

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj512gb610-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
RA0	_	—	17	17	G3	G3	I/O	DIG/ST	PORTA Digital I/Os
RA1	_	_	38	38	J6	J6	I/O	DIG/ST	
RA2	_	_	58	58	H11	H11	I/O	DIG/ST	
RA3	_	_	59	59	G10	G10	I/O	DIG/ST	
RA4	_	_	60	60	G11	G11	I/O	DIG/ST	
RA5	_	_	61	61	G9	G9	I/O	DIG/ST	
RA6	_	—	91	91	C5	C5	I/O	DIG/ST	
RA7	_	_	92	92	B5	B5	I/O	DIG/ST	
RA9	_	—	28	28	L2	L2	I/O	DIG/ST	
RA10	_	_	29	29	K3	K3	I/O	DIG/ST	
RA14	_	_	66	66	E11	E11	I/O	DIG/ST	
RA15	_	—	67	67	E8	E8	I/O	DIG/ST	
RB0	16	16	25	25	K2	K2	I/O	DIG/ST	PORTB Digital I/Os
RB1	15	15	24	24	K1	K1	I/O	DIG/ST	
RB2	14	14	23	23	J2	J2	I/O	DIG/ST	
RB3	13	13	22	22	J1	J1	I/O	DIG/ST	
RB4	12	12	21	21	H2	H2	I/O	DIG/ST	
RB5	11	11	20	20	H1	H1	I/O	DIG/ST	
RB6	17	17	26	26	L1	L1	I/O	DIG/ST	
RB7	18	18	27	27	J3	J3	I/O	DIG/ST	
RB8	21	21	32	32	K4	K4	I/O	DIG/ST	
RB9	22	22	33	33	L4	L4	I/O	DIG/ST	
RB10	23	23	34	34	L5	L5	I/O	DIG/ST	
RB11	24	24	35	35	J5	J5	I/O	DIG/ST	
RB12	27	27	41	41	J7	J7	I/O	DIG/ST	
RB13	28	28	42	42	L7	L7	I/O	DIG/ST	
RB14	29	29	43	43	K7	K7	I/O	DIG/ST	
RB15	30	30	44	44	L8	L8	I/O	DIG/ST	
RC1	_	_	6	6	D1	D1	I/O	DIG/ST	PORTC Digital I/Os
RC2	_	_	7	7	E4	E4	I/O	DIG/ST	
RC3	—	_	8	8	E2	E2	I/O	DIG/ST	
RC4	-	_	9	9	E1	E1	I/O	DIG/ST	
RC12	39	39	63	63	F9	F9	I/O	DIG/ST	
RC13	47	47	73	73	C10	C10	I/O	DIG/ST	
RC14	48	48	74	74	B11	B11	I/O	DIG/ST	
RC15	40	40	64	64	F11	F11	I/O	DIG/ST	

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

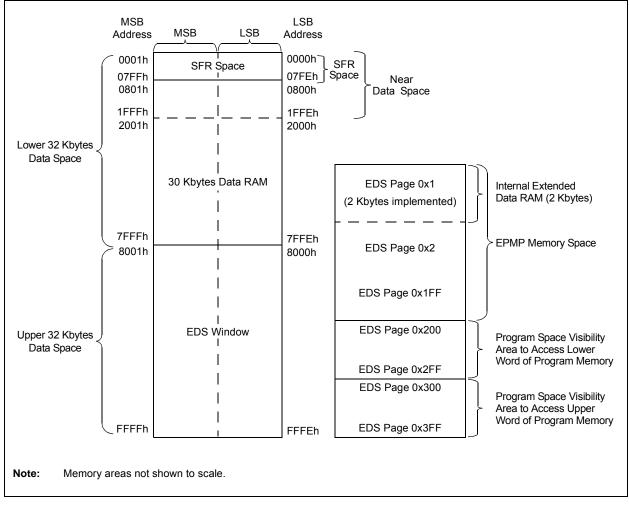
 $I^2C = I^2C/SMBus$ input buffer XCVR = Dedicated Transceiver

4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Data Memory with Extended Data Space (EDS)**" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 4-3.

The 16-bit wide data addresses in the data memory space point to bytes within the Data Space (DS). This gives a DS address range of 32 Kbytes or 16K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.


The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16-bit address range. EDS is discussed in detail in **Section 4.2.5 "Extended Data Space (EDS)**".

The lower half of DS is compatible with previous PIC24F microcontrollers without EDS. All PIC24FJ1024GA610/ GB610 family devices implement 30 Kbytes of data RAM in the lower half of DS, from 0800h to 7FFF.

4.2.1 DATA SPACE WIDTH

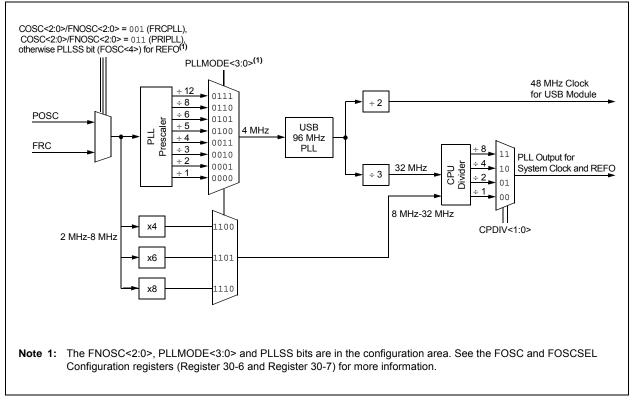
The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

File Name	Address	All Resets	File Name	Address	All Resets	
DMA (CONTINUED)			DMA (CONTINUED)			
DMASRC0	04D0	0000	DMACNT2	04E8	0001	
DMADST0	04D2	0000	DMACH3	04EA	0000	
DMACNT0	04D4	0001	DMAINT3	04EC	0000	
DMACH1	04D6	0000	DMASRC3	04EE	0000	
DMAINT1	04D8	0000	DMADST3	04F0	0000	
DMASRC1	04DA	0000	DMACNT3	04F2	0001	
DMADST1	04DC	0000	DMACH4	04F4	0000	
DMACNT1	04DE	0001	DMAINT4	04F6	0000	
DMACH2	04E0	0000	DMASRC4	04F8	0000	
DMAINT2	04E2	0000	DMADST4	04FA	0000	
DMASRC2	04E4	0000	DMACNT4	04FC	0001	
DMADST2	04E6	0000	DMACH5	04FE	0000	

TABLE 4-8: SFR MAP: 0400h BLOCK (CONTINUED)

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

File Name	Address	All Resets	File Name	Address	All Resets	
DMA (CONTINUED)			USB OTG (CONTINUED)			
DMAINT5	0500	0000	U1ADDR	056E	00xx	
DMASRC5	0502	0000	U1BDTP1	0570	0000	
DMADST5	0504	0000	U1FRML	0572	0000	
DMACNT5	0506	0001	U1FRMH	0574	0000	
DMACH6	0508	0000	U1TOK	0576	0000	
DMAINT6	050A	0000	U1SOF	0578	0000	
DMASRC6	050C	0000	U1BDTP2	057A	0000	
DMADST6	050E	0000	U1BDTP3	057C	0000	
DMACNT6	0510	0001	U1CNFG1	057E	0000	
DMACH7	0512	0000	U1CNFG2	0580	0000	
DMAINT7	0514	0000	U1EP0	0582	0000	
DMASRC7	0516	0000	U1EP1	0584	0000	
DMADST7	0518	0000	U1EP2	0586	0000	
DMACNT7	051A	0001	U1EP3	0588	0000	
USB OTG			U1EP4	058A	0000	
U10TGIR	0558	0000	U1EP5	058C	0000	
U1OTGIE	055A	0000	U1EP6	058E	0000	
U1OTGSTAT	055C	0000	U1EP7	0590	0000	
U10TGCON	055E	0000	U1EP8	0592	0000	
U1PWRC	0560	00x0	U1EP9	0594	0000	
U1IR	0562	0000	U1EP10	0596	0000	
U1IE	0564	0000	U1EP11	0598	0000	
U1EIR	0566	0000	U1EP12	059A	0000	
U1EIE	0568	0000	U1EP13	059C	0000	
U1STAT	056A	0000	U1EP14	059E	0000	
U1CON	056C	00x0	U1EP15	05A0	0000	


TABLE 4-9:SFR MAP: 0500h BLOCK

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

R/W-1	R-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
GIE	DISI	SWTRAP	—		_		AIVTEN
bit 15	<u>ң</u>						bit 8
			D 444 0	D 444 0	D 444 A	DAMA	D 444 0
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit (
Legend:							
R = Readab	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15		Interrupt Enable					
		ts and associate ts are disabled, I	•		abled		
bit 14	•	Instruction Statu	•				
		struction is active					
	0 = DISI in	struction is not a	ctive				
bit 13	SWTRAP: S	Software Trap St	atus bit				
		e trap is enabled e trap is disabled					
bit 12-9		ented: Read as '					
bit 8	-	ternate Interrupt		Enable bit			
		ernate Interrupt \ ndard Interrupt \			onfiguration bits)	
bit 7-5	Unimpleme	ented: Read as '	0'				
bit 4	INT4EP: Ex	ternal Interrupt 4	Edge Detect	Polarity Select	bit		
		t on negative ed t on positive edg	•				
bit 3	•	ternal Interrupt 3		Polarity Select	bit		
		t on negative ed	-	,,			
		t on positive edg					
bit 2		ternal Interrupt 2		Polarity Select	bit		
		t on negative edg t on positive edg					
bit 1	INT1EP: Ex	ternal Interrupt 1	Edge Detect	Polarity Select	bit		
		t on negative ed t on positive edg					
bit 0	-	ternal Interrupt (Polarity Select	bit		
		t on negative ed	-		· · · ·		

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

FIGURE 9-2: PLL BLOCK

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ1024GA610/GB610 family devices support a larger number of remappable input/output pins than remappable input only pins. In this device family, there are up to 44 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP31, and RPI32 through RPI43.

See Table 1-1 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I²C (input and output)
- Input Change Notifications
- EPMP Signals (input and output)
- Analog (inputs and outputs)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pinselectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

11.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-12 through Register 11-35). Each register contains one or two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

TABLE TT-3. SELECTABLE INFOT SOUNCES (WAFS INFOT TO TONCTION).	TABLE 11-3 :	SELECTABLE INPUT SOURCES	(MAPS INPUT TO FUNCTION) ⁽¹⁾
--	---------------------	--------------------------	---

Input Name	Function Name	Register	Function Mapping Bits
Output Compare Trigger 1	OCTRIG1	RPINR0<5:0>	OCTRIG1R<5:0>
External Interrupt 1	INT1	RPINR0<13:8>	INT1R<5:0>
External Interrupt 2	INT2	RPINR1<5:0>	INT2R<5:0>
External Interrupt 3	INT3	RPINR1<13:8>	INT3R<5:0>
External Interrupt 4	INT4	RPINR2<5:0>	INT4R<5:0>
Output Compare Trigger 2	OCTRIG2	RPINR2<13:8>	OCTRIG2R<5:0>
Timer2 External Clock	T2CK	RPINR3<5:0>	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3<13:8>	T3CKR<5:0>
Timer4 External Clock	T4CK	RPINR4<5:0>	T4CKR<5:0>
Timer5 External Clock	T5CK	RPINR4<13:8>	T5CKR<5:0>
Input Capture 1	IC1	RPINR7<5:0>	IC1R<5:0>
Input Capture 2	IC2	RPINR7<13:8>	IC2R<5:0>
Input Capture 3	IC3	RPINR8<5:0>	IC3R<5:0>
Output Compare Fault A	OCFA	RPINR11<5:0>	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11<13:8>	OCFBR<5:0>
CCP Clock Input A	TCKIA	RPINR12<5:0>	TCKIAR<5:0>
CCP Clock Input B	TCKIB	RPINR12<13:8>	TCKIBR<5:0>
UART3 Receive	U3RX	RPINR17<13:8>	U3RXR<5:0>
UART1 Receive	U1RX	RPINR18<5:0>	U1RXR<5:0>
UART1 Clear-to-Send	U1CTS	RPINR18<13:8>	U1CTSR<5:0>
UART2 Receive	U2RX	RPINR19<5:0>	U2RXR<5:0>
UART2 Clear-to-Send	U2CTS	RPINR19<13:8>	U2CTSR<5:0>
SPI1 Data Input	SDI1	RPINR20<5:0>	SDI1R<5:0>
SPI1 Clock Input	SCK1IN	RPINR20<13:8>	SCK1R<5:0>
SPI1 Slave Select Input	SS1IN	RPINR21<5:0>	SS1R<5:0>
UART3 Clear-to-Send	U3CTS	RPINR21<13:8>	U3CTSR<5:0>
SPI2 Data Input	SDI2	RPINR22<5:0>	SDI2R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22<13:8>	SCK2R<5:0>
SPI2 Slave Select Input	SS2IN	RPINR23<5:0>	SS2R<5:0>
Generic Timer External Clock	TxCK	RPINR23<13:8>	TXCKR<5:0>
CLC Input A	CLCINA	RPINR25<5:0>	CLCINAR<5:0>
CLC Input B	CLCINB	RPINR25<13:8>	CLCINBR<5:0>
UART4 Receive	U4RX	RPINR27<5:0>	U4RXR<5:0>
UART4 Clear-to-Send	U4CTS	RPINR27<13:8>	U4CTSR<5:0>
SPI3 Data Input	SDI3	RPINR28<5:0>	SDI3R<5:0>
SPI3 Clock Input	SCK3IN	RPINR28<13:8>	SCK3R<5:0>
SPI3 Slave Select Input	SS3IN	RPINR29<5:0>	SS3R<5:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON ⁽²⁾	—	TSIDL ⁽²⁾		_	_	TECS1 ^(2,3)	TECS0 ^(2,3)
bit 15					I		bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	—	_	TCS ^(2,3)	_
bit 7							bit
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	TON: Timery						
	1 = Starts 16 0 = Stops 16						
bit 14	•	nted: Read as '	o'				
bit 13	-	ry Stop in Idle N					
		nues module op		evice enters Id	lle mode		
		es module opera		de			
bit 12-10	-	nted: Read as '				(2.2)	
bit 9-8		Timery Extende		e Select bits (s	selected when	TCS = 1) ^(2,3)	
	11 = Generic 10 = LPRC (c timer (TxCK) e	external input				
		xternal clock inp	but				
	00 = SOSC						
bit 7	Unimplemer	nted: Read as '	כ'				
bit 6	TGATE: Time	ery Gated Time	Accumulation	Enable bit ⁽²⁾			
	When TCS =						
	This bit is ign When TCS =						
		<u>· </u>	n is enabled				
	0 = Gated ti	me accumulatio	n is disabled				
bit 5-4	TCKPS<1:0>	Timery Input	Clock Prescale	Select bits ⁽²⁾			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3-2	Unimplemer	nted: Read as '	כ'				
bit 1	-	Clock Source S					
		clock from pin,	TyCK (on the ri	ising edge)			
		clock (Fosc/2)					
bit 0	Unimplemer	nted: Read as '	Ο'				
Note 1:	Changing the val reset and is not re	•	nile the timer is	running (TON	= 1) causes th	e timer prescale	counter to
	When 32-bit ope operation; all time	er functions are	set through T2	2CON and T4C	ON.		-
3:	If TCS = 1 and T available RPn/RF						

REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽¹⁾

16.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (MCCP AND SCCP)

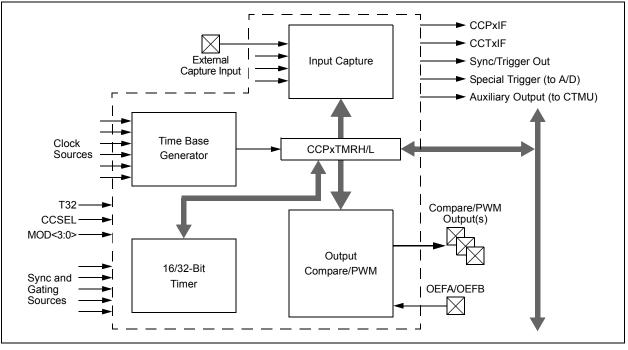
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the MCCP/SCCP modules, refer to the "dsPIC33/PIC24 Family Reference Manual", "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS33035A), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

PIC24FJ1024GA610/GB610 family devices include several Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals of earlier PIC24F devices. The module can operate in one of three major modes:

- · General Purpose Timer
- Input Capture
- Output Compare/PWM

The module is provided in two different forms, distinguished by the number of PWM outputs that the module can generate. Single Capture/Compare/PWM (SCCPs) output modules provide only one PWM output. Multiple Capture/Compare/PWM (MCCPs) output modules can provide up to six outputs and an extended range of power control features, depending on the pin count of the particular device. All other features of the modules are identical. The SCCPx and MCCPx modules can be operated only in one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode.

A conceptual block diagram for the module is shown in Figure 16-1. All three modules share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.


Each module has a total of 8 control and status registers:

- CCPxCON1L (Register 16-1)
- CCPxCON1H (Register 16-2)
- CCPxCON2L (Register 16-3)
- CCPxCON2H (Register 16-4)
- CCPxCON3L (Register 16-5)
- CCPxCON3H (Register 16-6)
- CCPxSTATL (Register 16-7)
- CCPxSTATH (Register 16-8)

Each module also includes 8 buffer/counter registers that serve as Timer Value registers or data holding buffers:

- CCPxTMRH/CCPxTMRL (Timer High/Low Counters)
- CCPxPRH/CCPxPRL (Timer Period High/Low)
- CCPxRA (Primary Output Compare Data Buffer)
- CCPxRB (Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (Input Capture High/Low Buffers)

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24FJ1024GA610/GB610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the PIC24FJ1024GA610/GB610 family include three SPI modules.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Variable length data can be transmitted and received from 2 to 32 bits.

Note:	Do not perform Read-Modify-Write opera-
	tions (such as bit-oriented instructions) on
	the SPIxBUF register in either Standard or
	Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- Left Justified
- Right Justified
- PCM/DSP

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC). The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

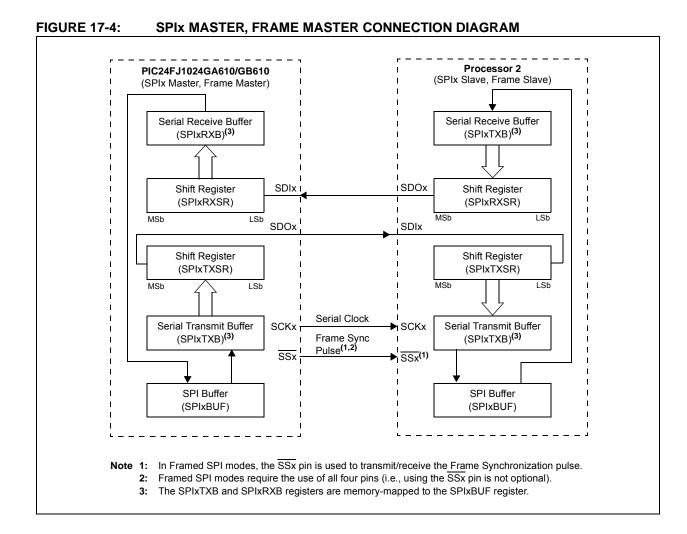
The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1


provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxIF. This event occurs when
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

A block diagram of the module in Enhanced Buffer mode is shown in Figure 17-1.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	URXEN	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:	C = Clearable bit	HSC = Hardware Settable	/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
HS = Hardware Settable bit	HC = Hardware Clearable b	it	

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

11 = Reserved; do not use

bit 7

- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾

	IREN = 0:
	1 = UxTX Idle state is '0'
	0 = UxTX Idle state is '1'
	IREN = 1:
	1 = UxTX Idle state is '1'
	0 = UxTX Idle state is '0'
bit 12	URXEN: UARTx Receive Enable bit
	1 = Receive is enabled, UxRX pin is controlled by UARTx
	0 = Receive is disabled, UxRX pin is controlled by the port
bit 11	UTXBRK: UARTx Transmit Break bit
	1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽²⁾
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by the port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued
Note 1:	The value of this bit only affects the transmit properties of the module when the $IrDA^{\textcircled{B}}$ encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

© 2015-2016 Microchip Technology Inc.

bit 0

20.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

- Follow the procedure described in Section 20.5.1 "Enable Host Mode and Discover a Connected Device" and Section 20.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD (U1EP0<7>) bit. If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>).
- 3. Set up the BD for the current (even or odd) TX EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (U1ADDR<6:0>).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Token Complete Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor and the transfer has completed. If the Retry Disable bit (RETRYDIS) is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 µs), then the target has detached (U1IR<0> is set).
- 7. Once the Token Complete Interrupt Flag occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to Step 2.
- **Note:** USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

20.6 OTG Operation

20.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). SRP can only be initiated at full speed. Software may do this by configuring a GPIO pin to disable an external power transistor, or voltage regulator enable signal, which controls the VBUS supply. When the VBUS supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or embedded host may repower the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

- 1. VBUS supply is below the session valid voltage.
- 2. Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of Condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for Condition 2.

Note:	When the A-device powers down the
	VBUS supply, the B-device must discon-
	nect its pull-up resistor from power. If the
	device is self-powered, it can do this by
	clearing DPPULUP (U1OTGCON<7>) and
	DMPULUP (U1OTGCON<6>).

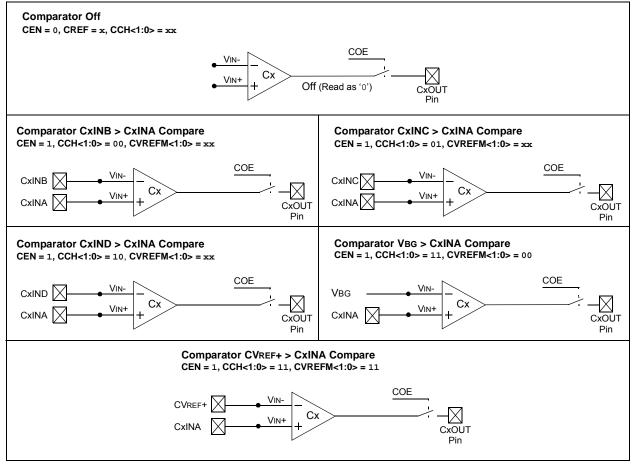
The B-device may aid in achieving Condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON<0>).

After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON<7>). The data line should be held high for 5 to 10 ms.

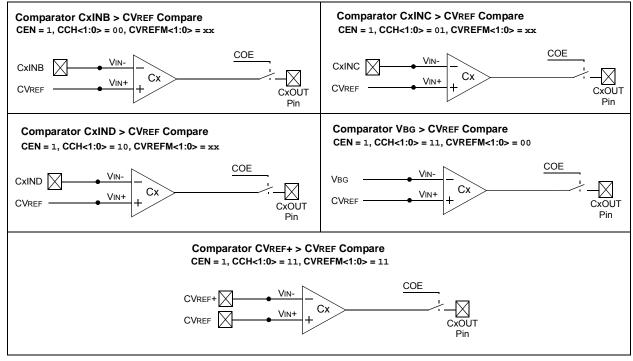
The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the VBUS supply by properly configuring the general purpose I/O port pin controlling the external power source.

The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U1OTGIR<3>) interrupt), the B-device must reconnect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP bit).

The A-device must complete the SRP by driving USB Reset signaling.


REGISTER 20-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—		—		—					
bit 15							bit 8			
R/K-0, HS	U-0	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS			
STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF			
bit 7							bit 0			
Legend:		U = Unimplem	ented bit, read	d as '0'						
R = Readable		K = Write '1' to	Clear bit	HS = Hardwa	re Settable bit					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-8	Unimplem	ented: Read as '0	,							
bit 7	STALLIF: S	STALL Handshake	e Interrupt bit							
		LL handshake wa	s sent by the p	peripheral durin	g the handshal	ke phase of the	transaction in			
		e mode LL handshake has	s not been sen	.t						
bit 6		ented: Read as '0		it i						
bit 5	-									
bit o		RESUMEIF: Resume Interrupt bit 1 = A K-state is observed on the D+ or D- pin for 2.5 μ s (differential '1' for low speed, differential '0' for								
	full spe			μο (α		now opeca, an				
	0 = No K-s	state is observed								
bit 4	IDLEIF: Idl	DLEIF: Idle Detect Interrupt bit								
		ndition is detected e condition is dete	•	e state of 3 ms	or more)					
bit 3		ken Processing Co		upt bit						
Sito		ssing of the curren	-	-	U1STAT regist	er for endpoint	information			
	0 = Proces	ssing of the curren	t token is not	complete; clear	the U1STAT r					
bit 2	SOFIF: Sta	irt-of-Frame Toker	Interrupt bit		-					
	1 = A Start	t-of-Frame token is	s received by t	he peripheral o	or the Start-of-F	rame threshold	l is reached by			
	the ho									
		irt-of-Frame token			hed					
bit 1		SB Error Conditio	-							
	1 = An unr this bit	masked error cond	ition has occu	rred; only error	states enabled	in the U1EIE r	egister can set			
	0 = No unr	masked error cond	lition has occu	irred						
bit 0	URSTIF: U	SB Reset Interrup	ot bit							
	1 = Valid U	JSB Reset has oc	curred for at le	east 2.5 μs; Re	set state must l	be cleared before	ore this bit can			
		sserted								
	as par	B Reset has occu t of a word write of to write to a single d	peration on the	e entire register	. Using Boolea	n instructions o	r bitwise oper-			
Note: In	dividual bits o	can only be cleare	d by writing a '	1' to the bit pos	ition as part of	a word write op	eration on the			
er	ntire register.	Using Boolean in:	structions or b	itwise operation						


U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	—	_	_	_	—	—	_					
bit 15		·					bit					
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
BTSEE	—	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE					
						EOFEE						
bit 7							bit					
Legend:												
R = Readat		W = Writable		•	nented bit, read							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
hit 15 0	Unimplome	nted. Dood oo '	o'									
bit 15-8 bit 7	-	nted: Read as ' Stuff Error Interr										
		 1 = Interrupt is enabled 0 = Interrupt is disabled 										
bit 6	Unimpleme	Unimplemented: Read as '0'										
bit 5	DMAEE: DMA Error Interrupt Enable bit											
	1 = Interrupt is enabled											
	0 = Interrupt is disabled											
bit 4	BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit											
	 1 = Interrupt is enabled 0 = Interrupt is disabled 											
bit 3	DFN8EE: Data Field Size Error Interrupt Enable bit											
bit o	1 = Interrupt is enabled											
	0 = Interrupt is disabled											
bit 2	CRC16EE: CRC16 Failure Interrupt Enable bit											
	1 = Interrupt is enabled											
	0 = Interrup											
bit 1	For Device mode: CRC5EE: CRC5 Host Error Interrupt Enable bit											
	1 = Interrupt is enabled											
	0 = Interrupt is disabled											
	For Host mode:											
	EOFEE: End-of-Frame (EOF) Error interrupt Enable bit											
	 1 = Interrupt is enabled 0 = Interrupt is disabled 											
	0 = Interrupt is disabled PIDEE: PID Check Failure Interrupt Enable bit											
bit 0		Check Failure In	nterrunt Enable	e hit								
bit 0			nterrupt Enable	e bit								

REGISTER 20-20: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

REGISTER 30-7: FOSC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—		—	—	—	—	—	
bit 23							bit 16	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—		—	—	—	—	—	
bit 15							bit 8	
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
FCKSM1	FCKSM0	IOL1WAY	PLLSS ⁽¹⁾	SOSCSEL	OSCIOFCN	POSCMD1	POSCMD0	
bit 7							bit 0	

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '1'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-8	Unimplemented: Read as '1'
bit 7-6	FCKSM<1:0>: Clock Switching and Monitor Selection bits
	 1x = Clock switching and the Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching and the Fail-Safe Clock Monitor are enabled
bit 5	IOL1WAY: Peripheral Pin Select Configuration bit
	 1 = The IOLOCK bit can be set only once (with unlock sequence). 0 = The IOLOCK bit can be set and cleared as needed (with unlock sequence)
bit 4	PLLSS: PLL Source Selection Configuration bit ⁽¹⁾
	 1 = PLL is fed by the Primary Oscillator (EC, XT or HS mode) 0 = PLL is fed by the on-chip Fast RC (FRC) Oscillator
bit 3	SOSCSEL: SOSC Selection Configuration bit
	1 = Crystal (SOSCI/SOSCO) mode 0 = Digital (SOSCI) mode
bit 2	OSCIOFCN: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin (when the Primary Oscillator is disabled or configured for EC mode)
	0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected (10 MHz-32 MHz) 01 = XT Oscillator mode is selected (1.5 MHz-10 MHz) 00 = External Clock mode is selected

Note 1: When the primary clock source is greater than 8 MHz, this bit must be set to '0' to prevent overclocking the PLL.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	СОМ	f	f = f	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
			$W_{d} = \overline{W_{S}}$	1	1	N, Z
~~	COM	Ws,Wd			1	,
CP	CP	f	Compare f with WREG	1		C, DC, N, OV, Z
	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if \neq	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f-1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

NOTES: