

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                             |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG                   |
| Peripherals                | Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT                                |
| Number of I/O              | 85                                                                              |
| Program Memory Size        | 512KB (170K x 24)                                                               |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 32K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                       |
| Data Converters            | A/D 24x10/12b                                                                   |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 121-TFBGA                                                                       |
| Supplier Device Package    | 121-TFBGA (10x10)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj512gb610t-i-bg |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Data Memory with Extended Data Space (EDS)**" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 4-3.

The 16-bit wide data addresses in the data memory space point to bytes within the Data Space (DS). This gives a DS address range of 32 Kbytes or 16K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.

The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16-bit address range. EDS is discussed in detail in **Section 4.2.5 "Extended Data Space (EDS)**".

The lower half of DS is compatible with previous PIC24F microcontrollers without EDS. All PIC24FJ1024GA610/ GB610 family devices implement 30 Kbytes of data RAM in the lower half of DS, from 0800h to 7FFF.

#### 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.





## 6.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user to erase blocks of eight rows (1024 instructions) at a time and to program one row at a time. It is also possible to program two instruction word blocks.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 128 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused address should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set the Table Pointer to point to the programming latches, do a series of TBLWT instructions to load the buffers and set the NVMADRU/NVMADR registers to point to the destination. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

**Note:** Writing to a location multiple times without erasing is *not* recommended.

All of the Table Write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

## 6.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

## 6.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an onboard bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

## 6.5 Control Registers

There are four SFRs used to read and write the program Flash memory: NVMCON, NVMADRU, NVMADR and NVMKEY.

The NVMCON register (Register 6-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 6.6 "Programming Operations"** for further details.

The NVMADRU/NVMADR registers contain the upper byte and lower word of the destination of the NVM write or erase operation. Some operations (chip erase, Inactive Partition erase) operate on fixed locations and do not require an address value.

## 6.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

In Dual Partition mode, programming or erasing the Inactive Partition will not stall the processor; the code in the Active Partition will still execute during the programming operation.

It is important to mask interrupts for a minimum of 5 instruction cycles during Flash programming. This can be done in Assembly using the DISI instruction (see Example 6-1).

| Reset Type      | Clock Source | SYSRST Delay           | System Clock<br>Delay | Notes         |
|-----------------|--------------|------------------------|-----------------------|---------------|
| POR             | EC           | TPOR + TSTARTUP + TRST | _                     | 1, 2, 3       |
|                 | ECPLL        | TPOR + TSTARTUP + TRST | TLOCK                 | 1, 2, 3, 5    |
|                 | XT, HS, SOSC | TPOR + TSTARTUP + TRST | Тоѕт                  | 1, 2, 3, 4    |
|                 | XTPLL, HSPLL | TPOR + TSTARTUP + TRST | Tost + Tlock          | 1, 2, 3, 4, 5 |
|                 | FRC, OSCFDIV | TPOR + TSTARTUP + TRST | TFRC                  | 1, 2, 3, 6, 7 |
|                 | FRCPLL       | TPOR + TSTARTUP + TRST | TFRC + TLOCK          | 1, 2, 3, 5, 6 |
|                 | LPRC         | TPOR + TSTARTUP + TRST | TLPRC                 | 1, 2, 3, 6    |
|                 | DCO          | TPOR + TSTARTUP + TRST | Трсо                  | 1, 2, 3, 8    |
| BOR             | EC           | TSTARTUP + TRST        | _                     | 2, 3          |
|                 | ECPLL        | TSTARTUP + TRST        | TLOCK                 | 2, 3, 5       |
|                 | XT, HS, SOSC | TSTARTUP + TRST        | Тоѕт                  | 2, 3, 4       |
|                 | XTPLL, HSPLL | TSTARTUP + TRST        | Tost + Tlock          | 2, 3, 4, 5    |
|                 | FRC, OSCFDIV | TSTARTUP + TRST        | TFRC                  | 2, 3, 6, 7    |
|                 | FRCPLL       | TSTARTUP + TRST        | TFRC + TLOCK          | 2, 3, 5, 6    |
|                 | LPRC         | TSTARTUP + TRST        | TLPRC                 | 2, 3, 6       |
|                 | DCO          | TPOR + TSTARTUP + TRST | TDCO                  | 1, 2, 3, 8    |
| MCLR            | Any Clock    | Trst                   | _                     | 3             |
| WDT             | Any Clock    | Trst                   | _                     | 3             |
| Software        | Any clock    | Trst                   | _                     | 3             |
| Illegal Opcode  | Any Clock    | Trst                   | —                     | 3             |
| Uninitialized W | Any Clock    | Trst                   | _                     | 3             |
| Trap Conflict   | Any Clock    | TRST                   |                       | 3             |

| TABLE 7-3: | RESET DELAY | <b>TIMES FOR</b> | VARIOUS | <b>DEVICE RESETS</b> |
|------------|-------------|------------------|---------|----------------------|
| -          | -           |                  |         |                      |

**Note 1:** TPOR = Power-on Reset Delay (10  $\mu$ s nominal).

- 2: TSTARTUP = TVREG.
- **3:** TRST = Internal State Reset Time (2 μs nominal).
- **4:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- 5: TLOCK = PLL Lock Time.
- 6: TFRC and TLPRC = RC Oscillator Start-up Times.
- 7: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid; it switches to the Primary Oscillator after its respective clock delay.
- 8: TDCO = DCO Start-up and Stabilization Times.

| Oscillator Mode                                   | Oscillator Source | FNOSC<2:0> | Notes   |
|---------------------------------------------------|-------------------|------------|---------|
| Oscillator with Frequency Division (OSCFDIV)      | Internal/External | 111        | 1, 2, 3 |
| Digitally Controlled Oscillator (DCO)             | Internal          | 110        | 3       |
| Low-Power RC Oscillator (LPRC)                    | Internal          | 101        | 3       |
| Secondary (Timer1) Oscillator (SOSC)              | Secondary         | 100        | 3       |
| Primary Oscillator (XT, HS or EC) with PLL Module | Primary           | 011        | 4       |
| Primary Oscillator (XT, HS or EC)                 | Primary           | 010        | 4       |
| Fast RC Oscillator with PLL Module (FRCPLL)       | Internal          | 001        | 3       |
| Fast RC Oscillator (FRC)                          | Internal          | 000        | 3       |

#### TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

**Note 1:** The input oscillator to the OSCFDIV Clock mode is determined by the RCDIV<2:0> (CLKDIV<10:8) bits. At POR, the default value selects the FRC module.

- **2:** This is the default oscillator mode for an unprogrammed (erased) device.
- 3: OSCO pin function is determined by the OSCIOFCN Configuration bit.
- 4: The POSCMD<1:0> Configuration bits select the oscillator driver mode (XT, HS or EC).

## 9.3 Control Registers

The operation of the oscillator is controlled by five Special Function Registers:

- OSCCON
- CLKDIV
- OSCTUN
- OSCDIV
- OSCFDIV

In addition, two registers are used to control the DCO:

- DCOCON
- DCOTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. OSCCON is protected by a write lock to prevent inadvertent clock switches. See **Section 9.4 "Clock Switching Operation**" for more information. The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscalers for the OSCFDIV Clock mode and the PLL module.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately  $\pm 1.5\%$ . It also controls the FRC self-tuning features described in **Section 9.5 "FRC Active Clock Tuning"**.

The OSCDIV and OSCFDIV registers provide control for the system Oscillator Frequency Divider.

#### 9.3.1 DCO OVERVIEW

The DCO (Digitally Controlled Oscillator) is a lowpower alternative to the FRC. It can generate a wider selection of operating frequencies and can be trimmed to correct process variations if an exact frequency is required. However, the DCO is not designed for use with USB applications and cannot meet USB timing restrictions.

## **10.0 POWER-SAVING FEATURES**

| Note: | This data sheet summarizes the features<br>of this group of PIC24F devices. It is not<br>intended to be a comprehensive refer-<br>ence source. For more information, refer |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | to the "dsPIC33/PIC24 Family Reference                                                                                                                                     |
|       | Manual", "Power-Saving Features"                                                                                                                                           |
|       | (DS39698), which is available from the                                                                                                                                     |
|       | Microchip web site (www.microchip.com).                                                                                                                                    |
|       | The information in this data sheet                                                                                                                                         |
|       | supersedes the information in the FRM.                                                                                                                                     |

The PIC24FJ1024GA610/GB610 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- · Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

## 10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

#### 10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

The XC16 C compiler offers "built-in" functions for the power-saving modes as follows:

| Idle();  | // | places | part | in | Idle  |
|----------|----|--------|------|----|-------|
| Sleep(); | 11 | places | part | in | Sleep |

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

Note: SLEEP\_MODE and IDLE\_MODE are constants defined in the assembler include file for the selected device.

#### 10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of the these events:

- On any interrupt source that is individually enabled
- On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

#### EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

| PWRSAV | #SLEEP_MODE | ; | Put | the | device | into | SLEEP mode |
|--------|-------------|---|-----|-----|--------|------|------------|
| PWRSAV | #IDLE_MODE  | ; | Put | the | device | into | IDLE mode  |

## TABLE 10-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

| Register | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0                | All<br>Resets |
|----------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|----------------------|---------------|
| PMD1     | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   |        | _      | _     | I2C1MD | U2MD   | U1MD   | SPI2MD | SPI1MD | _      | _      | ADCMD                | 0000          |
| PMD2     | _      | _      | IC6MD  | IC5MD  | IC4MD  | IC3MD  | IC2MD  | IC1MD | _      | _      | OC6MD  | OC5MD  | OC4MD  | OC3MD  | OC2MD  | OC1MD                | 0000          |
| PMD3     | _      | _      | _      | _      | _      | CMPMD  | RTCCMD | PMPMD | CRCMD  | _      | _      | _      | U3MD   | I2C3MD | I2C2MD | _                    | 0000          |
| PMD4     | _      | _      | _      | _      | _      | _      | _      | _     | _      | _      | U4MD   | _      | REFOMD | CTMUMD | LVDMD  | USBMD <sup>(1)</sup> | 0000          |
| PMD5     | _      |        |        | —      | —      |        | _      |       | _      | CCP7MD | CCP6MD | CCP5MD | CCP4MD | CCP3MD | CCP2MD | CCP1MD               | 0000          |
| PMD6     | _      | _      | _      | _      | _      | _      | _      |       |        | —      | _      | -      | —      | _      |        | SPI3MD               | 0000          |
| PMD7     | _      | _      | _      | _      | _      | _      | _      | _     | _      | _      | DMA1MD | DMA0MD | —      | _      | _      | _                    | 0000          |
| PMD8     | _      | _      | _      | _      | _      | _      | _      | _     | U6MD   | U5MD   | CLC4MD | CLC3MD | CLC2MD | CLC1MD | _      | _                    | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: USB is not present on PIC24FJXXXXGA6XX devices.

| U-0                                | U-0 | R/W-0  | R/W-0  | R/W-0                                   | R/W-0  | R/W-0  | R/W-0  |  |
|------------------------------------|-----|--------|--------|-----------------------------------------|--------|--------|--------|--|
|                                    | —   | RP17R5 | RP17R4 | RP17R3                                  | RP17R2 | RP17R1 | RP17R0 |  |
| bit 15                             |     |        |        |                                         |        |        | bit 8  |  |
|                                    |     |        |        |                                         |        |        |        |  |
| U-0                                | U-0 | R/W-0  | R/W-0  | R/W-0                                   | R/W-0  | R/W-0  | R/W-0  |  |
| —                                  | —   | RP16R5 | RP16R4 | RP16R3                                  | RP16R2 | RP16R1 | RP16R0 |  |
| bit 7                              |     |        |        |                                         |        |        | bit 0  |  |
|                                    |     |        |        |                                         |        |        |        |  |
| Legend:                            |     |        |        |                                         |        |        |        |  |
| R = Readable bit W = Writable bit  |     |        |        | U = Unimplemented bit, read as '0'      |        |        |        |  |
| -n = Value at POR '1' = Bit is set |     |        |        | '0' = Bit is cleared x = Bit is unknown |        |        |        |  |

#### REGISTER 11-44: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

| bit 15-14 | Unimplemented: Read as '0' |
|-----------|----------------------------|
|-----------|----------------------------|

- bit 13-8
   RP17R<5:0>: RP17 Output Pin Mapping bits

   Peripheral Output Number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).

   bit 7-6
   Unimplemented: Read as '0'

   bit 5-0
   RP16R<5:0>: RP16 Output Pin Mapping bits
- Peripheral Output Number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).

## REGISTER 11-45: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

| U-0     | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|---------|-----|--------|--------|--------|--------|--------|--------|
| —       | —   | RP19R5 | RP19R4 | RP19R3 | RP19R2 | RP19R1 | RP19R0 |
| bit 15  |     |        |        |        |        |        | bit 8  |
|         |     |        |        |        |        |        |        |
| U-0     | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —       | —   | RP18R5 | RP18R4 | RP18R3 | RP18R2 | RP18R1 | RP18R0 |
| bit 7   |     |        |        |        |        |        | bit 0  |
|         |     |        |        |        |        |        |        |
| Legend: |     |        |        |        |        |        |        |

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-4 for peripheral function numbers).

| SYNC<4:0> | Synchronization Source                             |
|-----------|----------------------------------------------------|
| 11111     | None; Timer with Rollover on CCPxPR Match or FFFFh |
| 11110     | Reserved                                           |
| 11101     | Reserved                                           |
| 11100     | CTMU Trigger                                       |
| 11011     | A/D Start Conversion                               |
| 11010     | CMP3 Trigger                                       |
| 11001     | CMP2 Trigger                                       |
| 11000     | CMP1 Trigger                                       |
| 10111     | Reserved                                           |
| 10110     | Reserved                                           |
| 10101     | Reserved                                           |
| 10100     | Reserved                                           |
| 10011     | CLC4 Out                                           |
| 10010     | CLC3 Out                                           |
| 10001     | CLC2 Out                                           |
| 10000     | CLC1 Out                                           |
| 01111     | Reserved                                           |
| 01110     | Reserved                                           |
| 01101     | Reserved                                           |
| 01100     | Reserved                                           |
| 01011     | INT2 Pad                                           |
| 01010     | INT1 Pad                                           |
| 01001     | INTO Pad                                           |
| 01000     | SCCP7 Sync Out                                     |
| 00111     | SCCP6 Sync Out                                     |
| 00110     | SCCP5 Sync Out                                     |
| 00101     | SCCP4 Sync Out                                     |
| 00100     | MCCP3 Sync Out                                     |
| 00011     | MCCP2 Sync Out                                     |
| 00010     | MCCP1 Sync Out                                     |
| 00001     | MCCPx/SCCPx Sync Out <sup>(1)</sup>                |
| 00000     | MCCPx/SCCPx Timer Sync Out <sup>(1)</sup>          |

## TABLE 16-5: SYNCHRONIZATION SOURCES

**Note 1:** CCP1 when connected to CCP1, CCP2 when connected to CCP2, etc.

#### REGISTER 17-11: SPIxURDTL: SPIx UNDERRUN DATA REGISTER LOW

| R/W-0      | R/W-0  | R/W-0            | R/W-0 | R/W-0        | R/W-0          | R/W-0  | R/W-0 |
|------------|--------|------------------|-------|--------------|----------------|--------|-------|
|            |        |                  | URDA  | \TA<15:8>    |                |        |       |
| bit 15     |        |                  |       |              |                |        | bit 8 |
|            |        |                  |       |              |                |        |       |
| R/W-0      | R/W-0  | R/W-0            | R/W-0 | R/W-0        | R/W-0          | R/W-0  | R/W-0 |
|            |        |                  | URD   | ATA<7:0>     |                |        |       |
| bit 7      |        |                  |       |              |                |        | bit 0 |
|            |        |                  |       |              |                |        |       |
| Legend:    |        |                  |       |              |                |        |       |
| R = Readab | le hit | W = Writable bit |       | U = Unimplem | ented bit read | as '0' |       |

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
|-------------------|------------------|-----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-0 URDATA<15:0>: SPIx Underrun Data bits These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs. When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9-bit data, the SPIx only uses URDATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2-bit data, the SPIx only uses URDATA<7:0>.

#### REGISTER 17-12: SPIxURDTH: SPIx UNDERRUN DATA REGISTER HIGH

| R/W-0       | R/W-0 | R/W-0            | R/W-0 | R/W-0        | R/W-0            | R/W-0  | R/W-0 |
|-------------|-------|------------------|-------|--------------|------------------|--------|-------|
|             |       |                  | URDA  | ATA<31:24>   |                  |        |       |
| bit 15      |       |                  |       |              |                  |        | bit 8 |
|             |       |                  |       |              |                  |        |       |
| R/W-0       | R/W-0 | R/W-0            | R/W-0 | R/W-0        | R/W-0            | R/W-0  | R/W-0 |
|             |       |                  | URDA  | ATA<23:16>   |                  |        |       |
| bit 7       |       |                  |       |              |                  |        | bit 0 |
|             |       |                  |       |              |                  |        |       |
| Legend:     |       |                  |       |              |                  |        |       |
| R = Readabl | e bit | W = Writable bit |       | U = Unimplem | nented bit, read | as '0' |       |

#### bit 15-0 URDATA<31:16>: SPIx Underrun Data bits

'1' = Bit is set

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

'0' = Bit is cleared

When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25-bit data, the SPIx only uses URDATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses URDATA<7:0>.

-n = Value at POR

x = Bit is unknown

## PIC24FJ1024GA610/GB610 FAMILY

## FIGURE 18-1: I2Cx BLOCK DIAGRAM



# PIC24FJ1024GA610/GB610 FAMILY

#### FIGURE 19-1: UARTX SIMPLIFIED BLOCK DIAGRAM



## REGISTER 20-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

| U-0          | U-0                                      | U-0                                    | U-0                                 | U-0                                  | U-0                                  | U-0                                 | U-0                            |  |  |
|--------------|------------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------|--|--|
| _            | —                                        | —                                      | —                                   |                                      | _                                    | —                                   | —                              |  |  |
| bit 15       |                                          |                                        |                                     |                                      |                                      |                                     | bit 8                          |  |  |
|              |                                          |                                        |                                     |                                      |                                      |                                     |                                |  |  |
| R/K-0, HS    | S U-0                                    | R/K-0, HS                              | R/K-0, HS                           | R/K-0, HS                            | R/K-0, HS                            | R/K-0, HS                           | R/K-0, HS                      |  |  |
| STALLIF      |                                          | RESUMEIF                               | IDLEIF                              | TRNIF                                | SOFIF                                | UERRIF                              | URSTIF                         |  |  |
| bit 7        |                                          |                                        |                                     |                                      |                                      |                                     | bit 0                          |  |  |
|              |                                          |                                        |                                     |                                      |                                      |                                     |                                |  |  |
| Legend:      |                                          | U = Unimplem                           | ented bit, read                     | d as '0'                             |                                      |                                     |                                |  |  |
| R = Readal   | ble bit                                  | K = Write '1' to                       | Clear bit                           | HS = Hardwa                          | re Settable bit                      |                                     |                                |  |  |
| -n = Value a | at POR                                   | '1' = Bit is set                       |                                     | '0' = Bit is clea                    | ared                                 | x = Bit is unkn                     | nown                           |  |  |
|              |                                          |                                        |                                     |                                      |                                      |                                     |                                |  |  |
| bit 15-8     | Unimplemer                               | nted: Read as '0                       | ,                                   |                                      |                                      |                                     |                                |  |  |
| bit 7        | STALLIF: ST                              | FALL Handshake                         | e Interrupt bit                     |                                      |                                      |                                     |                                |  |  |
|              | 1 = A STALL                              | handshake wa                           | s sent by the p                     | peripheral durin                     | g the handshal                       | ke phase of the                     | transaction in                 |  |  |
|              | 0 = A STALL                              | handshake has                          | s not been sen                      | ıt                                   |                                      |                                     |                                |  |  |
| bit 6        | Unimplemer                               | nted: Read as '0                       | ,                                   |                                      |                                      |                                     |                                |  |  |
| bit 5        | RESUMEIF:                                | Resume Interru                         | ot bit                              |                                      |                                      |                                     |                                |  |  |
|              | 1 = A K-state                            | e is observed on                       | the D+ or D- p                      | oin for 2.5 μs (d                    | lifferential '1' fo                  | r low speed, dif                    | ferential '0' for              |  |  |
|              | full spee                                | ed)                                    |                                     |                                      |                                      | -                                   |                                |  |  |
|              | 0 = No K-sta                             | 0 = No K-state is observed             |                                     |                                      |                                      |                                     |                                |  |  |
| bit 4        | IDLEIF: Idle                             | Detect Interrupt                       | bit<br>L (a sus stand tall)         |                                      |                                      |                                     |                                |  |  |
|              | $\perp$ = Idle cond<br>0 = No Idle d     | condition is detected                  | t (constant ide                     | e state of 3 ms                      | or more)                             |                                     |                                |  |  |
| bit 3        | TRNIF: Toke                              | n Processing Co                        | omplete Interri                     | upt bit                              |                                      |                                     |                                |  |  |
|              | 1 = Processi                             | ing of the curren                      | t token is com                      | plete; read the                      | U1STAT regist                        | er for endpoint                     | information                    |  |  |
|              | 0 = Processi<br>from ST/                 | ing of the curren<br>AT (clearing this | t token is not bit causes the       | complete; clear                      | r the U1STAT r<br>advance)           | egister or load                     | the next token                 |  |  |
| bit 2        | SOFIF: Start                             | -of-Frame Toker                        | Interrupt bit                       |                                      |                                      |                                     |                                |  |  |
|              | 1 = A Start-c                            | of-Frame token is                      | s received by t                     | he peripheral c                      | or the Start-of-F                    | rame threshold                      | l is reached by                |  |  |
|              | the host                                 | of Frama takan                         | in reasived or                      | throphold roop                       | bod                                  |                                     |                                |  |  |
| bit 1        |                                          | B Error Conditio                       | n Interrunt hit                     | threshold read                       | neu                                  |                                     |                                |  |  |
|              | 1 = An unma                              | asked error cond                       | ition has occu                      | rred: only error                     | states enabled                       | in the U1FIF r                      | egister can set                |  |  |
|              | this bit                                 |                                        |                                     | fred, entry error                    |                                      |                                     | egioter our oet                |  |  |
|              | 0 = No unma                              | asked error cond                       | lition has occu                     | ırred                                |                                      |                                     |                                |  |  |
| bit 0        | URSTIF: US                               | B Reset Interrup                       | ot bit                              |                                      |                                      |                                     |                                |  |  |
|              | 1 = Valid US                             | B Reset has oc                         | curred for at le                    | east 2.5 μs; Re                      | set state must                       | be cleared befo                     | ore this bit can               |  |  |
|              | 0 = No USB                               | serteα<br>Reset has occu               | rred: individua                     | al bits can only                     | be cleared by                        | writing a '1' to t                  | he bit position                |  |  |
|              | as part o                                | of a word write of                     | peration on the                     | e entire register                    | . Using Boolea                       | n instructions o                    | r bitwise oper-                |  |  |
|              | ations to<br>cleared                     | write to a single                      | e bit position w                    | vill cause all set                   | t bits, at the mo                    | ment of the wr                      | ite, to become                 |  |  |
|              |                                          |                                        |                                     |                                      |                                      |                                     |                                |  |  |
| Note:        | Individual bits ca<br>entire register. U | n only be cleared<br>sing Boolean in:  | d by writing a '<br>structions or b | 1' to the bit pos<br>itwise operatio | ition as part of<br>ns to write to a | a word write op<br>single bit posif | eration on the tion will cause |  |  |

NOTES:

| R/W-0         | U-0                          | R/W-0                             | R/W-0             | R/W-0                          | U-0                              | R/W-0             | R/W-0         |
|---------------|------------------------------|-----------------------------------|-------------------|--------------------------------|----------------------------------|-------------------|---------------|
| PMPEN         | _                            | PSIDL                             | ADRMUX1           | ADRMUX0                        |                                  | MODE1             | MODE0         |
| bit 15        |                              |                                   |                   |                                |                                  |                   | bit 8         |
|               | D/W/ 0                       |                                   |                   | 11.0                           | D/M/ O                           |                   | D/M/ 0        |
| CSF1          | CSE0                         |                                   |                   | 0-0                            |                                  | IROM1             |               |
| bit 7         | 0010                         |                                   | ALMODE            |                                | BUUKEEI                          | INGINI            | bit 0         |
| Sit 1         |                              |                                   |                   |                                |                                  |                   | Dit 0         |
| Legend:       |                              |                                   |                   |                                |                                  |                   |               |
| R = Readabl   | e bit                        | W = Writable                      | bit               | U = Unimplen                   | nented bit, read                 | l as '0'          |               |
| -n = Value at | POR                          | '1' = Bit is se                   | t                 | '0' = Bit is clea              | ared                             | x = Bit is unkr   | nown          |
| bit 15        | DMDENI: Doro                 | llol Master Po                    | rt Enabla bit     |                                |                                  |                   |               |
| DIL 15        | 1 = FPMP is                  | enabled                           |                   |                                |                                  |                   |               |
|               | 0 = EPMP is                  | disabled                          |                   |                                |                                  |                   |               |
| bit 14        | Unimplement                  | ted: Read as                      | 0'                |                                |                                  |                   |               |
| bit 13        | PSIDL: Parall                | el Master Port                    | Stop in Idle Mo   | ode bit                        |                                  |                   |               |
|               | 1 = Discontin                | ues module o                      | peration when c   | levice enters lo               | lle mode                         |                   |               |
|               | 0 = Continues                | s module oper                     | ation in Idle mo  | de                             |                                  |                   |               |
| bit 12-11     | ADRMUX<1:0                   | <b>)&gt;:</b> Address/D           | ata Multiplexing  | Selection bits                 |                                  | h                 |               |
|               | 11 = Lower a                 | ddress bits are                   | e multiplexed wi  | th data bits usi               | ng 3 address p<br>ng 2 address p | nases<br>hases    |               |
|               | 01 = Lower a                 | ddress bits are                   | e multiplexed wi  | th data bits usi               | ng 1 address p                   | hase              |               |
|               | 00 = Address                 | and data app                      | ear on separate   | e pins                         |                                  |                   |               |
| bit 10        | Unimplement                  | ted: Read as                      | 0'                |                                |                                  |                   |               |
| bit 9-8       | MODE<1:0>:                   | Parallel Port N                   | Node Select bits  | 5                              |                                  |                   |               |
|               | 11 = Master n                | node                              |                   |                                |                                  | and DMA <1.05     |               |
|               | 01 = Buffered                | PSP: pins us                      | ed are PMRD.      | , PINIVR, PINC<br>PMWR. PMCS   | and PMD<7.02 a                   | anu Pivia<1.0>    |               |
|               | 00 = Legacy F                | Parallel Slave                    | Port; pins used   | are PMRD, PM                   | /WR, PMCS a                      | nd PMD<7:0>       |               |
| bit 7-6       | CSF<1:0>: Cl                 | hip Select Fun                    | ction bits        |                                |                                  |                   |               |
|               | 11 = Reserve                 | d                                 |                   |                                |                                  |                   |               |
|               | 10 = PMA15 i                 | s used for Chi                    | p Select 2, PM    | A14 is used for                | Chip Select 1                    |                   |               |
|               | 01 = PMA151<br>00 = PMCS2    | is used for Ch                    | ip Select 2, PM   | CS1 is used for                | r Chip Select 1                  |                   |               |
| bit 5         | ALP: Address                 | Latch Polarit                     | y bit             |                                |                                  |                   |               |
|               | 1 = Active-hig               | gh (PMALL, PI                     | ,<br>MALH and PMA | ALU)                           |                                  |                   |               |
|               | 0 = Active-lov               | v ( <mark>PMALL</mark> , PN       | IALH and PMAI     | LU)                            |                                  |                   |               |
| bit 4         | ALMODE: Ad                   | dress Latch S                     | trobe Mode bit    |                                |                                  |                   |               |
|               | 1 = Enables "                | 'smart" addres                    | s strobes (each   | address phas                   | e is only prese                  | nt if the current | access would  |
|               | 0 = Disables                 | "smart" addre                     | ss strobes        | nan me previou                 | is address)                      |                   |               |
| bit 3         | Unimplement                  | ted: Read as                      | 0'                |                                |                                  |                   |               |
| bit 2         | BUSKEEP: B                   | us Keeper bit                     |                   |                                |                                  |                   |               |
|               | 1 = Data bus<br>0 = Data bus | keeps its last<br>is in a high-im | value when not    | actively being when not active | driven<br>ely being driver       | ı                 |               |
| bit 1-0       | IRQM<1:0>:                   | nterrupt Requ                     | est Mode bits     |                                |                                  |                   |               |
|               | 11 = Interrupt               | is generated v                    | vhen Read Buff    | er 3 is read or V              | Vrite Buffer 3 is                | written (Buffere  | ed PSP mode), |
|               | or on a r                    | ead or write o                    | peration when F   | PMA<1:0> = 11                  | (Addressable                     | PSP mode on       | ly)           |
|               | 10 = Reserve                 | u<br>is generated                 | at the end of a i | read/write cycle               | 2                                |                   |               |
|               | 00 = No interr               | upt is generat                    | ed                |                                | -                                |                   |               |
|               |                              |                                   |                   |                                |                                  |                   |               |

## REGISTER 21-1: PMCON1: EPMP CONTROL REGISTER 1

#### 22.3.2 RTCVAL REGISTER MAPPINGS

## REGISTER 22-4: RTCCON2H: RTCC CONTROL REGISTER 2 (HIGH)<sup>(1)</sup>

| R/W-0   | R/W-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|---------|-------|-------|-------|-------|-------|-------|-------|
|         |       |       | DIV<  | 15:8> |       |       |       |
| bit 15  |       |       |       |       |       |       | bit 8 |
|         |       |       |       |       |       |       |       |
| R/W-1   | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|         |       |       | DIV   | <7:0> |       |       |       |
| bit 7   |       |       |       |       |       |       | bit 0 |
|         |       |       |       |       |       |       |       |
| Legend: |       |       |       |       |       |       |       |

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
|-------------------|------------------|-----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-0 DIV<15:0>: Clock Divide bits

Sets the period of the clock divider counter; value should cause a nominal 1/2 second underflow.

**Note 1:** A write to this register is only allowed when WRLOCK = 1.

| U-0        | U-0                                     | U-0                                   | U-0              | U-0                   | U-0              | U-0             | U-0                    |  |  |
|------------|-----------------------------------------|---------------------------------------|------------------|-----------------------|------------------|-----------------|------------------------|--|--|
|            | _                                       |                                       |                  |                       |                  |                 |                        |  |  |
| bit 15     |                                         |                                       | L                |                       |                  |                 | bit 8                  |  |  |
|            |                                         |                                       |                  |                       |                  |                 |                        |  |  |
| U-0        | U-0                                     | R/C-0                                 | U-0              | R/C-0                 | R-0              | R-0             | R-0                    |  |  |
|            | _                                       | ALMEVT                                | —                | TSAEVT <sup>(1)</sup> | SYNC             | ALMSYNC         | HALFSEC <sup>(2)</sup> |  |  |
| bit 7      |                                         |                                       |                  |                       |                  |                 | bit 0                  |  |  |
|            |                                         |                                       |                  |                       |                  |                 |                        |  |  |
| Legend:    |                                         | C = Clearable                         | bit              |                       |                  |                 |                        |  |  |
| R = Read   | able bit                                | W = Writable                          | bit              | U = Unimplem          | nented bit, read | d as '0'        |                        |  |  |
| -n = Value | e at POR                                | '1' = Bit is set                      |                  | '0' = Bit is clea     | ared             | x = Bit is unkr | nown                   |  |  |
|            |                                         |                                       |                  |                       |                  |                 |                        |  |  |
| bit 15-6   | Unimplemen                              | ted: Read as '                        | )'               |                       |                  |                 |                        |  |  |
| bit 5      | ALMEVT: Ala                             | ALMEVT: Alarm Event bit               |                  |                       |                  |                 |                        |  |  |
|            | 1 = An alarm (                          | event has occu                        | rred             |                       |                  |                 |                        |  |  |
| hit 1      |                                         |                                       | ,                |                       |                  |                 |                        |  |  |
| DIL 4      |                                         |                                       | ر)<br>بر این (1) |                       |                  |                 |                        |  |  |
| DIE 3      |                                         | estamp A Ever                         |                  |                       |                  |                 |                        |  |  |
|            | 1 = A timestar                          | np event has o<br>np event has n      | ot occurred      |                       |                  |                 |                        |  |  |
| bit 2      | SYNC: Synch                             | ronization Stat                       | us bit           |                       |                  |                 |                        |  |  |
|            | 1 = Time regis                          | sters may chan                        | ge during softw  | vare read             |                  |                 |                        |  |  |
|            | 0 = Time regis                          | sters may be re                       | ad safely        |                       |                  |                 |                        |  |  |
| bit 1      | ALMSYNC: A                              | larm Synchron                         | ization Status   | bit                   |                  |                 |                        |  |  |
|            | 1 = Alarm ree                           | gisters (ALMTI                        | ME and ALME      | DATE) and Alar        | m Mask bits (/   | AMASK<3:0>)     | should not be          |  |  |
|            | modified,                               | and Alarm Co                          | ntrol bits (ALRI | MEN, ALMRPT           | <7:0>) may ch    | ange during so  | ftware read            |  |  |
| h:+ 0      |                                         | Jisters and Alai                      |                  | may be written.       | /modilied salei  | ly .            |                        |  |  |
| U JIG      |                                         | all Second Sta                        | ius Dit'-'       |                       |                  |                 |                        |  |  |
|            | $\perp$ = Second na<br>0 = First half r | an period of a seco                   | ond              |                       |                  |                 |                        |  |  |
| ••         |                                         |                                       |                  |                       |                  |                 |                        |  |  |
| Note 1:    | User software ma<br>valid until TSAEV   | y write a '1' to '<br>T reads as '1'. | this location to | initiate a Times      | stamp A event;   | timestamp cap   | oture is not           |  |  |

## REGISTER 22-6: RTCSTATL: RTCC STATUS REGISTER (LOW)

2: This bit is read-only; it is cleared to '0' on a write to the SECONE<3:0> bits.

| U-0           | U-0                           | R/W-0            | R/W-0          | R/W-0             | R/W-0            | R/W-0              | R/W-0   |
|---------------|-------------------------------|------------------|----------------|-------------------|------------------|--------------------|---------|
| _             | —                             | DAYTEN1          | DAYTEN0        | DAYONE3           | DAYONE2          | DAYONE1            | DAYONE0 |
| bit 15        |                               |                  |                |                   |                  | •                  | bit 8   |
|               |                               |                  |                |                   |                  |                    |         |
| U-0           | U-0                           | U-0              | U-0            | U-0               | R/W-0            | R/W-0              | R/W-0   |
|               | —                             |                  | _              | —                 | WDAY2            | WDAY1              | WDAY0   |
| bit 7         |                               |                  |                |                   |                  |                    | bit 0   |
|               |                               |                  |                |                   |                  |                    |         |
| Legend:       |                               |                  |                |                   |                  |                    |         |
| R = Readabl   | le bit                        | W = Writable     | bit            | U = Unimplem      | nented bit, read | l as '0'           |         |
| -n = Value at | t POR                         | '1' = Bit is set |                | '0' = Bit is clea | ared             | x = Bit is unknown |         |
|               |                               |                  |                |                   |                  |                    |         |
| bit 15-14     | Unimplemen                    | ted: Read as '   | כ'             |                   |                  |                    |         |
| bit 13-12     | DAYTEN<1:0                    | >: Binary Code   | ed Decimal Val | ue of Days '10'   | Digit bits       |                    |         |
|               | Contains a value from 0 to 3. |                  |                |                   |                  |                    |         |
| bit 11-8      | DAYONE<3:0                    | >: Binary Code   | ed Decimal Val | ue of Days '1' I  | Digit bits       |                    |         |
|               | Contains a value from 0 to 9. |                  |                |                   |                  |                    |         |
| bit 7-3       | Unimplemen                    | ted: Read as '   | כי             |                   |                  |                    |         |
| bit 2-0       | WDAY<2:0>:                    | Binary Coded     | Decimal Value  | of Weekdays ':    | 1' Digit bits    |                    |         |
|               | Contains a va                 | lue from 0 to 6  |                | 2                 | -                |                    |         |

## REGISTER 22-17: TSADATEL: RTCC TIMESTAMP A DATE REGISTER (LOW)<sup>(1)</sup>

**Note 1:** If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

NOTES:

### TABLE 33-25: A/D MODULE SPECIFICATIONS

| AC CHARACTERISTICS |               | Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |                                    |          |                                   |       |                                                                                                |  |  |  |  |
|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|-----------------------------------|-------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Param<br>No.       | Symbol        | Characteristic                                                                                                                                  | Min.                               | Тур      | Max.                              | Units | Conditions                                                                                     |  |  |  |  |
|                    | Device Supply |                                                                                                                                                 |                                    |          |                                   |       |                                                                                                |  |  |  |  |
| AD01               | AVDD          | Module VDD Supply                                                                                                                               | Greater of:<br>VDD – 0.3<br>or 2.2 |          | Lesser of:<br>VDD + 0.3<br>or 3.6 | V     |                                                                                                |  |  |  |  |
| AD02               | AVss          | Module Vss Supply                                                                                                                               | Vss – 0.3                          | _        | Vss + 0.3                         | V     |                                                                                                |  |  |  |  |
|                    |               |                                                                                                                                                 | Reference                          | e Inputs |                                   |       |                                                                                                |  |  |  |  |
| AD05               | VREFH         | Reference Voltage High                                                                                                                          | AVss + 1.7                         |          | AVDD                              | V     |                                                                                                |  |  |  |  |
| AD06               | VREFL         | Reference Voltage Low                                                                                                                           | AVss                               | _        | AVDD - 1.7                        | V     |                                                                                                |  |  |  |  |
| AD07               | VREF          | Absolute Reference<br>Voltage                                                                                                                   | AVss – 0.3                         | —        | AVDD + 0.3                        | V     |                                                                                                |  |  |  |  |
|                    |               |                                                                                                                                                 | Analog                             | Inputs   |                                   |       |                                                                                                |  |  |  |  |
| AD10               | VINH-VINL     | Full-Scale Input Span                                                                                                                           | VREFL                              |          | VREFH                             | V     | (Note 1)                                                                                       |  |  |  |  |
| AD11               | Vin           | Absolute Input Voltage                                                                                                                          | AVss - 0.3                         |          | AVDD + 0.3                        | V     |                                                                                                |  |  |  |  |
| AD12               | VINL          | Absolute VINL Input<br>Voltage                                                                                                                  | AVss – 0.3                         |          | AVDD/3                            | V     |                                                                                                |  |  |  |  |
| AD13               |               | Leakage Current                                                                                                                                 | _                                  | ±1.0     | ±610                              | nA    | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = $3V$ ,<br>Source Impedance = $2.5 \text{ k}\Omega$ |  |  |  |  |
| AD17               | Rin           | Recommended Impedance<br>of Analog Voltage Source                                                                                               | —                                  | _        | 2.5K                              | Ω     | 10-bit                                                                                         |  |  |  |  |
|                    |               |                                                                                                                                                 | A/D Acc                            | curacy   |                                   |       | ·                                                                                              |  |  |  |  |
| AD20B              | Nr            | Resolution                                                                                                                                      | —                                  | 12       | —                                 | bits  |                                                                                                |  |  |  |  |
| AD21B              | INL           | Integral Nonlinearity                                                                                                                           | _                                  | ±1       | < ±2                              | LSb   | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3V                                                 |  |  |  |  |
| AD22B              | DNL           | Differential Nonlinearity                                                                                                                       | _                                  | _        | < ±1                              | LSb   | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3V                                                 |  |  |  |  |
| AD23B              | Gerr          | Gain Error                                                                                                                                      | _                                  | ±1       | ±4                                | LSb   | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3V                                                 |  |  |  |  |
| AD24B              | EOFF          | Offset Error                                                                                                                                    | —                                  | ±1       | ±2                                | LSb   | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3V                                                 |  |  |  |  |
| AD25B              |               | Monotonicity <sup>(1)</sup>                                                                                                                     | _                                  |          | _                                 | _     | Guaranteed                                                                                     |  |  |  |  |

| Note 1: | Measurements are | aken with the external | VREF+ and VREF- | used as the A/D | voltage reference. |
|---------|------------------|------------------------|-----------------|-----------------|--------------------|
|---------|------------------|------------------------|-----------------|-----------------|--------------------|

## PIC24FJ1024GA610/GB610 FAMILY





