

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f505-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-5: PIC16F505 REGISTER FILE MAP

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1
RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	RBWU: Enab 1 = Disabled 0 = Enabled	le Wake-up on	Pin Change I	oit (RB0, RB1,	RB3, RB4)		
bit 6	RBPU : Enable 1 = Disabled 0 = Enabled	e Weak Pull-up	os bit (RB0, R	B1, RB3, RB4)			
bit 5	TOCS : TimerO 1 = Transition 0 = Transition	on T0CKI pin	Select bit (overrides TR truction cycle	IS on the T0C	KI pin)		
bit 4	TOSE : Timer0 1 = Increment 0 = Increment	Source Edge t on high-to-low t on low-to-high	Select bit / transition on o transition on	the T0CKI pin the T0CKI pin			
bit 3	PSA : Prescale 1 = Prescaler 0 = Prescaler	er Assignment assigned to th assigned to Ti	bit e WDT mer0				
bit 2-0	PS<2:0>: Pre Bit	scaler Rate Se Value Timer0	elect bits Rate WDT R	ate			
		00 1:2 01 1:4 10 1:8 11 1:1 00 1:3 01 1:6 10 1:1	1:1 1:2 1:4 1:32 1:32 2 1:32 28 1:64 56	2 2 2 2 8			

REGISTER 4-4: OPTION REGISTER (PIC16F505)

4.7 **Program Counter**

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The Program Counter (PCL) is mapped to PC<7:0>. Bit 5 of the STATUS register provides page information to bit 9 of the PC (Figure 4-6).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 4-6).

Instructions where the PCL is the destination, or modify PCL instructions, include MOVWF PC, ADDWF PC and BSF PC, 5.

Note: Because PC<8> is cleared in the CALL instruction or any modify PCL instruction, all subroutine calls or computed jumps are limited to the first 256 locations of any program memory page (512 words long).

FIGURE 4-6: LOADING OF PC BRANCH INSTRUCTIONS

4.7.1 EFFECTS OF RESET

The PC is set upon a Reset, which means that the PC addresses the last location in the last page (i.e., the oscillator calibration instruction). After executing MOVLW XX, the PC will roll over to location 00h and begin executing user code.

The STATUS register page preselect bits are cleared upon a Reset, which means that page 0 is pre-selected.

Therefore, upon a Reset, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.

4.8 Stack

The PIC12F508/509/16F505 devices have a 2-deep, 12-bit wide hardware PUSH/POP stack.

A CALL instruction will PUSH the current value of Stack 1 into Stack 2 and then PUSH the current PC value, incremented by one, into Stack Level 1. If more than two sequential CALLs are executed, only the most recent two return addresses are stored.

A RETLW instruction will POP the contents of Stack Level 1 into the PC and then copy Stack Level 2 contents into Stack Level 1. If more than two sequential RETLWS are executed, the stack will be filled with the address previously stored in Stack Level 2. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

Note 1:	There are no Status bits to indicate stack				
	overflo	ws or	stad	ck underflow	conditions.
2:	There	are	no	instruction	mnemonics

called PUSH or POP. These are actions that occur from the execution of the CALL and RETLW instructions.

TABLE 7-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR – PIC12F508/509/16F505⁽²⁾

Osc Type	Resonator Freq.	Cap. Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
ХТ	200 kHz 1 MHz 4 MHz	47-68 pF 15 pF 15 pF	47-68 pF 15 pF 15 pF
HS ⁽³⁾	20 MHz	15-47 pF	15-47 pF
Note 1:	For VDD > 4 recommend	.5V, C1 = C2 ≈ led.	30 pF is
2:	These values are for design guidance only. Rs may be required to avoid over- driving crystals with low drive level specifi- cation. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.		
1 3:	PIC16F505	only.	

7.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 7-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 7-3:

EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 7-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

7.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit-to-unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 7-5 shows how the R/C combination is connected to the PIC12F508/509/16F505 devices. For REXT values below 3.0 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 5.0 k Ω and 100 k Ω .

7.3 Reset

The device differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT time-out Reset during normal operation
- WDT time-out Reset during Sleep
- Wake-up from Sleep on pin change

Some registers are not reset in any way, they are unknown on POR and unchanged in any other Reset. Most other registers are reset to "Reset state" on Power-on Reset (POR), MCLR, WDT or Wake-up on pin change Reset during normal operation. They are not affected by a WDT Reset during Sleep or MCLR Reset during Sleep, since these Resets are viewed as resumption of normal operation. The exceptions to this are TO, PD and RBWUF/GPWUF bits. They are set or cleared differently in different Reset situations. These bits are used in software to determine the nature of Reset. See Table 7-4 for a full description of Reset states of all registers.

Register	Address	Power-on Reset	MCLR Reset, WDT Time-out, Wake-up On Pin Change
W	_	qqqq qqqu ⁽¹⁾	qqqq qqqu(1)
INDF	00h	XXXX XXXX	uuuu uuuu
TMR0	01h	XXXX XXXX	uuuu uuuu
PC	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	q00q quuu (2), (3)
FSR ⁽⁴⁾	04h	110x xxxx	11uu uuuu
FSR ⁽⁵⁾	04h	111x xxxx	111u uuuu
OSCCAL	05h	1111 111-	uuuu uuu-
GPIO	06h	xx xxxx	uu uuuu
OPTION		1111 1111	1111 1111
TRIS	_	11 1111	11 1111

TABLE 7-3: RESET CONDITIONS FOR REGISTERS – PIC12F508/509

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

2: See Table 7-5 for Reset value for specific conditions.

3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

4: PIC12F509 only.

5: PIC12F508 only.

TABLE 7-4:	RESET CONDITIONS FOR REGISTERS – PIC16F505	
		_

Register	Address	Power-on Reset	MCLR Reset, WDT Time-out, Wake-up On Pin Change
W		qqqq qqqu ⁽¹⁾	qqqq qqqu ⁽¹⁾
INDF	00h	xxxx xxxx	<u>uuuu</u> uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu
PC	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	q00q quuu (2), (3)
FSR	04h	100x xxxx	luuu uuuu
OSCCAL	05h	1111 111-	uuuu uuu-
PORTB	06h	xx xxxx	uu uuuu
PORTC	07h	xx xxxx	uu uuuu
OPTION	—	1111 1111	1111 1111
TRISB	—	11 1111	11 1111
TRISC	—	11 1111	11 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

- 2: See Table 7-5 for Reset value for specific conditions.
- **3:** If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

TABLE 7-5: RESET CONDITION FOR SPECIAL REGISTERS

	STATUS Addr: 03h	PCL Addr: 02h
Power-on Reset	0001 1xxx	1111 1111
MCLR Reset during normal operation	000u uuuu	1111 1111
MCLR Reset during Sleep	0001 0uuu	1111 1111
WDT Reset during Sleep	0000 0uuu	1111 1111
WDT Reset normal operation	0000 uuuu	1111 1111
Wake-up from Sleep on pin change	1001 Ouuu	1111 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

FIGURE 7-15: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(W).OR. (f) \rightarrow (dest)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 31$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from the W register to register 'f'.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register 'f' are moved to destination 'd'. If 'd' is '0', destination is the W register. If 'd' is '1', the destination is file register 'f'. 'd' = 1 is useful as a test of a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The eight-bit literal 'k' is loaded into the W register. The "don't cares" will assembled as '0's.				

OPTION	Load OPTION Register
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION$
Status Affected:	None
Description:	The content of the W register is loaded into the OPTION register.

9.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART[®] Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

9.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

9.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

9.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

9.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

10.2 DC Characteristics: PIC12F508/509/16F505 (Extended)

DC Cha	aracteria	stics	Standard Operating Conditions (unless otherwise speOperating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)			ns (unless otherwise specified) ≤ TA ≤ +125°C (extended)	
Param No.	Sym.	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
D001	Vdd	Supply Voltage	2.0		5.5	V	See Figure 10-1
D002	Vdr	RAM Data Retention Voltage ⁽²⁾	_	1.5*	—	V	Device in Sleep mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 7.4 "Power-on Reset (POR)" for details
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 7.4 "Power-on Reset (POR)" for details
D010	IDD	Supply Current ^(3,4)	-	175 0.625	275 1.1	μA mA	Fosc = 4 MHz, VDD = 2.0V Fosc = 4 MHz, VDD = 5.0V
			_	500 1.5	650 2.2	μA mA	Fosc = 10 MHz, VDD = 3.0V Fosc = 20 MHz, VDD = 5.0V (PIC16F515 only)
			_	11 38	26 110	μΑ μΑ	Fosc = 32 kHz, VDD = 2.0V Fosc = 32 kHz, VDD = 5.0V
D020	IPD	Power-down Current ⁽⁵⁾	—	0.1	9.0	μA	VDD = 2.0V
			—	0.35	15.0	μA	VDD = 5.0V
D022	Iwdt	WDT Current ⁽⁵⁾	— —	1.0 7.0	18 22	μΑ μΑ	VDD = 2.0V VDD = 5.0V

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
- **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
- 4: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
- 5: For standby current measurements, the conditions are the same as IDD, except that the device is in Sleep mode. If a module current is listed, the current is for that specific module enabled and the device in Sleep.

FIGURE 10-7: TIMER0 CLOCK TIMINGS - PIC12F508/509/16F505

TABLE 10-7: TIMER0 CLOCK REQUIREMENTS - PIC12F508/509/16F505

AC CHARACTERISTICS Standard Operating Temp Operating Volta Section 10.1 "F				ating Conditions (u perature -40°C ≤ TA ≤ -40°C ≤ TA ≤ ge VDD range is desc Power-on Reset (PO	nless c ≦ +85°C ≦ +125° cribed ir PR) "	otherw (indus C (exte	ise spe strial) ended)	ecified)
Param No.	Sym.	Characte	eristic	Min.	Тур ⁽¹⁾	Max.	Units	Conditions
40	Tt0H	T0CKI High Pulse	No Prescaler	0.5 TCY + 20*	_	—	ns	
		Width	With Prescaler	10*	—	—	ns	
41	Tt0L	T0CKI Low Pulse	No Prescaler	0.5 TCY + 20*	—	—	ns	
Width		Width	With Prescaler	10*	_	—	ns	
42	Tt0P	T0CKI Period		20 or Tcy + 40* N		_	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 11-10: VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)

12.1 Package Marking Information (Continued)

14-Lead PDIP (300 mil)	Example
	PIC16F505) -I/P €3 0215 ○ ☎ 0610017

14-Lead SOIC (3.90 mm)

Example	
PIC16F505-E	
/SLU125	
W 0610017	

14-Lead TSSOP (4.4 mm)

Example

16F	505-I	
\mathbf{v}	0610	
-	017	

16-Lead QFN

Example

TABLE 12-1: 8-LEAD 2X3 DFN (MC) TOP MARKING

Part Number	Marking
PIC12F508 (T) - I/MC	BN0
PIC12F508-E/MC	BP0
PIC12F509 (T) - I/MC	BQ0
PIC12F509-E/MC	BR0

8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		8	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimens	sion Limits	MIN NOM		MAX	
Number of Pins	Ν		14		
Pitch	е		0.65 BSC		
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Overall Width	E		6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.19	_	0.30	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

APPENDIX A: REVISION HISTORY

Revision A (April 2004)

Original data sheet for PIC12F508/509/16F505 devices

Revision B (June 2005)

Update packages

Revision C (03/2007)

Revised Table 3-2 Legend; Revised Table 3-3 RB3 and Legend; Revised Table 10-4 F10; Replaced Package Drawings (Rev. AN); Added DFN package; Replaced Development Support Section; Revised Product ID System.

Revision D (12/2007)

Revised Title; Operating Current; Table 1-1 added DFN and revised note; Revised Section 3.0, last paragraph; Revised Figure 4-4; Revised Table 4-2 (FSR); Revised Register 7-1 and Register 7-2; Revised Section 7.2.2; Revised Table 7-3, Note 2; Revised Table 7-4 (FSR) and Note 2; Deleted Section 7.3.1: External Clock In and Figure 7-6; Revised new Section 7.3.1; Replaced TBD with new data in Tables 10-4 and 10-5; Revised Tables 10-1 (Industrial), 10-2 (Extended), and Tables 10-1 (Industrial, Extended) and 10-2 (Pull-up Resistor Ranges), 10-3, 10-4 and 10-6; Revised Figure 10-1, Figure 10-2; Section 11.0, Added Char data; Revised Package Marking Information; Revised Product ID System.

Revision E (08/2009)

Added PIC16F505 16-Pin diagram (QFN); Added Note after subsection 5.2 PORTC; Updated Note 4 and deleted Note 5, Table 10-1; Deleted Param. No. D061 (Table 10-1) and Param. No. D061A becomes D061; Added QFN Package Information; Revised Product Identification System; Added Figures 11-14, 11-15, 11-16, 11-7 to Char Data section; Other minor corrections; Removed Preliminary status.

INDEX

Α	
ALU	
Assembler	
MPASM Assembler	

В

Block Diagram	
On-Chip Reset Circuit	50
Timer0	
TMR0/WDT Prescaler	
Watchdog Timer	
Brown-Out Protection Circuit	54

С

C Compilers	
MPLAB C18	
MPLAB C30	
Carry	
Clocking Scheme	
Code Protection	41, 55
Configuration Bits	
Configuration Word	43
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

DC and AC Characteristics	81
Development Support	65
Digit Carry	11

Е

F

Family of Devices	
PIC12F508/509/PIC16F505	7
FSR	

I

I/O Interfacing	
I/O Ports	
I/O Programming Considerations	
ID Locations	41, 55
INDF	
Indirect Data Addressing	
Instruction Cycle	16
Instruction Flow/Pipelining	16
Instruction Set Summary	58
Internet Address	107

L

Μ

Memory Organization	17
Data Memory	
Program Memory (PIC12F508/509)	17
Program Memory (PIC16F505)	
Microchip Internet Web Site	107
MPLAB ASM30 Assembler, Linker, Librarian	66
MPLAB ICD 2 In-Circuit Debugger	67
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	67

MPLAB Integrated Development Environment Software	65
MPLAB PM3 Device Programmer	67
MPLAB REAL ICE In-Circuit Emulator System	67
MPLINK Object Linker/MPLIB Object Librarian	66

0

Option Register	
OSC selection	41
OSCCAL Register	
Oscillator Configurations	44
Oscillator Types	
HS	44
LP	44
RC	44
XT	44
HS LP RC XT	

Ρ

PIC12F508/509/16F505 Device Varieties	9
PICSTART Plus Development Programmer	68
POR	
Device Reset Timer (DRT)	41, 52
PD	54, 41
TO	54
PORTB	31
Power-down Mode	55
Prescaler	38
Program Counter	27

Q

Q cycles 16

R

RC Oscillator	45
Reader Response	108
Read-Modify-Write	33
Register File Map	
PIC12F508	
PIC12F509	
PIC16F505	
Registers	
Special Function	
Reset	41
Reset on Brown-Out	

S

Sleep	41. 55
Software Simulator (MPLAB SIM)	
Special Features of the CPU	41
Special Function Registers	20
Stack	27
Status Register	11, 22

Т

Timer0	
Timer0	35
Timer0 (TMR0) Module	35
TMR0 with External Clock	37
Timing Diagrams and Specifications	75
Timing Parameter Symbology and Load Conditions	75
TRIS Registers	31

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent		
RE:	Reader Response			
From	: Name			
	Company			
	Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Appli	cation (optional):			
Woul	ld you like a reply?YN			
Devid	ce: PIC12F508/509/16F505	Literature Number: DS41236E		
Ques	stions:			
1. V	What are the best features of this do	cument?		
_				
_				
2. ⊦	 How does this document meet your hardware and software development needs? 			
_				
_				
3. C	Do you find the organization of this o	locument easy to follow? If not, why?		
_				
-				
4. V	What additions to the document do y	you think would enhance the structure and subject?		
-				
-				
5. V	Vhat deletions from the document c	ould be made without affecting the overall usefulness?		
-				
-		<i>.</i>		
6. Is	s there any incorrect or misleading i	nformation (what and where)?		
_				
- 7 L	tow would you improve this desume	ant?		
<i>1</i> . F		211.:		
-				
_				