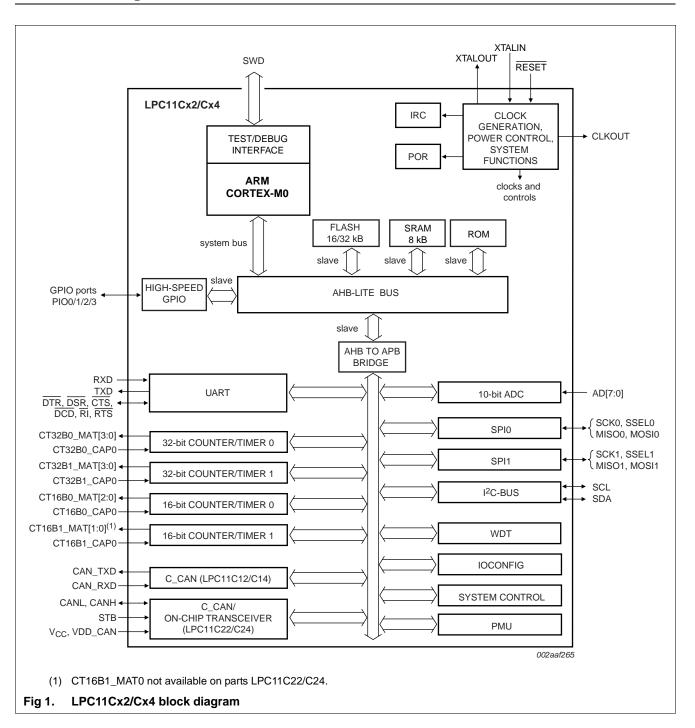


Welcome to E-XFL.COM

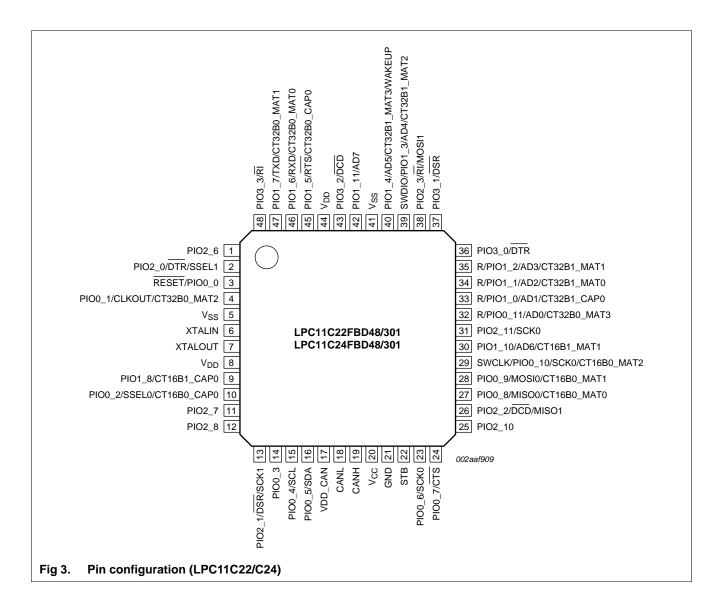
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, Microwire, SPI, SSI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	40
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc11c12fbd48-301


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Block diagram

32-bit ARM Cortex-M0 microcontroller

32-bit ARM Cortex-M0 microcontroller

Symbol	Pin	Start logic inputs	Туре	Reset state [1]	Description
PIO1_7/TXD/	47 <u>[3]</u>	no	I/O	I; PU	PIO1_7 — General purpose digital input/output pin.
CT32B0_MAT1			0	-	TXD — Transmitter output for UART.
			0	-	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
PIO1_8/	<u>9[3]</u>	no	I/O	I; PU	PIO1_8 — General purpose digital input/output pin.
CT16B1_CAP0			I	-	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
PIO1_9/	17 <u>[3]</u>	no	I/O	I; PU	PIO1_9 — General purpose digital input/output pin.
CT16B1_MAT0			0	-	CT16B1_MAT0 — Match output 0 for 16-bit timer 1.
PIO1_10/AD6/	30 <u>[5]</u>	no	I/O	I; PU	PIO1_10 — General purpose digital input/output pin.
CT16B1_MAT1			1	-	AD6 — A/D converter, input 6.
			0	-	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
PIO1_11/AD7	42 <u>[5]</u>	no	I/O	I; PU	PIO1_11 — General purpose digital input/output pin.
			I	-	AD7 — A/D converter, input 7.
PIO2_0 to PIO2_11					Port 2 — Port 2 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 2 pins depends on the function selected through the IOCONFIG register block.
PIO2_0/DTR/	2 <u>[3]</u>	no	I/O	I; PU	PIO2_0 — General purpose digital input/output pin.
SSEL1			I/O	-	DTR — Data Terminal Ready output for UART.
			I/O	-	SSEL1 — Slave Select for SPI1.
PIO2_1/DSR/SCK1	13 <u>^[3]</u>	no	I/O	I; PU	PIO2_1 — General purpose digital input/output pin.
			I	-	DSR — Data Set Ready input for UART.
			I/O	-	SCK1 — Serial clock for SPI1.
PIO2_2/DCD/	26 <u>[3]</u>	no	I/O	I; PU	PIO2_2 — General purpose digital input/output pin.
MISO1			I	-	DCD — Data Carrier Detect input for UART.
			I/O	-	MISO1 — Master In Slave Out for SPI1.
PIO2_3/RI/MOSI1	38 <u>[3]</u>	no	I/O	I; PU	PIO2_3 — General purpose digital input/output pin.
			I	-	RI — Ring Indicator input for UART.
			I/O	-	MOSI1 — Master Out Slave In for SPI1.
PIO2_4	18 <u>[3]</u>	no	I/O	I; PU	PIO2_4 — General purpose digital input/output pin.
PIO2_5	21 <u>[3]</u>	no	I/O	I; PU	PIO2_5 — General purpose digital input/output pin.
PIO2_6	1 <u>[3]</u>	no	I/O	I; PU	PIO2_6 — General purpose digital input/output pin.
PIO2_7	11 <u>[3]</u>	no	I/O	I; PU	PIO2_7 — General purpose digital input/output pin.
PIO2_8	12 <u>[3]</u>	no	I/O	I; PU	PIO2_8 — General purpose digital input/output pin.
PIO2_9	24 <u>[3]</u>	no	I/O	I; PU	PIO2_9 — General purpose digital input/output pin.
PIO2_10	25 <u>[3]</u>	no	I/O	I; PU	PIO2_10 — General purpose digital input/output pin.
PIO2_11/SCK0	31 <u>[3]</u>	no	I/O	I; PU	PIO2_11 — General purpose digital input/output pin.
			I/O	-	SCK0 — Serial clock for SPI0.
PIO3_0 to PIO3_3					Port 3 — Port 3 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 3 pins depends on the function selected through the IOCONFIG register block. Pins PIO3_4 to PIO3_11 are not available.

Table 3. LPC11C12/C14 pin description table

LPC11CX2_CX4

32-bit ARM Cortex-M0 microcontroller

Symbol	Pin	Start logic inputs	Туре	Reset state [1]	Description
R/PIO1_0/AD1/ CT32B1_CAP0	33 <u>[5]</u>	yes	-	I; PU	${\bf R}$ — Reserved. Configure for an alternate function in the IOCONFIG block.
			I/O	-	PIO1_0 — General purpose digital input/output pin.
			I	-	AD1 — A/D converter, input 1.
			I	-	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
R/PIO1_1/AD2/ CT32B1_MAT0	34 <u>[5]</u>	no	-	I; PU	${\bf R}$ — Reserved. Configure for an alternate function in the IOCONFIG block.
			I/O	-	PIO1_1 — General purpose digital input/output pin.
			I	-	AD2 — A/D converter, input 2.
			0	-	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
R/PIO1_2/AD3/ CT32B1_MAT1	35 <u>[5]</u>	no	-	I; PU	R — Reserved. Configure for an alternate function in the IOCONFIG block.
			I/O	-	PIO1_2 — General purpose digital input/output pin.
			I	-	AD3 — A/D converter, input 3.
			0	-	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
SWDIO/PIO1_3/	39 <u>[5]</u>	no	I/O	I; PU	SWDIO — Serial wire debug input/output.
AD4/			I/O	-	PIO1_3 — General purpose digital input/output pin.
CT32B1_MAT2			Ι	-	AD4 — A/D converter, input 4.
			0	-	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
PIO1_4/AD5/ CT32B1_MAT3/	40 <u>^[5]</u>	no	I/O	I; PU	PIO1_4 — General purpose digital input/output pin with 10 ns glitch filter.
WAKEUP			I	-	AD5 — A/D converter, input 5.
			0	-	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
			I	-	WAKEUP — Deep power-down mode wake-up pin with 20 ns glitch filter. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. A LOW-going pulse as short as 50 ns wakes up the part.
PIO1_5/RTS/	45 <u>[3]</u>	no	I/O	I; PU	PIO1_5 — General purpose digital input/output pin.
CT32B0_CAP0			0	-	RTS — Request To Send output for UART.
			I	-	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
PIO1_6/RXD/	46 <u>[3]</u>	no	I/O	I; PU	PIO1_6 — General purpose digital input/output pin.
CT32B0_MAT0			I	-	RXD — Receiver input for UART.
			0	-	CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
PIO1_7/TXD/	47 <u>[3]</u>	no	I/O	I; PU	PIO1_7 — General purpose digital input/output pin.
CT32B0_MAT1			0	-	TXD — Transmitter output for UART.
			0	-	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
PIO1_8/	<u>9[3]</u>	no	I/O	I; PU	PIO1_8 — General purpose digital input/output pin.
CT16B1_CAP0			I	-	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
PIO1_10/AD6/	30 <u>[5]</u>	no	I/O	I; PU	PIO1_10 — General purpose digital input/output pin.
CT16B1_MAT1			I	-	AD6 — A/D converter, input 6.
			0	-	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.

Table 4. LPC11C22/C24 pin description table

LPC11CX2_CX4

7. Functional description

7.1 ARM Cortex-M0 processor

The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high performance and very low power consumption.

7.2 On-chip flash program memory

The LPC11Cx2/Cx4 contain 32 kB (LPC11C14/C24) or 16 kB (LPC11C12/C22) of on-chip flash program memory.

7.3 On-chip SRAM

The LPC11Cx2/Cx4 contain a total of 8 kB on-chip static RAM data memory.

7.4 Memory map

The LPC11Cx2/Cx4 incorporates several distinct memory regions, shown in the following figures. <u>Figure 4</u> shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping.

The AHB peripheral area is 2 megabyte in size, and is divided to allow for up to 128 peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either type is allocated 16 kilobytes of space. This allows simplifying the address decoding for each peripheral.

The I²C-bus is bidirectional for inter-IC control using only two wires: a Serial CLock line (SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C is a multi-master bus and can be controlled by more than one bus master connected to it.

7.10.1 Features

- The I²C-interface is a standard I²C-bus compliant interface with open-drain pins. The I²C-bus interface also supports Fast-mode Plus with bit rates up to 1 Mbit/s.
- Easy to configure as master, slave, or master/slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus can be used for test and diagnostic purposes.
- The I²C-bus controller supports multiple address recognition and a bus monitor mode.

7.11 C_CAN controller

Controller Area Network (CAN) is the definition of a high performance communication protocol for serial data communication. The C_CAN controller is designed to provide a full implementation of the CAN protocol according to the CAN Specification Version 2.0B. The C_CAN controller allows to build powerful local networks with low-cost multiplex wiring by supporting distributed real-time control with a very high level of security.

On-chip C_CAN drivers provide an API for initialization and communication using CAN and CANopen standards.

7.11.1 Features

- Conforms to protocol version 2.0 parts A and B.
- Supports bit rate of up to 1 Mbit/s.
- Supports 32 Message Objects.
- Each Message Object has its own identifier mask.
- Provides programmable FIFO mode (concatenation of Message Objects).
- Provides maskable interrupts.
- Supports Disabled Automatic Retransmission (DAR) mode for time-triggered CAN applications.
- Provides programmable loop-back mode for self-test operation.

7.11.2.6 Time-out function

A 'TXD dominant time-out' timer is started when the CAN_TXD signal of the C_CAN controller is set LOW. If the LOW state on the CAN_TXD signal persists for longer than $t_{to(dom)TXD}$, the transmitter is disabled, releasing the bus lines to recessive state. This function prevents a hardware and/or software application failure from driving the bus lines to a permanent dominant state (blocking all network communications). The TXD dominant time-out timer is reset when the CAN_TXD signal is set HIGH. The TXD dominant time-out time also defines the minimum possible bit rate of 40 kbit/s.

7.12 10-bit ADC

The LPC11Cx2/Cx4 contains one ADC. The ADC is a single 10-bit successive approximation ADC with eight channels.

7.12.1 Features

- 10-bit successive approximation ADC.
- Input multiplexing among 8 pins.
- Power-down mode.
- Measurement range 0 V to V_{DD}.
- 10-bit conversion time \ge 2.44 μ s (up to 400 kSamples/s).
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition of input pin or timer match signal.
- Individual result registers for each ADC channel to reduce interrupt overhead.

7.13 General purpose external event counter/timers

The LPC11Cx2/Cx4 includes two 32-bit counter/timers and two 16-bit counter/timers. The counter/timer is designed to count cycles of the system derived clock. It can optionally generate interrupts or perform other actions at specified timer values, based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.

7.13.1 Features

- A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.
- Counter or timer operation.
- One capture channel per timer, that can take a snapshot of the timer value when an input signal transitions. A capture event may also generate an interrupt.
- Four match registers per timer that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.

7.16.1.3 Watchdog oscillator

The watchdog oscillator can be used as a clock source that directly drives the CPU, the watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is programmable between 7.8 kHz and 1.7 MHz. The frequency spread over processing and temperature is ± 40 % (see <u>Table 16</u>).

7.16.2 System PLL

The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. The PLL output frequency must be lower than 100 MHz. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source. The PLL settling time is 100 μ s.

7.16.3 Clock output

The LPC11Cx2/Cx4 features a clock output function that routes the IRC oscillator, the system oscillator, the watchdog oscillator, or the main clock to an output pin.

7.16.4 Wake-up process

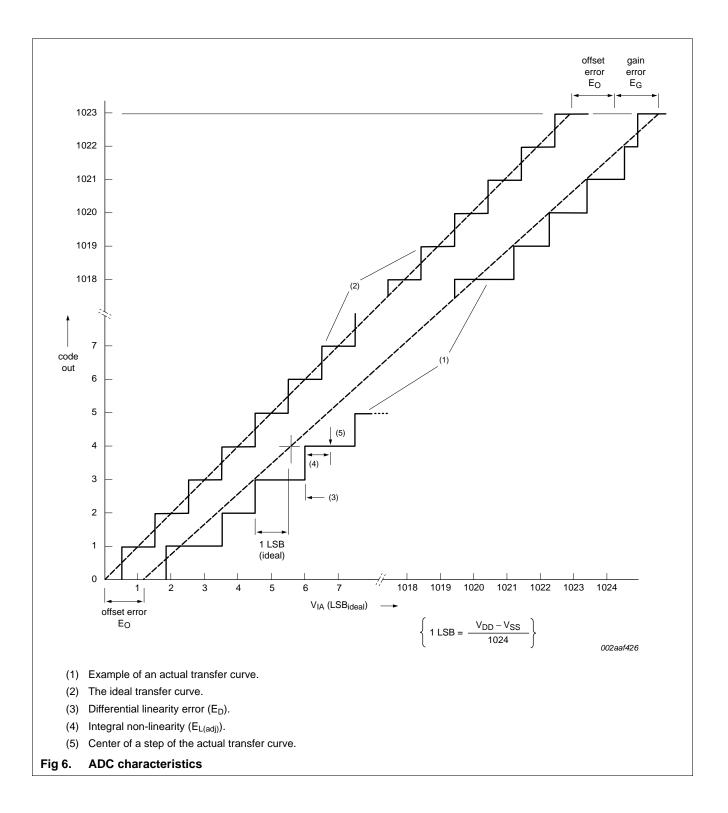
The LPC11Cx2/Cx4 begin operation at power-up and when awakened from Deep power-down mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation to resume quickly. If the system oscillator or the PLL is needed by the application, software will need to enable these features and wait for them to stabilize before they are used as a clock source.

7.16.5 Power control

The LPC11Cx2/Cx4 support a variety of power control features. There are three special modes of processor power reduction: Sleep mode, Deep-sleep mode, and Deep power-down mode. The CPU clock rate may also be controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a trade-off of power versus processing speed based on application requirements. In addition, a register is provided for shutting down the clocks to individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Selected peripherals have their own clock divider which provides even better power control.

7.16.5.1 Sleep mode

When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep mode does not need any special sequence but re-enabling the clock to the ARM core.


In Sleep mode, execution of instructions is suspended until either a reset or interrupt occurs. Peripheral functions continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses.

LPC11CX2_CX4

Symbol	Parameter	Conditions		Min	Тур <u>[1]</u>	Max	Unit
V _{OL}	LOW-level output voltage	$\begin{array}{l} 2.0 \ V \leq V_{DD} \leq 3.6 \ V; \\ I_{OL} = 4 \ mA \end{array} \label{eq:VDD}$		-	-	0.4	V
		1.8 V \leq V_{DD} < 2.0 V; I_{OL} = 3 mA		-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD} - 0.4 \text{ V};$ 2.0 V $\leq V_{DD} \leq 3.6 \text{ V}$		-4	-	-	mA
		$1.8~\text{V} \leq \text{V}_{\text{DD}} < 2.0~\text{V}$		-3	-	-	mA
I _{OL}	LOW-level output current	$V_{OL} = 0.4 \text{ V}$ 2.0 V \leq V_{DD} \leq 3.6 V		4	-	-	mA
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$		3	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	V _{OH} = 0 V			-	-45	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD}$	<u>[13]</u>	-	-	50	mA
I _{pd}	pull-down current	V _I = 5 V		10	50	150	μΑ
I _{pu}	pull-up current	$V_I = 0 V;$		–15	-50	-85	μA
		$2.0~V \leq V_{DD}~\leq 3.6~V$					
		1.8 V \leq V_{DD} < 2.0 V		-10	-50	-85	μA
		$V_{DD} < V_{I} < 5 V$		0	0	0	μA
High-drive	output pin (PIO0_7)						
I _{IL}	LOW-level input current	V _I = 0 V; on-chip pull-up resistor disabled		-	0.5	10	nA
I _{IH}	HIGH-level input current	V _I = V _{DD} ; on-chip pull-down resistor disabled		-	0.5	10	nA
I _{OZ}	OFF-state output current	$V_O = 0 V$; $V_O = V_{DD}$; on-chip pull-up/down resistors disabled		-	0.5	10	nA
VI	input voltage	$V_{DD} \ge 1.8 V$	<u>[11]</u> [12]	0	-	5.0	V
		$V_{DD} = 0 V$		0	-	3.6	V
Vo	output voltage	output active		0	-	V_{DD}	V
V _{IH}	HIGH-level input voltage			$0.7V_{DD}$	-	-	V
V _{IL}	LOW-level input voltage			-	-	$0.3V_{DD}$	V
V _{hys}	hysteresis voltage			0.4	-	-	V
V _{OH}	HIGH-level output voltage	$\begin{array}{l} 2.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}; \\ \text{I}_{\text{OH}} = -20 \text{ mA} \end{array}$		$V_{DD}-0.4$	-	-	V
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 2.5 \ V; \\ I_{OH} = -12 \ mA \end{array} \label{eq:VDD}$		$V_{DD}-0.4$	-	-	V

Table 6. Static characteristics ... continued

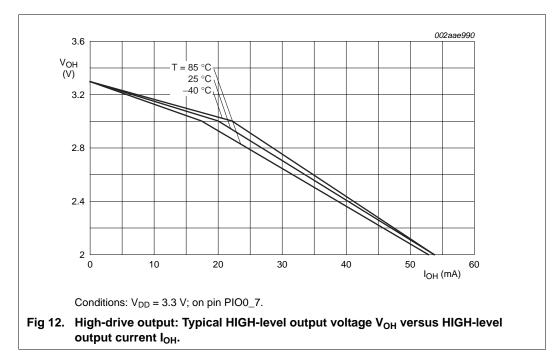
LPC11Cx2/Cx4

9.3 BOD static characteristics

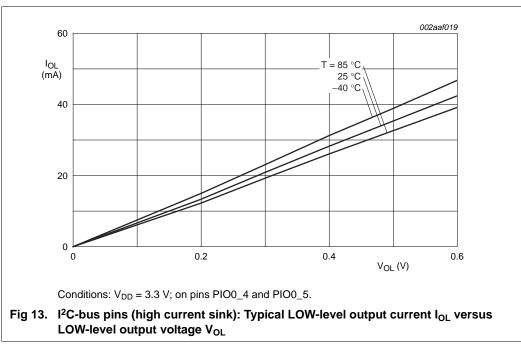
Table 10. BOD static characteristics^[1]

 $T_{amb} = 25 \ ^{\circ}C.$

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{th}	threshold voltage	interrupt level 1				
		assertion	-	2.22	-	V
		de-assertion	-	2.35	-	V
		interrupt level 2				
		assertion	-	2.52	-	V
		de-assertion	-	2.66	-	V
		interrupt level 3				
		assertion	-	2.80	-	V
		de-assertion	-	2.90	-	V
		reset level 0				
		assertion	-	1.46	-	V
		de-assertion	-	1.63	-	V
		reset level 1				
		assertion	-	2.06	-	V
		de-assertion	-	2.15	-	V
		reset level 2				
		assertion	-	2.35	-	V
		de-assertion	-	2.43	-	V
		reset level 3				
		assertion	-	2.63	-	V
		de-assertion	-	2.71	-	V


[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see *LPC11Cx* user manual.

9.4 Power consumption


Power measurements in Active, Sleep, and Deep-sleep modes were performed under the following conditions (see *LPC11Cx user manual*):

- Configure all pins as GPIO with pull-up resistor disabled in the IOCONFIG block.
- Configure GPIO pins as outputs using the GPIOnDIR registers.
- Write 0 to all GPIOnDATA registers to drive the outputs LOW.

32-bit ARM Cortex-M0 microcontroller

9.6 Electrical pin characteristics

10.5 I/O pins

Table 17. Dynamic characteristic: I/O pins^[1]

 $T_{amb} = -40 \ ^{\circ}C \ to +85 \ ^{\circ}C; \ 3.0 \ V \le V_{DD} \ \le 3.6 \ V.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	pin configured as output	3.0	-	5.0	ns
t _f	fall time	pin configured as output	2.5	-	5.0	ns

[1] Applies to standard port pins and RESET pin.

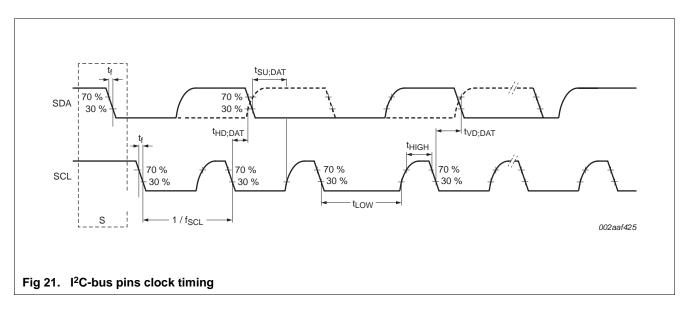
10.6 I²C-bus

Table 18. Dynamic characteristic: I²C-bus pins^[1]

$T_{amb} = -40^{\circ}$	℃ to +85 ℃.Ľ	1
-------------------------	--------------	---

Symbol	Parameter		Conditions	Min	Max	Unit
f _{SCL}	SCL clock		Standard-mode	0	100	kHz
	frequency		Fast-mode	0	400	kHz
			Fast-mode Plus	0	1	MHz
t _f	fall time	[4][5][6][7]	of both SDA and SCL signals	-	300	ns
			Standard-mode			
			Fast-mode	$20 \textbf{+} 0.1 \times C_b$	300	ns
			Fast-mode Plus	-	120	ns
t _{LOW}	LOW period of		Standard-mode	4.7	-	μS
	the SCL clock		Fast-mode	1.3	-	μS
			Fast-mode Plus	0.5	-	μS
t _{HIGH}	HIGH period of		Standard-mode	4.0	-	μS
	the SCL clock		Fast-mode	0.6	-	μS
			Fast-mode Plus	0.26	-	μS
t _{HD;DAT}	data hold time	[3][4][8]	Standard-mode	0	-	μS
			Fast-mode	0	-	μS
			Fast-mode Plus	0	-	μS
t _{SU;DAT}	data set-up	[9][10]	Standard-mode	250	-	ns
	time		Fast-mode	100	-	ns
			Fast-mode Plus	50	-	ns
-						

[1] See the I^2 C-bus specification *UM10204* for details.


[2] Parameters are valid over operating temperature range unless otherwise specified.

[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.

[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.

[5] $C_b = total capacitance of one bus line in pF.$

- [6] The maximum t_f for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t_f is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f.
- [7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
- [8] The maximum $t_{HD;DAT}$ could be 3.45 μ s and 0.9 μ s for Standard-mode and Fast-mode but must be less than the maximum of $t_{VD;DAT}$ or $t_{VD;ACK}$ by a transition time (see *UM10204*). This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- [9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge.
- [10] A Fast-mode l²C-bus device can be used in a Standard-mode l²C-bus system but the requirement $t_{SU;DAT}$ = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{r(max)} + t_{SU;DAT} = 1000 + 250 = 1250$ ns (according to the Standard-mode l²C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.

10.7 SPI interfaces

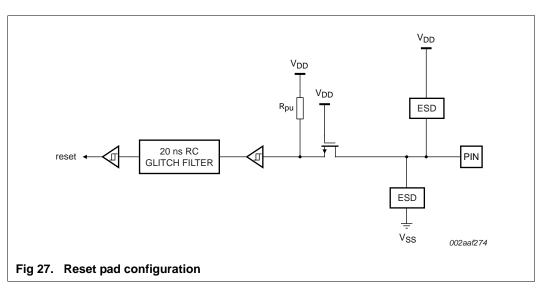
Table 19.	Dynamic characteristics of SPI pins in SPI mode
-----------	---

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
SPI maste	er (in SPI mode)						
T _{cy(clk)}	clock cycle time	full-duplex mode	[1]	50	-	-	ns
		when only transmitting	[1]	40			ns
t _{DS}	data set-up time	in SPI mode	[2]	15	-	-	ns
		$2.4~V \leq V_{DD} \leq 3.6~V$					
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.4~\text{V}$	[2]	20			ns
		$1.8~V \leq V_{DD} < 2.0~V$	[2]	24	-	-	ns
t _{DH}	data hold time	in SPI mode	[2]	0	-	-	ns
t _{v(Q)}	data output valid time	in SPI mode	[2]	-	-	10	ns
t _{h(Q)}	data output hold time	in SPI mode	[2]	0	-	-	ns
SPI slave	(in SPI mode)						
T _{cy(PCLK)}	PCLK cycle time			20	-	-	ns
LPC11CX2_CX4		All information provided in th	is docume	ent is subject to legal disclaimers.			© NXP B.V. 2016. All rights reserve

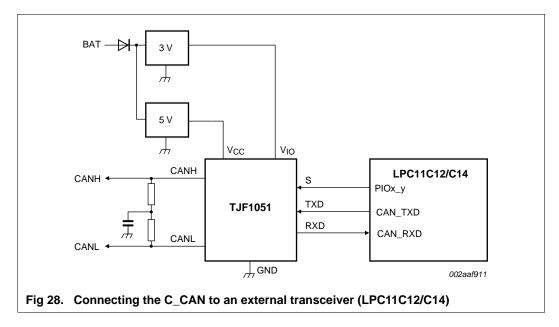
32-bit ARM Cortex-M0 microcontroller

Table 20.	Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external
	components parameters) low frequency mode

Fundamental oscillation frequency F _{OSC}	Crystal load capacitance C _L	Maximum crystal series resistance R _S	External load capacitors C _{X1} , C _{X2}
1 MHz - 5 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 300 Ω	39 pF, 39 pF
	30 pF	< 300 Ω	57 pF, 57 pF
5 MHz - 10 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 200 Ω	39 pF, 39 pF
	30 pF	< 100 Ω	57 pF, 57 pF
10 MHz - 15 MHz	10 pF	< 160 Ω	18 pF, 18 pF
	20 pF	< 60 Ω	39 pF, 39 pF
15 MHz - 20 MHz	10 pF	< 80 Ω	18 pF, 18 pF


Table 21. Recommended values for C_{χ_1}/C_{χ_2} in oscillation mode (crystal and external components parameters) high frequency mode

Fundamental oscillation frequency F _{OSC}	Crystal load capacitance C _L	Maximum crystal series resistance R _S	External load capacitors C _{X1} , C _{X2}
15 MHz - 20 MHz	10 pF	< 180 Ω	18 pF, 18 pF
	20 pF	< 100 Ω	39 pF, 39 pF
20 MHz - 25 MHz	10 pF	< 160 Ω	18 pF, 18 pF
	20 pF	< 80 Ω	39 pF, 39 pF


11.3 XTAL Printed Circuit Board (PCB) layout guidelines

The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{x1} , C_{x2} , and C_{x3} in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in

11.6 C_CAN with external transceiver (LPC11C12/C14 only)

16. Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product sole and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b)

17. Contact information

whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP Semiconductors N.V.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

32-bit ARM Cortex-M0 microcontroller

18. Contents

1	General description 1
2	Features and benefits 1
3	Applications 2
4	Ordering information
4.1	Ordering options
5	Block diagram 4
6	Pinning information 5
6.1	Pinning
6.2	Pin description
7	Functional description
7.1	ARM Cortex-M0 processor
7.2	On-chip flash program memory 15
7.3	On-chip SRAM
7.4	Memory map 15
7.5	Nested Vectored Interrupt Controller (NVIC) . 16
7.5.1	Features 16
7.5.2	Interrupt sources
7.6	IOCONFIG block
7.7 7.7.1	Fast general purpose parallel I/O 17
7.7.1	Features
7.8.1	Features
7.9	SPI serial I/O controller
7.9.1	Features
7.10	l ² C-bus serial I/O controller
7.10.1	Features
7.11	C_CAN controller 19
7.11.1	Features
7.11.2	On-chip, high-speed CAN transceiver 20
7.11.2.1	Features
7.11.2.2	
7.11.2.3	
7.11.2.4	0 1
7.11.2.5	
7.11.2.0	10-bit ADC
7.12.1	Features
7.13	General purpose external event
	counter/timers
7.13.1	Features
7.14	System tick timer 22
7.15	Watchdog timer 22
7.15.1	Features
7.16	Clocking and power control 22
7.16.1	Crystal oscillators
7.16.1.1	
7.16.1.2	System oscillator 23

7.16.1.3	Watchdog oscillator	24
7.16.2	System PLL	24
7.16.3	Clock output	24
7.16.4	Wake-up process	24
7.16.5	Power control	24
7.16.5.1	Sleep mode	24
7.16.5.2	Deep-sleep mode	25
7.16.5.3	Deep power-down mode	25
7.17	System control	25
7.17.1	Start logic	25
7.17.2	Reset	25
7.17.3	Brownout detection	26
7.17.4	Code security (Code Read Protection - CRP)	26
7.17.5	Bootloader	27
7.17.6	APB interface	27
7.17.7	AHBLite	27
7.17.8	External interrupt inputs	27
7.18	Emulation and debugging	27
8	Limiting values	28
9	Static characteristics	29
9.1	ADC characteristics	32
9.2	C_CAN on-chip, high-speed transceiver	
	characteristics	34
9.3	BOD static characteristics	36
9.4	Power consumption	36
9.5	Peripheral power consumption	40
9.6	Electrical pin characteristics	41
10	Dynamic characteristics	44
10.1	Power-up ramp conditions	44
10.2	Flash memory	44
10.3	External clock.	45
10.4	Internal oscillators	46
10.5	I/O pins	47
10.6	I ² C-bus	47
10.7	SPI interfaces	48
11	Application information	51
11.1	ADC usage notes	51
11.2	XTAL input	51
11.3	XTAL Printed Circuit Board (PCB) layout	
	guidelines	52
11.4	Standard I/O pad configuration	53
11.5	Reset pad configuration	54
11.6	C_CAN with external transceiver	
-	(LPC11C12/C14 only)	54
11.7	C_CAN with on-chip, high-speed transceiver	
	(LPC11C22/C24 only)	55
12	Package outline	56
	-	

continued >>

13	Soldering	57
14	Abbreviations	58
15	Revision history	59
16	Legal information	61
16.1	Data sheet status	61
16.2	Definitions	61
16.3	Disclaimers	61
16.4	Trademarks	62
17	Contact information	62
18	Contents	63

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2016.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 January 2016 Document identifier: LPC11CX2_CX4

All rights reserved.