frame token	is received or	threshold read	bed		
bit 1		ISB Error Conditio			neu		
bit 1		masked error cond			states enabled	in the U1EIE r	egister can set
	this bit			field, only error			egiotor our cor
	0 = No unr	masked error cond	dition has occu	ırred			
bit 0	URSTIF: U	SB Reset Interrup	ot bit				
		JSB Reset has oc	curred for at le	east 2.5 μs; Re	set state must	be cleared before	ore this bit can
		sserted B Reset has occu	urred: individua	al hite can only	be cleared by	writing a '1' to t	the hit position
		t of a word write of		-	-	-	
		to write to a single					
	cleared	d					
		can only be cleare					
	-	Using Boolean in					uon wiii Cause

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWCSAMP7	PWCSAMP6	PWCSAMP5	PWCSAMP4	PWCSAMP3	PWCSAMP2	PWCSAMP1	PWCSAMP0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWCSTAB7	PWCSTAB6	PWCSTAB5	PWCSTAB4	PWCSTAB3	PWCSTAB2	PWCSTAB1	PWCSTAB0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	ented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	nown		
bit 15-8 bit 7-0	11111111 = S 11111110 = S • • • • • • • • • • • • • • • • • • •	ample window is ample window is ample window is o sample windo 0>: Power Con itability window	s always enable s 254 TPWCCLK s 1 TPWCCLK clo w trol Stability Wi is 255 TPWCCLI	ock period ndow Timer bits < clock periods	WCEN = 0		

REGISTER 22-5: RTCCON3L: RTCC CONTROL REGISTER 3 (LOW)

Note 1: The sample window always starts when the stability window timer expires, except when its initial value is 00h.

FIGURE 25-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)


29.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The LVDIF flag may be set during a POR or BOR event. The firmware should clear the flag before the application uses it for the first time, even if the interrupt was disabled.

The HLVD Control register (see Register 29-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device. The HLVDEN bit (HLVDCON<15>) should be cleared when writing data to the HLVDCON register. Once the register is configured, the module is enabled from power-down by setting HLVDEN. The application must wait a minimum of 5 μ S before clearing the HLVDIF flag and using the module after HLVDEN has been set.

FIGURE 29-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

	REGISTER 30-6:	FOSCSEL	CONFIGURATION REGISTER
--	----------------	---------	------------------------

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23 b							

U-1	U-1	U-1	U-1	U-1	U-1	r-0	r-0
—	—	—	—	—	—	—	—
bit 15 bit							

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IESO	PLLMODE3	PLLMODE2	PLLMODE1	PLLMODE0	FNOSC2	FNOSC1	FNOSC0
bit 7							bit 0

Legend: PO = Program Once bit		r = Reserved bit		
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '1'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 23-10	Unimplemented: Read as '1'
bit 9-8	Reserved: Maintain as '0'
bit 7	 IESO: Two-Speed Oscillator Start-up Enable bit 1 = Starts up the device with FRC, then automatically switches to the user-selected oscillator when ready 0 = Starts up the device with the user-selected oscillator source
bit 6-3	PLLMODE<3:0>: Frequency Multiplier Select bits 1111 = No PLL is used (PLLEN bit is unavailable) 1110 = 8x PLL is selected 1101 = 6x PLL is selected 1100 = 4x PLL is selected 0111 = 96 MHz USB PLL is selected (Input Frequency = 48 MHz) 0110 = 96 MHz USB PLL is selected (Input Frequency = 32 MHz) 0101 = 96 MHz USB PLL is selected (Input Frequency = 24 MHz) 0100 = 96 MHz USB PLL is selected (Input Frequency = 20 MHz) 0011 = 96 MHz USB PLL is selected (Input Frequency = 16 MHz) 0010 = 96 MHz USB PLL is selected (Input Frequency = 12 MHz) 0010 = 96 MHz USB PLL is selected (Input Frequency = 8 MHz) 0001 = 96 MHz USB PLL is selected (Input Frequency = 4 MHz)
bit 2-0	FNOSC<2:0>: Oscillator Selection bits 111 = Oscillator with Frequency Divider (OSCFDIV) 110 = Digitally Controlled Oscillator (DCO) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)

 $\ensuremath{\textcircled{}^{\odot}}$ 2015-2016 Microchip Technology Inc.

REGISTER 30-10: FICD CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
_		_	_	_	_	_	_			
bit 23 bit 23										
							,			
R/PO-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
BTSWP	—	—	—	—	—	—				
bit 15	bit 15 bit 8									
r-1	U-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1			
		JTAGEN	—			ICS1	ICS0			
bit 7							bit 0			
Logondu		PO = Progran	o Onco hit	r = Reserved	hit]			
Legend: R = Readable	, hit	W = Writable								
-n = Value at		'1' = Bit is set		U = Unimplemented bit, read as '1' '0' = Bit is cleared x = Bit is unknown						
	FUR	I - DILISSEL			areu		IOWIT			
bit 23-16	Unimplemen	ted: Read as ':	l'							
bit 15	-	TSWP Instructio								
	1 = BOOTSWP	instruction is d	isabled							
	0 = BOOTSWP	instruction is e	nabled							
bit 14-8	Unimplemen	ted: Read as ':	1'							
bit 7	Reserved: Ma	aintain as '1'								
bit 6	Unimplemented: Read as '1'									
bit 5	JTAGEN: JTAG Port Enable bit									
	1 = JTAG port is enabled									
	0 = JTAG port is disabled									
bit 4-2	Unimplemented: Read as '1'									
bit 1-0		D Communicat		elect bits						
	11 = Communicates on PGEC1/PGED1									
	10 = Communicates on PGEC2/PGED2 01 = Communicates on PGEC3/PGED3									
	00 = Reserved; do not use									