

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	41 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f509-e-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	. 7
2.0	PIC12F508/509/16F505 Device Varieties	. 9
3.0	Architectural Overview	11
4.0	Memory Organization	17
5.0	I/O Port	31
6.0	Timer0 Module and TMR0 Register	35
7.0	Special Features Of The CPU	41
8.0	Instruction Set Summary	57
9.0	Development Support	65
10.0	Electrical Characteristics	69
11.0	DC and AC Characteristics Graphs and Charts	81
12.0	Packaging Information	91
Index		05
The N	Iicrochip Web Site	07
Custo	mer Change Notification Service	07
Custo	mer Support	07
Read	er Response	80
Produ	ict Identification System	09

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 GENERAL DESCRIPTION

The PIC12F508/509/16F505 devices from Microchip Technology are low-cost, high-performance, 8-bit, fully-static, Flash-based CMOS microcontrollers. They employ a RISC architecture with only 33 single-word/ single-cycle instructions. All instructions are single cycle (200 µs) except for program branches, which take two cycles. The PIC12F508/509/16F505 devices deliver performance an order of magnitude higher than their competitors in the same price category. The 12-bit wide instructions are highly symmetrical, resulting in a typical 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC12F508/509/16F505 products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external Reset circuitry. There are four oscillator configurations to choose from (six on the PIC16F505), including INTRC Internal Oscillator mode and the power-saving LP (Low-Power) Oscillator mode. Power-Saving Sleep mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC12F508/509/16F505 devices are available in the cost-effective Flash programmable version, which is suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in Flash programmable microcontrollers, while benefiting from the Flash programmable flexibility.

The PIC12F508/509/16F505 products are supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, a low-cost development programmer and a full featured programmer. All the tools are supported on $\text{IBM}^{\textcircled{B}}$ PC and compatible machines.

1.1 Applications

The PIC12F508/509/16F505 devices fit in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The Flash technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make these microcontrollers perfect for applications with space limitations. Low cost, low power, high performance, ease-of-use and I/O flexibility make the PIC12F508/509/16F505 devices very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, logic and PLDs in larger systems and coprocessor applications).

		PIC12F508	PIC12F509	PIC16F505
Clock	Maximum Frequency of Operation (MHz)	4	4	20
Memory	Flash Program Memory (words)	512	1024	1024
	Data Memory (bytes)	25	41	72
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0
	Wake-up from Sleep on Pin Change	Yes	Yes	Yes
Features	I/O Pins	5	5	11
	Input Pins	1	1	1
	Internal Pull-ups	Yes	Yes	Yes
	In-Circuit Serial Programming	Yes	Yes	Yes
	Number of Instructions	33	33	33
	Packages	8-pin PDIP, SOIC, MSOP, DFN	8-pin PDIP, SOIC, MSOP, DFN	14-pin PDIP, SOIC, TSSOP

TABLE 1-1: PIC12F508/509/16F505 DEVICES

The PIC12F508/509/16F505 devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect, high I/O current capability and precision internal oscillator.

The PIC12F508/509/16F505 devices use serial programming with data pin RB0/GP0 and clock pin RB1/GP1.

NOTES:

Neme	Function	Input	Output	Description			
Name	Function	Туре	Туре	Description			
RB0/ICSPDAT	RB0	TTL	CMOS	Bidirectional I/O pin. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.			
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming™ data pin.			
RB1/ICSPCLK	RB1	RB1 TTL CMOS Bidirectional I/O pin. Can be software programmed weak pull-up and wake-up from Sleep on pin char					
	ICSPCLK	ST	CMOS	In-Circuit Serial Programming clock pin.			
RB2	RB2	TTL	CMOS	Bidirectional I/O pin.			
RB3/MCLR/Vpp	RB3	TTL	—	Input port. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.			
	MCLR	ST	_	Master Clear (Reset). When configured as MCLR, this pin is an active-low Reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation or the device will enter Programming mode. Weak pull-up always on if configured as MCLR.			
	Vpp	ΗV	—	Programming voltage input.			
RB4/OSC2/CLKOUT	RB4	TTL	CMOS	Bidirectional I/O pin. Can be software programmed for interr weak pull-up and wake-up from Sleep on pin change.			
	OSC2	_	XTAL	Oscillator crystal output. Connections to crystal or resonator in Crystal Oscillator mode (XT, HS and LP modes only).			
	CLKOUT	_	CMOS	In EXTRC and INTRC modes, the pin output can be configured for CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.			
RB5/OSC1/CLKIN	RB5	TTL	CMOS	Bidirectional I/O pin.			
	OSC1	XTAL	—	Crystal input.			
	CLKIN	ST	—	External clock source input.			
RC0	RC0	TTL	CMOS	Bidirectional I/O pin.			
RC1	RC1	TTL	CMOS	Bidirectional I/O pin.			
RC2	RC2	TTL	CMOS	Bidirectional I/O pin.			
RC3	RC3	TTL	CMOS	Bidirectional I/O pin.			
RC4	RC4	TTL	CMOS	Bidirectional I/O pin.			
RC5/T0CKI	RC5	TTL	CMOS	Bidirectional I/O pin.			
	TOCKI	ST	_	Clock input to TMR0.			
Vdd	Vdd	—	Р	Positive supply for logic and I/O pins.			
Vss	Vss	_	Р	Ground reference for logic and I/O pins.			

	TABLE 3-3:	PIC16F505 PINOUT DESCRIPTION
--	------------	------------------------------

Legend: I = Input, O = Output, I/O = Input/Output, P = Power, — = Not used, TTL = TTL input, ST = Schmitt Trigger input, HV = High Voltage

4.3.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (Table 4-1).

The Special Function Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

TABLE 4-1:	SPECIAL FUNCTION REGISTER (SFR) SUMMAR	Y (PIC12F508/509)
------------	--	-------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset ⁽²⁾	Page #
00h	INDF	Uses Cor register)	ntents of	cal	XXXX XXXX	28					
01h	TMR0	8-bit Rea	I-Time C	lock/Cou	unter					xxxx xxxx	35
02h ⁽¹⁾	PCL	Low-orde	r 8 bits c	of PC						1111 1111	27
03h	STATUS	GPWUF	_	PA0 ⁽⁵⁾	TO	PD	Z	DC	С	0-01 1xxx (3)	22
04h	FSR	Indirect D	ata Men	nory Add	lress Po	inter				111x xxxx	28
04h ⁽⁴⁾	FSR	Indirect D	ata Men	nory Add	lress Po	inter				110x xxxx	28
05h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0		1111 111-	26
06h	GPIO	_		GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	31
N/A	TRISGPIO	—		I/O Con	trol Reg	ister	11 1111	31			
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	24

Legend: -= unimplemented, read as '0', x = unknown, u = unchanged, q = value depends on condition.

Note 1: The upper byte of the Program Counter is not directly accessible. See **Section 4.7** "**Program Counter**" for an explanation of how to access these bits.

- 2: Other (non Power-up) Resets include external Reset through MCLR, Watchdog Timer and wake-up on pin change Reset.
- 3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

4: PIC12F509 only.

5: This bit is used on the PIC12F509. For code compatibility do not use this bit on the PIC12F508.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset ⁽²⁾	Page #
00h	INDF	Uses Cor register)	ntents of	XXXX XXXX	28						
01h	TMR0	8-bit Rea	I-Time C	lock/Cou	nter					xxxx xxxx	35
02h ⁽¹⁾	PCL	Low-orde	er 8 bits o	of PC						1111 1111	27
03h	STATUS	RBWUF	_	PA0	TO	PD	Z	DC	С	0-01 1xxx	22
04h	FSR	Indirect D	ata Men	nory Add	ress Poir	nter				100x xxxx	28
05h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0		1111 111-	26
06h	PORTB	—	_	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	31
07h	PORTC	—	_	RC5	5 RC4 RC3 RC2 RC1 RC0 -		xx xxxx	31			
N/A	TRISB	—	_	I/O Con	trol Regis	11 1111	31				
N/A	TRISC	_	_	I/O Con	trol Regis		11 1111	31			
N/A	OPTION	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	25

TABLE 4-2:	SPECIAL FUNCTION REGISTER (SFR) SUMMARY (PIC16F505)
------------	---

Legend: -= unimplemented, read as '0', x = unknown, u = unchanged, q = value depends on condition. **Note 1:** If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

Other (non Power-up) Resets include external reset through MCLR, Watchdog Timer and wake-up on pin change Reset.

NOTES:

TABLE 5-1:SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRISGPIO ⁽¹⁾	_		I/O Contr	ol Registe	er				11 1111	11 1111
N/A	TRISB ⁽²⁾	_		I/O Contr	ol Registe	er				11 1111	11 1111
N/A	TRISC ⁽²⁾	_		I/O Contr	ol Registe	er				11 1111	11 1111
N/A	OPTION ⁽¹⁾	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
N/A	OPTION ⁽²⁾	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS ⁽¹⁾	GPWUF		PAO	TO	PD	Z	DC	С	0-01 1xxx	q00q quuu (3)
03h	STATUS ⁽²⁾	RBWUF	_	PAO	TO	PD	Z	DC	С	0-01 1xxx	q00q quuu (3)
06h	GPIO ⁽¹⁾	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	PORTB ⁽²⁾	_		RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	uu uuuu
07h	PORTC ⁽²⁾	_		RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu

Legend: Shaded cells are not used by Port registers, read as '0'. – = unimplemented, read as '0', x = unknown, u = unchanged, q = depends on condition.

Note 1: PIC12F508/509 only.

2: PIC16F505 only.

3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

FIGURE 7-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

FIGURE 7-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)

TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE **FIGURE 7-10:**

7.7 Time-out Sequence, Power-down and <u>Wake-up</u> from Sleep Status Bits (TO, PD, GPWUF/RBWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$ and (GPWUF/RBWUF) bits in the STATUS register can be tested to determine if a Reset condition has been caused by a Power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) Reset.

TABLE 7-8: TO/PD/(GPWUF/RBWUF) STATUS AFTER RESET

GPWUF/ RBWUF	то	PD	Reset Caused By
0	0	0	WDT wake-up from Sleep
0	0	u	WDT time-out (not from Sleep)
0	1	0	MCLR wake-up from Sleep
0	1	1	Power-up
0	u	u	MCLR not during Sleep
1	1	0	Wake-up from Sleep on pin change

Legend: u = unchanged

Note 1: The TO, PD and GPWUF/RBWUF bits maintain their status (u) until a Reset occurs. A low-pulse on the MCLR input does not change the TO, PD and GPWUF/RBWUF Status bits.

7.8 Reset on Brown-out

A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12F508/509/16F505 devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 7-12 and Figure 7-13.

FIGURE 7-12: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 7-15: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

Mnem	ionic,	Description	Cycles	12-	Bit Opc	ode	Status	Notos
Opera	ands	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C, DC, Z	1, 2, 4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	_	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2, 4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C, DC, Z	1, 2, 4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
		BIT-ORIENTED FILE REGISTE	R OPER	ATIONS	5			
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
		LITERAL AND CONTROL C	PERATI	ONS				
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	1100	kkkk	kkkk	None	
OPTION	—	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place literal in W	2	1000	kkkk	kkkk	None	
SLEEP	—	Go into Standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR literal to W	1	1111	kkkk	kkkk	Z	
Note 1:	The 9th b	bit of the program counter will be forced to a '0	' by anv i	nstructio	on that v	writes to	the PC ex	cept for

TABLE 8-2: INSTRUCTION SET SUMMARY

ote 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO. See Section 4.7 "Program Counter".
 When an I/O register is medified as a function of itself (a g MOVE_DOPTE___1) the value used will be that

2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6, causes the contents of the W register to be written to the tri-state latches of PORTB. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

IORWF	Inclusive OR W with f						
Syntax:	[label] IORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$						
Operation:	(W).OR. (f) \rightarrow (dest)						
Status Affected:	Z						
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						

MOVWF	Move W to f					
Syntax:	[label] MOVWF f					
Operands:	$0 \le f \le 31$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from the W register to register 'f'.					

MOVF	Move f					
Syntax:	[<i>label</i>] MOVF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$					
Operation:	$(f) \rightarrow (dest)$					
Status Affected:	Z					
Description:	The contents of register 'f' are moved to destination 'd'. If 'd' is '0', destination is the W register. If 'd' is '1', the destination is file register 'f'. 'd' = 1 is useful as a test of a file register, since status flag Z is affected.					

NOP	No Operation				
Syntax:	[label] NOP				
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Description:	No operation.				

MOVLW	Move Literal to W						
Syntax:	[<i>label</i>] MOVLW k						
Operands:	$0 \le k \le 255$						
Operation:	$k \rightarrow (W)$						
Status Affected:	None						
Description:	The eight-bit literal 'k' is loaded into the W register. The "don't cares" will assembled as '0's.						

OPTION	Load OPTION Register					
Syntax:	[label] OPTION					
Operands:	None					
Operation:	$(W) \rightarrow OPTION$					
Status Affected:	None					
Description:	The content of the W register is loaded into the OPTION register.					

TABLE 10-1: DC CHARACTERISTICS: PIC12F508/509/16F505 (Industrial, Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended) Operating voltage VDD range as described in DC specification							
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O ports:							
D030		with TTL buffer	Vss	_	0.8V	V	For all $4.5 \le VDD \le 5.5V$		
D030A			Vss	_	0.15 Vdd	V	Otherwise		
D031		with Schmitt Trigger buffer	Vss	—	0.15 Vdd	V			
D032		MCLR, TOCKI	Vss	—	0.15 Vdd	V			
D033		OSC1 (in EXTRC)	Vss	_	0.15 Vdd	V	(Note1)		
D033		OSC1 (in HS)	Vss	_	0.3 Vdd	V	(Note1)		
D033		OSC1 (in XT and LP)	Vss	_	0.3	V	(Note1)		
	Vih	Input High Voltage							
		I/O ports:		_					
D040		with TTL buffer	2.0	_	Vdd	V	$4.5 \leq V \text{DD} \leq 5.5 \text{V}$		
D040A			0.25 VDD + 0.8	—	Vdd	V	Otherwise		
D041		with Schmitt Trigger buffer	0.85 Vdd	_	Vdd	V	For entire VDD range		
D042		MCLR, T0CKI	0.85 Vdd	—	Vdd	V			
D043		OSC1 (in EXTRC)	0.85 Vdd	—	Vdd	V	(Note1)		
D043		OSC1 (in HS)	0.7 Vdd	_	Vdd	V	(Note1)		
D043		OSC1 (in XT and LP)	1.6	_	Vdd	V			
D070	IPUR	GPIO/PORTB weak pull-up current ⁽⁴⁾	50	250	400	μΑ	VDD = 5V, VPIN = VSS		
	lı∟	Input Leakage Current ^{(2), (3)}							
D060		I/O ports	_	_	± 1	μΑ	Vss \leq VPIN \leq VDD, Pin at high-impedance		
D061		GP3/RB3/MCLRI ⁽⁵⁾	—	± 0.7	± 5	μΑ	$Vss \leq Vpin \leq Vdd$		
D063		OSC1	—	—	± 5	μΑ	$Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration$		
		Output Low Voltage							
D080		I/O ports/CLKOUT	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D080A			_		0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C		
D083		OSC2	—	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
D083A			—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
		Output High Voltage							
D090		I/O ports/CLKOUT ⁽³⁾	Vdd - 0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C		
D090A			Vdd - 0.7	—	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C		
D092		OSC2	VDD - 0.7	_	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C		
D092A			VDD - 0.7	—	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C		
		Capacitive Loading Specs on Output Pins							
D100		OSC2 pin	—	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.		
D101		All I/O pins and OSC2	—	—	50	pF			

Note

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

† 1:

2:

3:

4:

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12F508/509/ 16F505 be driven with external clock in RC mode. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as coming out of the pin. The specification applies to all weak pull-up devices, including the weak pull-up on GP3/MCLR. The current listed will be the same whether GP3/MCLR is configured as GP3 with a weak pull-up or enabled as MCLR. This specification applies when GP3/RB3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic. 5:

8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	8			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	– – .210			
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	Е	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.348	.365	.400	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	_	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimens	Dimension Limits		NOM	MAX			
Number of Pins	Ν	8					
Pitch	е	0.50 BSC					
Overall Height	А	0.80 0.90 1.00					
Standoff	A1	0.00	0.05				
Contact Thickness	A3	0.20 REF					
Overall Length	D	2.00 BSC					
Overall Width	E	3.00 BSC					
Exposed Pad Length	D2	1.30 – 1.55					
Exposed Pad Width	E2	1.50	-	1.75			
Contact Width	b	0.20	0.25	0.30			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	К	0.20	_	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package may have one or more exposed tie bars at ends.

3. Package is saw singulated.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123C

16-Lead Plastic Quad Flat, No Lead Package (MG) - 3x3x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-142A Sheet 1 of 2