

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f505-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8/14-Pin, 8-Bit Flash Microcontrollers

Devices Included In This Data Sheet:

• PIC12F508 • PIC12F509 • PIC16F505

High-Performance RISC CPU:

- Only 33 Single-Word Instructions to Learn
- All Single-Cycle Instructions Except for Program Branches, which are Two-Cycle
- 12-Bit Wide Instructions
- 2-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes for Data and Instructions
- 8-Bit Wide Data Path
- 8 Special Function Hardware Registers
- Operating Speed:
 - DC 20 MHz clock input (PIC16F505 only)
 - DC 200 ns instruction cycle (PIC16F505 only)
 - DC 4 MHz clock input
 - DC 1000 ns instruction cycle

Special Microcontroller Features:

- 4 MHz Precision Internal Oscillator:
- Factory calibrated to ±1%
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Debugging (ICD) Support
- Power-On Reset (POR)
- Device Reset Timer (DRT)
- Watchdog Timer (WDT) with Dedicated On-Chip RC Oscillator for Reliable Operation
- Programmable Code Protection
- Multiplexed MCLR Input Pin
- Internal Weak Pull-Ups on I/O Pins
- Power-Saving Sleep mode
- Wake-Wp from Sleep on Pin Change
- Selectable Oscillator Options:
 - INTRC: 4 MHz precision Internal oscillator
 - EXTRC: External low-cost RC oscillator
 - XT: Standard crystal/resonator
 - HS: High-speed crystal/resonator (PIC16F505 only)
 - LP: Power-saving, low-frequency crystal
 - EC: High-speed external clock input (PIC16F505 only)

Low-Power Features/CMOS Technology:

- Operating Current:
 - < 175 μA @ 2V, 4 MHz, typical
- Standby Current:
 - 100 nA @ 2V, typical
- Low-Power, High-Speed Flash Technology:
 - 100,000 Flash endurance
 - > 40 year retention
- Fully Static Design
- Wide Operating Voltage Range: 2.0V to 5.5V
- Wide Temperature Range:
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C

Peripheral Features (PIC12F508/509):

- 6 I/O Pins:
 - 5 I/O pins with individual direction control
 - 1 input only pin
 - High current sink/source for direct LED drive
 - Wake-on-change
 - Weak pull-ups
- 8-Bit Real-Time Clock/Counter (TMR0) with 8-Bit Programmable Prescaler

Peripheral Features (PIC16F505):

- 12 I/O Pins:
 - 11 I/O pins with individual direction control
 - 1 input only pin
 - High current sink/source for direct LED drive
 - Wake-on-change
 - Weak pull-ups
- 8-Bit Real-Time Clock/Counter (TMR0) with 8-Bit Programmable Prescaler

1.0 GENERAL DESCRIPTION

The PIC12F508/509/16F505 devices from Microchip Technology are low-cost, high-performance, 8-bit, fully-static, Flash-based CMOS microcontrollers. They employ a RISC architecture with only 33 single-word/ single-cycle instructions. All instructions are single cycle (200 µs) except for program branches, which take two cycles. The PIC12F508/509/16F505 devices deliver performance an order of magnitude higher than their competitors in the same price category. The 12-bit wide instructions are highly symmetrical, resulting in a typical 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC12F508/509/16F505 products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external Reset circuitry. There are four oscillator configurations to choose from (six on the PIC16F505), including INTRC Internal Oscillator mode and the power-saving LP (Low-Power) Oscillator mode. Power-Saving Sleep mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC12F508/509/16F505 devices are available in the cost-effective Flash programmable version, which is suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in Flash programmable microcontrollers, while benefiting from the Flash programmable flexibility.

The PIC12F508/509/16F505 products are supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, a low-cost development programmer and a full featured programmer. All the tools are supported on $\text{IBM}^{\textcircled{B}}$ PC and compatible machines.

1.1 Applications

The PIC12F508/509/16F505 devices fit in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The Flash technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make these microcontrollers perfect for applications with space limitations. Low cost, low power, high performance, ease-of-use and I/O flexibility make the PIC12F508/509/16F505 devices very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, logic and PLDs in larger systems and coprocessor applications).

		PIC12F508	PIC12F509	PIC16F505
Clock	Maximum Frequency of Operation (MHz)	4	4	20
Memory	Flash Program Memory (words)	512	1024	1024
	Data Memory (bytes)	25	41	72
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0
	Wake-up from Sleep on Pin Change	Yes	Yes	Yes
Features	I/O Pins	5	5	11
	Input Pins	1	1	1
	Internal Pull-ups	Yes	Yes	Yes
	In-Circuit Serial Programming	Yes	Yes	Yes
	Number of Instructions	33	33	33
	Packages	8-pin PDIP, SOIC, MSOP, DFN	8-pin PDIP, SOIC, MSOP, DFN	14-pin PDIP, SOIC, TSSOP

TABLE 1-1: PIC12F508/509/16F505 DEVICES

The PIC12F508/509/16F505 devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect, high I/O current capability and precision internal oscillator.

The PIC12F508/509/16F505 devices use serial programming with data pin RB0/GP0 and clock pin RB1/GP1.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC12F508/509/16F505 devices can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC12F508/509/16F505 devices use a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architectures where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide, making it possible to have all single-word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (200 ns @ 20 MHz, 1 µs @ 4 MHz) except for program branches.

Table 3-1 below lists program memory (Flash) and data memory (RAM) for the PIC12F508/509/16F505 devices.

TABLE 3-1: PIC12F508/509/16F505 MEMORY

Dovico	Memory			
Device	Program	Data		
PIC12F508	512 x 12	25 x 8		
PIC12F509	1024 x 12	41 x 8		
PIC16F505	1024 x 12	72 x 8		

The PIC12F508/509/16F505 devices can directly or indirectly address its register files and data memory. All Special Function Registers (SFR), including the PC, are mapped in the data memory. The PIC12F508/509/16F505 devices have a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any addressing mode. This symmetrical nature and lack of "special optimal situations" make programming with the PIC12F508/509/16F505 devices simple, yet efficient. In addition, the learning curve is reduced significantly.

The PIC12F508/509/16F505 devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, one operand is typically the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC) and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

Simplified block diagrams are shown in Figure 3-1 and Figure 3-2, with the corresponding pin described in Table 3-2 and Table 3-3.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset ⁽²⁾	Page #
00h	INDF	Uses Cor register)	ntents of	FSR to A	Address I	Data Mem	ory (not a	physic	al	XXXX XXXX	28
01h	TMR0	8-bit Rea	I-Time C	lock/Cou	nter					xxxx xxxx	35
02h ⁽¹⁾	PCL	Low-orde	er 8 bits o	of PC						1111 1111	27
03h	STATUS	RBWUF	_	PA0	TO	PD	Z	DC	С	0-01 1xxx	22
04h	FSR	Indirect D	ata Men	nory Add	ress Poir	nter				100x xxxx	28
05h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0		1111 111-	26
06h	PORTB	—	_	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	31
07h	PORTC	—	_	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	31
N/A	TRISB	—	_	I/O Control Register						11 1111	31
N/A	TRISC	_	_	I/O Con	I/O Control Register11 1111						31
N/A	OPTION	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	25

TABLE 4-2:	SPECIAL FUNCTION REGISTER (SFR) SUMMARY (PIC16F505)
------------	---

Legend: -= unimplemented, read as '0', x = unknown, u = unchanged, q = value depends on condition. **Note 1:** If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

Other (non Power-up) Resets include external reset through MCLR, Watchdog Timer and wake-up on pin change Reset.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
RBWUF	_	PA0	TO	PD	Z	DC	С
bit 7		•	•				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpl	emented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is c	cleared	x = Bit is unki	nown
bit 7	RBWUF: POF	RTB Reset bit					
	1 = Reset due 0 = After powe	e to wake-up fr er-up or other	om Sleep on Reset	pin change			
bit 6	Reserved: Do	o not use					
bit 5	PA0: Program	n Page Presele	ct bits				
	1 = Page 1 (2	00h-3FFh)					
	0 = Page 0 (0	00h-1FFh)					
	Using the PAC) bit as a gener	al purpose re	ad/write bit in	n devices which d	o not use it for	program page
	preselect is no	ot recommende	ed, since this	may affect up	oward compatibili	ty with future p	roducts.
bit 4	TO: Time-Out	bit					
	1 = After power	er-up, CLRWDT	instruction, o	or SLEEP inst	ruction		
hit 2	0 = A WDT UT	ne-out occurre	u				
DIL 3	1 = After power	er-up or by the	CLRWDT inst	ruction			
	0 = By execut	tion of the SLE	EP instruction				
bit 2	Z: Zero bit						
	1 = The result	t of an arithme	ic or logic op	eration is zer	0		
	0 = The result	t of an arithme	ic or logic op	eration is not	zero		
bit 1	DC: Digit Carr	ry/Borrow bit (f	or ADDWF and	SUBWF instr	uctions)		
	$\frac{ADDWF}{1} = A \text{ carry from } $	om the 4th low	order bit of th	ne result occu	urred		
	0 = A carry from the first of	om the 4th low	order bit of th	ne result did r	not occur		
	SUBWF:	с <u>и</u> ан 1					
	1 = A borrow $1 = A$ borrow $1 = A$	from the 4th 10 from the 4th Io	w-order bit of w-order bit of	the result oc	not occur curred		
bit 0	C : Carry/Borro	ow bit (for and	WF. SUBWF an	d RRF. RLF i	nstructions)		
	ADDWF:	SI 200 (100 Amber SI	<u>JBWF:</u>		RRF OF RLF:		
	1 = A carry of 0 = A carry die	curred 1 d not occur 0	= A borrow d = A borrow o	id not occur ccurred	Load bit with LSt	o or MSb, respe	ectively

REGISTER 4-2: STATUS REGISTER (ADDRESS: 03h) (PIC16F505)

NOTES:

TABLE 7-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR – PIC12F508/509/16F505⁽²⁾

Osc Type	Resonator Cap. Range Cap. Range Freg. C1 C2					
LP	32 kHz ⁽¹⁾	15 pF	15 pF			
ХТ	200 kHz 1 MHz 4 MHz	47-68 pF 15 pF 15 pF				
HS ⁽³⁾	20 MHz	15-47 pF				
Note 1:	For VDD > 4 recommend	.5V, C1 = C2 ≈ led.	30 pF is			
2:	These values are for design guidance only. Rs may be required to avoid over- driving crystals with low drive level specifi- cation. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.					
1 3:	PIC16F505 only.					

7.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 7-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 7-3:

EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 7-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

7.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit-to-unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 7-5 shows how the R/C combination is connected to the PIC12F508/509/16F505 devices. For REXT values below 3.0 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 5.0 k Ω and 100 k Ω .

Increment f

INCF

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	$(f) - 1 \rightarrow (dest)$
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Decrement f, Skip if 0

[label] DECFSZ f,d

(f) $-1 \rightarrow d$; skip if result = 0

The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in

If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle

 $\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$

None

register 'f'.

instruction.

DECFSZ

Operands:

Operation:

Description:

Status Affected:

Syntax:

Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	If the result is '0', then the next instruction, which is already

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 511$
Operation:	$k \rightarrow PC < 8:0>;$ STATUS<6:5> $\rightarrow PC < 10:9>$
Status Affected:	None
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. (k) \rightarrow (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

9.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

9.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

9.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

9.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

9.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

9.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

9.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

Param No.Sym.CharacteristicMin.Typ(1)Max.UnitsConditions1AFoscExternal CLKIN Frequency(2)DC4MHzXT Oscillator mode (PIC16F505 only)1AFoscExternal CLKIN Frequency(2)DC20MHzEC, HS Oscillator mode (PIC16F505 only)1ADC200kHzLP Oscillator mode1AOscillator Frequency(2)4MHzEXTRC Oscillator mode1AOscillator Frequency(2)4MHzXT Oscillator mode1AToscExternal CLKIN Period(2)250nsXT Oscillator mode1ToscExternal CLKIN Period(2)250nsEC, HS Oscillator mode1ToscExternal CLKIN Period(2)250nsEC, HS Oscillator mode1ToscExternal CLKIN Period(2)250nsEXTRC Oscillator mode1ToscExternal CLKIN Period(2)250nsEXTRC Oscillator mode2TostInstruction Cycle Time2004/FoscnsEXTRC Oscillator mode2TostInstruction Cycle Time2004/FoscnsXT Oscillator mode3Tost,Clock in (OSC1) Low or High50*msXT Oscillator4Tosf,Clock in (OSC1) Rise or FallmsXT Oscill	AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
1A Fosc External CLKIN Frequency ⁽²⁾ DC - 4 MHz XT Oscillator mode (PIC16F505 only) DC - 20 MHz LP Oscillator mode (PIC16F505 only) Oscillator Frequency ⁽²⁾ - - 4 MHz XT Oscillator mode 0scillator Frequency ⁽²⁾ - - 4 MHz XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 - - ns XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 - - ns XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 - - ns XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 - - ns XT Oscillator mode 1 Oscillator Period ⁽²⁾ 250 - - ns EXTRC Oscillator mode 1 Oscillator Period ⁽²⁾ 250 - ns IST Oscillator mode 2 Tor Instruction Cycle Time 200 4/Fosc nss HS Oscillator mode	Param No.	Sym.	Characteristic	Min.	Тур ⁽¹⁾	Max.	Units	Conditions		
Image: here is a straight of the straig	1A	Fosc	External CLKIN Frequency ⁽²⁾	DC		4	MHz	XT Oscillator mode		
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				DC	—	20	MHz	EC, HS Oscillator mode (PIC16F505 only)		
Oscillator Frequency ⁽²⁾ 4 MHz EXTRC Oscillator mode 0.1 4 MHz XT Oscillator mode 1 20 MHz HS Oscillator mode (PIC16F505 only) 1 Tosc External CLKIN Period ⁽²⁾ 250 ns XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 ns XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 ns XT Oscillator mode (PIC16F505 only) 5 ms EXTRC Oscillator mode Oscillator Period ⁽²⁾ 250 ns EXTRC Oscillator mode 2 TCY Instruction Cycle Time 200 4/Fosc - ns </td <td></td> <td></td> <td></td> <td>DC</td> <td></td> <td>200</td> <td>kHz</td> <td>LP Oscillator mode</td>				DC		200	kHz	LP Oscillator mode		
1 Tosc 0.1 4 MHz XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 ns XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 ns XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 ns EC, HS Oscillator mode 0 50 ns EC, HS Oscillator mode 0 Oscillator Period ⁽²⁾ 250 ns EXTRC Oscillator mode 0 Oscillator Period ⁽²⁾ 250 ns EXTRC Oscillator mode 0 Oscillator Period ⁽²⁾ 250 ns KT Oscillator mode 10 000 ns XT Oscillator mode 250 ns KT Oscillator mode 2 Tcy Instruction Cycle Time 200 4/Fosc ns XT Oscillator 3 TosL, TosH Clock in (OSC1) Low or High 50* -			Oscillator Frequency ⁽²⁾	—	—	4	MHz	EXTRC Oscillator mode		
Image: heat of the system 4 20 MHz HS Oscillator mode (PIC16F505 only) 1 Tosc External CLKIN Period ⁽²⁾ 250 ns XT Oscillator mode 1 Tosc External CLKIN Period ⁽²⁾ 250 ns XT Oscillator mode 50 ns EC, HS Oscillator mode EC, HS Oscillator mode Oscillator Period ⁽²⁾ 5 µs LP Oscillator mode Oscillator Period ⁽²⁾ 250 ns EXTRC Oscillator mode Oscillator Period ⁽²⁾ 250 ns EXTRC Oscillator mode Oscillator Period ⁽²⁾ 250 ns EXTRC Oscillator mode 0 10,000 ns XT Oscillator mode NT Oscillator mode 2 TcY Instruction Cycle Time 200 4/Fosc ns 3 TosL, TosH Clock in (OSC1) Low or High 50* ns </td <td></td> <td></td> <td></td> <td>0.1</td> <td>—</td> <td>4</td> <td>MHz</td> <td>XT Oscillator mode</td>				0.1	—	4	MHz	XT Oscillator mode		
Image: constraint of the constra				4	—	20	MHz	HS Oscillator mode (PIC16F505 only)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				—	—	200	kHz	LP Oscillator mode		
4TosR, TosFClock in (OSC1) Rise or Fall TimensEC, HS Oscillator mode (PIC16F505 only)5µsLP Oscillator mode00nsEXTRC Oscillator mode250-10,000nsXT Oscillator mode250-10,000nsXT Oscillator mode50-250-nsHS Oscillator mode50-250nsHS Oscillator mode50-250nsHS Oscillator mode50-250nsLP Oscillator mode2TCYInstruction Cycle Time2004/Fosc-3TosL, TosHClock in (OSC1) Low or High Time50*ns2*µsLP Oscillator10*nsKT Oscillator4TosFClock in (OSC1) Rise or Fall25*ns15*nsLP Oscillator15*nsEC, HS Oscillator50*nsLP Oscillator	1	Tosc	External CLKIN Period ⁽²⁾	250	_	—	ns	XT Oscillator mode		
Image: space of the sector				50	—	—	ns	EC, HS Oscillator mode (PIC16F505 only)		
Oscillator Period ⁽²⁾ 250nsEXTRC Oscillator mode25010,000nsXT Oscillator mode50250nsHS Oscillator mode (PIC16F505 only)5µsLP Oscillator mode2TCYInstruction Cycle Time2004/Foscns3TosL, TosHClock in (OSC1) Low or High Time50*nsXT Oscillator2*µsLP Oscillator2*ns4TosR, TosFClock in (OSC1) Rise or Fall Time25*nsXT Oscillator4TosR, TosFClock in (OSC1) Rise or Fall Time25*nsXT Oscillator4TosF TosFClock in (OSC1) Rise or Fall Time25*nsLP OscillatorTosF 				5	—		μs	LP Oscillator mode		
25010,000nsXT Oscillator mode50250nsHS Oscillator mode (PIC16F505 only)5µsLP Oscillator mode2TCYInstruction Cycle Time2004/Foscns3TosL, TosHClock in (OSC1) Low or High Time50*ns2*µsLP Oscillator10*nsXT Oscillator4TosR, TosFClock in (OSC1) Rise or Fall Time25*ns4TosR, TosFClock in (OSC1) Rise or Fall Time25*nsXT Oscillator4TosR, TosFClock in (OSC1) Rise or Fall Time25*nsLP OscillatorTosFClock in (OSC1) Rise or Fall Time15*nsLP OscillatorTosFTime15*nsLP Oscillator			Oscillator Period ⁽²⁾	250	_	—	ns	EXTRC Oscillator mode		
Image: second				250	—	10,000	ns	XT Oscillator mode		
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $				50	—	250	ns	HS Oscillator mode (PIC16F505 only)		
2 TCY Instruction Cycle Time 200 4/Fosc — ns 3 TosL, TosH Clock in (OSC1) Low or High Time 50* — — ns XT Oscillator 10* 2* — — µs LP Oscillator 4 TosR, TosF Clock in (OSC1) Rise or Fall — — 25* ns XT Oscillator 4 TosF Clock in (OSC1) Rise or Fall — — 25* ns XT Oscillator - TosF Time — — 50* ns LP Oscillator - - - 50* ns LP Oscillator - - - 50* ns LP Oscillator - - - 15* ns EC, HS Oscillator				5	—	—	μs	LP Oscillator mode		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	TCY	Instruction Cycle Time	200	4/Fosc	—	ns			
$ \begin{array}{ c c c c c c c c } \hline IosH & Iime & 2^* & - & - & \mu s & LP \ Oscillator \\ \hline Io^* & - & - & ns & EC, \ HS \ Oscillator \\ \hline IOC16F505 \ only) \\ \hline 4 & TosR, \\ TosF & Time & - & - & 25^* & ns & XT \ Oscillator \\ \hline Time & - & - & 50^* & ns & LP \ Oscillator \\ \hline - & - & 15^* & ns & EC, \ HS \ Oscillator \\ \hline IOSH & IDSH & IDSH \\ \hline IOSH & IDS$	3	TosL,	Clock in (OSC1) Low or High	50*	—	—	ns	XT Oscillator		
4 TosR, TosF Clock in (OSC1) Rise or Fall - - ns EC, HS Oscillator (PIC16F505 only) 4 TosR, TosF Clock in (OSC1) Rise or Fall - - 25* ns XT Oscillator - - 50* ns LP Oscillator - - 15* ns EC, HS Oscillator		TosH	Time	2*	—	—	μs	LP Oscillator		
4 TosR, Clock in (OSC1) Rise or Fall — — 25* ns XT Oscillator TosF Time — — 50* ns LP Oscillator — — 15* ns EC, HS Oscillator (PIC16F505 only)				10*	—		ns	EC, HS Oscillator (PIC16F505 only)		
TosF Time — — 50* ns LP Oscillator — — — 15* ns EC, HS Oscillator (PIC16F505 only)	4	TosR,	Clock in (OSC1) Rise or Fall	—	_	25*	ns	XT Oscillator		
— — 15* ns EC, HS Oscillator (PIC16F505 only)		TosF	Time	—	—	50*	ns	LP Oscillator		
				—	—	15*	ns	EC, HS Oscillator (PIC16F505 only)		

TABLE 10-3: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC12F508/509/16F505

These parameters are characterized but not tested.

Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for Note 1: design guidance only and are not tested.

2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 10-4:	CALIBRATED INTERNAL RC FREQUENCIES - PIC12F508/509/16F505

AC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial), $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)						
Param No.	Sym.	Characteristic	Freq Tolerance Min. Typ† Max. Units Conditions					
F10	Fosc	Internal Calibrated INTOSC Frequency ⁽¹⁾	±1%	3.96	4.00	4.04	MHz	VDD = $3.5V$, TA = $25^{\circ}C$
			±2%	3.92	4.00	4.08	MHz	$2.5V \le VDD \le 5.5V$ $0^{\circ}C \le TA \le +85^{\circ}C$
			± 5%	3.80	4.00	4.20	MHz	$\begin{array}{l} 2.0V \leq VDD \leq 5.5V \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (Ind.)} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (Ext.)} \end{array}$

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 uF and 0.01 uF values in parallel are recommended.

FIGURE 10-5: I/O TIMING – PIC12F508/509/16F505

*

TABLE 10-6: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER – PIC12F508/509/16F505

AC CHARACTERISTICS		$ \begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & -40^\circ C \leq TA \leq +85^\circ C \ (industrial) \\ & -40^\circ C \leq TA \leq +125^\circ C \ (extended) \end{array} $						
Param No.	Sym.	Characteristic	Min.	Min. Typ ⁽¹⁾ Max. Units Conditions				
30	TMCL	MCLR Pulse Width (low)	2000*			ns	Vdd = 5.0V	
31	Twdt	Watchdog Timer Time-out Period (no prescaler)	9* 9*	18* 18*	30* 40*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)	
32	Tdrt	Device Reset Timer Period ⁽²⁾	9* 9*	18* 18*	30* 40*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)	
34	Tioz	I/O High-impedance from MCLR low			2000*	ns		

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

12.0 PACKAGING INFORMATION

12.1 Package Marking Information

8-Lead PDIP

8-Lead SOIC (3.90 mm)

8-Lead MSOP

8-Lead 2x3 DFN*

ХХХ
YWW
NN

Example

Example

|--|

Example

Example

BEQ
610
17

Legen	d: XXX Y YY WW NNN e3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the even be carried of for custome	t the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters er specific information.

* Standard PIC[®] device marking consists of Microchip part number, year code, week code, and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
]	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	8			
Pitch	е	1.27 BSC			
Overall Height	А	-	-	1.75	
Molded Package Thickness	A2	1.25	_	_	
Standoff §	A1	0.10	_	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (optional)	h	0.25	-	0.50	
Foot Length	L	0.40	_	1.27	
Footprint	L1	1.04 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.17	_	0.25	
Lead Width	b	0.31	_	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimens	sion Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е		0.65 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E	6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	_	0.20
Lead Width	b	0.19	_	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B