

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	SH-2
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, SCI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	74
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-BQFP
Supplier Device Package	112-QFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/hd64f7144fw50v

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 10.11 DMA Transfer Example in Cyc	cle-Steal Mode1	195
Figure 10.12 DMA Transfer Example in Bur	rst Mode 1	195
Figure 10.13 Bus Handling when Multiple C	Channels Are Operating 1	197
Figure 10.14 Cycle Steal, Dual Address and	Level Detection (Fastest Operation)2	200
Figure 10.15 Cycle Steal, Dual Address and	Level Detection (Normal Operation)2	200
Figure 10.16 Cycle Steal, Single Address and	d Level Detection (Fastest Operation)2	200
Figure 10.17 Cycle Steal, Single Address and	d Level Detection (Normal Operation)2	200
Figure 10.18 Burst Mode, Dual Address and	Level Detection (Fastest Operation)2	201
Figure 10.19 Burst Mode, Dual Address and	Level Detection (Normal Operation)2	201
Figure 10.20 Burst Mode, Single Address an	d Level Detection (Fastest Operation)2	201
Figure 10.21 Burst Mode, Single Address an	d Level Detection (Normal Operation)2	202
Figure 10.22 Burst Mode, Dual Address and	Edge Detection	202
Figure 10.23 Burst Mode, Single Address an	d Edge Detection2	202
	on2	
Figure 10.25 Source Address Reload Function	on Timing Chart2	203
Section 11 Multi-Function Timer Pulse Un	nit (MTU)	
Figure 11.1 Block Diagram of MTU		216
Figure 11.2 Complementary PWM Mode Ou	11 utput Level Example2	254
Figure 11.3 Example of Counter Operation S	Setting Procedure2	259
Figure 11.4 Free-Running Counter Operation	n2	260
Figure 11.5 Periodic Counter Operation		261
Figure 11.6 Example of Setting Procedure for	or Waveform Output by Compare Match2	261
Figure 11.7 Example of 0 Output/1 Output C	Dperation2	262
Figure 11.8 Example of Toggle Output Oper	ation2	262
Figure 11.9 Example of Input Capture Opera	ation Setting Procedure2	263
Figure 11.10 Example of Input Capture Open	ration2	264
	ation Setting Procedure2	
Figure 11.12 Example of Synchronous Operation	ation2	266
Figure 11.13 Compare Match Buffer Operation	ion2	267
Figure 11.14 Input Capture Buffer Operation	12	267
Figure 11.15 Example of Buffer Operation S	etting Procedure2	267
Figure 11.16 Example of Buffer Operation (1)2	268
Figure 11.17 Example of Buffer Operation (2	2)2	269
Figure 11.18 Cascaded Operation Setting Pro	ocedure2	270
Figure 11.19 Example of Cascaded Operatio	n2	270
Figure 11.20 Example of PWM Mode Settin	g Procedure2	273
Figure 11.21 Example of PWM Mode Opera	tion (1)2	273
Figure 11.22 Example of PWM Mode Opera	tion (2)2	274
	tion (3)2	
Figure 11.24 Example of Phase Counting Me	ode Setting Procedure2	276

Figure 11.91	Error Occurrence in PWM Mode 1, Recovery in Normal Mode	345
-	Error Occurrence in PWM Mode 1, Recovery in PWM Mode 1	
•	Error Occurrence in PWM Mode 1, Recovery in PWM Mode 2	
•	Error Occurrence in PWM Mode 1, Recovery in Phase Counting Mode	
-	Error Occurrence in PWM Mode 1, Recovery in Complementary PWM	
U	Mode	349
Figure 11.96	Error Occurrence in PWM Mode 1, Recovery in Reset-Synchronous PWM	
U	Mode	350
Figure 11.97	Error Occurrence in PWM Mode 2, Recovery in Normal Mode	351
Figure 11.98	Error Occurrence in PWM Mode 2, Recovery in PWM Mode 1	352
Figure 11.99	Error Occurrence in PWM Mode 2, Recovery in PWM Mode 2	353
-	Error Occurrence in PWM Mode 2, Recovery in Phase Counting Mode	
•	Error Occurrence in Phase Counting Mode, Recovery in Normal Mode	
•	Error Occurrence in Phase Counting Mode, Recovery in PWM Mode 1	
-	Error Occurrence in Phase Counting Mode, Recovery in PWM Mode 2	
-	Error Occurrence in Phase Counting Mode, Recovery in Phase Counting	
0	Mode	358
Figure 11.105	Error Occurrence in Complementary PWM Mode, Recovery in Normal	
8	Mode	359
Figure 11.106	Error Occurrence in Complementary PWM Mode, Recovery in PWM	
8	Mode 1	
Figure 11.107		
1.9010 11110,	Complementary PWM Mode	
Figure 11.108	Error Occurrence in Complementary PWM Mode, Recovery in	
1.80.0	Complementary PWM Mode	
Figure 11.109	Error Occurrence in Complementary PWM Mode, Recovery in	
	Reset-Synchronous PWM Mode	363
Figure 11.110	Error Occurrence in Reset-Synchronous PWM Mode, Recovery in Normal	
8	Mode	364
Figure 11.111	Error Occurrence in Reset-Synchronous PWM Mode, Recovery in PWM	
U	Mode 1	365
Figure 11.112	Error Occurrence in Reset-Synchronous PWM Mode, Recovery in	
	Complementary PWM Mode	366
Figure 11.113	Error Occurrence in Reset-Synchronous PWM Mode, Recovery in	
1.80.0 111110	Reset-Synchronous PWM Mode	367
Figure 11 114	POE Block Diagram	
	Low-Level Detection Operation	
	Output-Level Detection Operation	
	Falling Edge Detection Operation	
1.5010 11.111/	running Eage Dettetion operation	

Section 11 Multi-Function Timer Pulse Unit (MTU)

This LSI has an on-chip multi-function timer pulse unit (MTU) that comprises five 16-bit timer channels.

The block diagram is shown in figure 11.1.

11.1 Features

- Maximum 16-pulse input/output
- Selection of 8 counter input clocks for each channel
- The following operations can be set for each channel:
 - Waveform output at compare match
 - Input capture function
 - Counter clear operation
 - Multiple timer counters (TCNT) can be written to simultaneously
 - Simultaneous clearing by compare match and input capture is possible
 - Register simultaneous input/output is possible by synchronous counter operation
 - A maximum 12-phase PWM output is possible in combination with synchronous operation
- Buffer operation settable for channels 0, 3, and 4
- Phase counting mode settable independently for each of channels 1 and 2
- Cascade connection operation
- Fast access via internal 16-bit bus
- 23 interrupt sources
- Automatic transfer of register data
- A/D converter conversion start trigger can be generated
- Module standby mode can be settable
- A total of six-phase waveform output, which includes complementary PWM output, and positive and negative phases of reset PWM output by interlocking operation of channels 3 and 4, is possible.
- AC synchronous motor (brushless DC motor) drive mode using complementary PWM output and reset PWM output is settable by interlocking operation of channels 0, 3, and 4, and the selection of two types of waveform outputs (chopping and level) is possible.

Table 11.12 TIOR_1 (Channel 1)

					Description
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_1 Function	TIOC1B Pin Function
0	0	0	0	Output	Output retained*
			1	compare register	Initial output is 0
				register	0 output at compare match
		1	0	—	Initial output is 0
					1 output at compare match
			1	_	Initial output is 0
					Toggle output at compare match
	1	0	0		Output retained
			1	_	Initial output is 1
					0 output at compare match
		1	0		Initial output is 1
					1 output at compare match
			1		Initial output is 1
					Toggle output at compare match
1	0	0	0	Input	Input capture at rising edge
			1	capture _ register	Input capture at falling edge
		1	Х		Input capture at both edges
	1	Х	Х	_	Input capture at generation of TGRC_0 compare match/input capture

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

Bit	Bit Name	Initial Value	R/W	Description	
2	TGIEC	0	R/W	TGR Interrupt Enable C	
				Enables or disables interrupt requests (TGIC) by the TGFC bit when the TGFC bit in TSR is set to 1 in channels 0, 3, and 4.	
				In channels 1 and 2, bit 2 is reserved. It is always read as 0 and the write value should always be 0.	
				0: Interrupt requests (TGIC) by TGFC bit disabled	
				1: Interrupt requests (TGIC) by TGFC bit enabled	
1	TGIEB	0	R/W	TGR Interrupt Enable B	
				Enables or disables interrupt requests (TGIB) by the TGFB bit when the TGFB bit in TSR is set to 1.	
				0: Interrupt requests (TGIB) by TGFB bit disabled	
				1: Interrupt requests (TGIB) by TGFB bit enabled	
0	TGIEA	0	R/W	TGR Interrupt Enable A	
				Enables or disables interrupt requests (TGIA) by the TGFA bit when the TGFA bit in TSR is set to 1.	
				0: Interrupt requests (TGIA) by TGFA bit disabled	
				1: Interrupt requests (TGIA) by TGFA bit enabled	

11.3.11 Timer Output Control Register (TOCR)

TOCR is an 8-bit readable/writable register that enables/disables PWM synchronized toggle output in complementary PWM mode/reset synchronized PWM mode, and controls output level inversion of PWM output.

Bit	Bit Name	Initial value	R/W	Description	
7	_	0	R	Reserved	
				This bit is always read as 0. The write value should always be 0.	
6	PSYE	0	R/W	PWM Synchronous Output Enable	
				This bit selects the enable/disable of toggle output synchronized with the PWM period.	
				0: Toggle output is disabled	
				1: Toggle output is enabled	
5 to 2	! —	All 0	R	Reserved	
				These bits are always read as 0. The write value should always be 0.	
1	OLSN	0	R/W	Output Level Select N	
				This bit selects the reverse phase output level in reset-synchronized PWM mode/complementary PWM mode. See table 11.26	
0	OLSP	0	R/W	Output Level Select P	
				This bit selects the positive phase output level in reset-synchronized PWM mode/complementary PWM mode. See table 11.27	

Table 11.26 Output Level Select Function

Bit 1	Function						
			(Compare Match Output			
OLSN	Initial Output	Active Level	Up Count	Down Count			
0	High level	Low level	High level	Low level			
1	Low level	High level	Low level	High level			

Note: The reverse phase waveform initial output value changes to active level after elapse of the dead time after count start.

Bit 0	Function						
	Compare Match Output						
OLSP	Initial Output	Active Level	Up Count	Down Count			
0	High level	Low level	Low level	High level			
1	Low level	High level	High level	Low level			

Figure 11.2 shows an example of complementary PWM mode output (1 phase) when OLSN = 1, OLSP = 1.

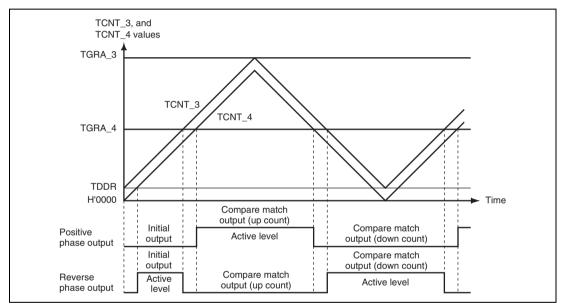


Figure 11.2 Complementary PWM Mode Output Level Example

11.4 Operation

11.4.1 Basic Functions

Each channel has a TCNT and TGR register. TCNT performs up-counting, and is also capable of free-running operation, synchronous counting, and external event counting.

Each TGR can be used as an input capture register or output compare register.

Always select MTU external pins set function using the pin function controller (PFC).

Counter Operation:

When one of bits CST0 to CST4 is set to 1 in TSTR, the TCNT counter for the corresponding channel begins counting. TCNT can operate as a free-running counter, periodic counter, for example.

1. Example of Count Operation Setting Procedure

Figure 11.3 shows an example of the count operation setting procedure.

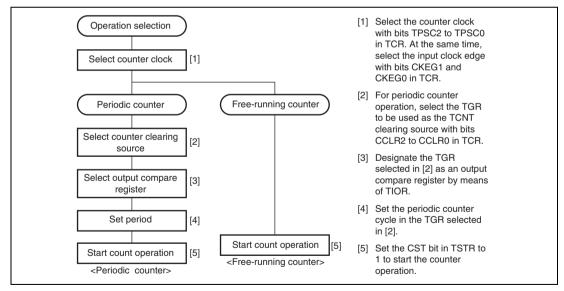
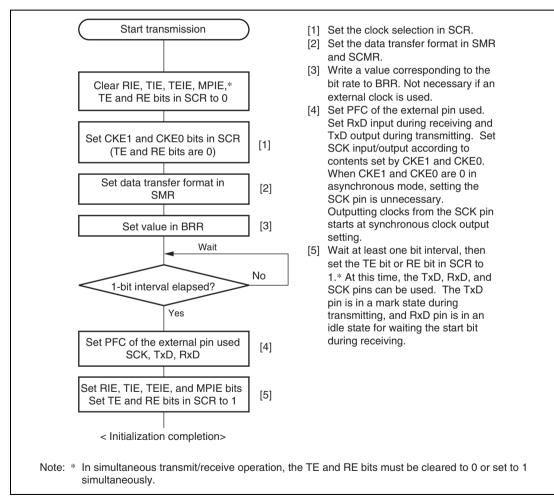



Figure 11.3 Example of Counter Operation Setting Procedure

13.4.4 SCI Initialization (Asynchronous Mode)

Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below. When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1. Note that clearing the RE bit to 0 does not initialize the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR. When the external clock is used in asynchronous mode, the clock must be supplied even during initialization.

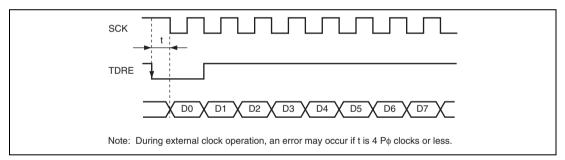
Figure 13.5 Sample SCI Initialization Flowchart

13.5 Multiprocessor Communication Function

Use of the multiprocessor communication function enables data transfer to be performed among a number of processors sharing communication lines by means of asynchronous serial communication using the multiprocessor format, in which a multiprocessor bit is added to the transfer data. When multiprocessor communication is carried out, each receiving station is addressed by a unique ID code. The serial communication cycle consists of two component cycles: an ID transmission cycle which specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle. If the multiprocessor bit is 1, the cycle is an ID transmission cycle, and if the multiprocessor bit is 0, the cycle is a data transmission cycle. Figure 13.10 shows an example of inter-processor communication using the multiprocessor format. The transmitting station first sends the ID code of the receiving station with which it wants to perform serial communication as data with a 1 multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added. The receiving station skips data until data with a 1 multiprocessor bit is sent. When data with a 1 multiprocessor bit is received, the receiving station compares that data with its own ID. The station whose ID matches then receives the data sent next. Stations whose ID does not match continue to skip data until data with a 1 multiprocessor bit is again received.

The SCI uses the MPIE bit in SCR to implement this function. When the MPIE bit is set to 1, transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status flags, RDRF, FER, and OER to 1 are inhibited until data with a 1 multiprocessor bit is received. On reception of receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to 1 and the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is invalid. All other bit settings are the same as those in normal asynchronous mode. The clock used for multiprocessor communication is the same as that in normal asynchronous mode.


When the TE bit is cleared to 0, the transmission section is initialized regardless of the present transmission status.

13.9.5 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)

Transmission cannot be started when a receive error flag (ORER, PER, or FER) is set to 1, even if the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0.

13.9.6 Notes on DMAC and DTC Use

- When using an external clock source for the serial clock, update TDR with the DMAC or the DTC, and then after the elapse of five peripheral clocks (Pφ) or more, input a transmit clock. If a transmit clock is input in the first four Pφ clocks after TDR is written, an error may occur (figure 13.30).
- 2. Before reading the receive data register (RDR) with the DMAC or the DTC, select the receivedata-full (RXI) interrupt of the SCI as a start-up source.

13.9.7 Notes on Clocked Synchronous External Clock Mode

- 1. Set TE = RE = 1 only when external clock SCK is 1.
- 2. Do not set TE = RE = 1 until at least four P ϕ clocks after external clock SCK has changed from 0 to 1.
- 3. When receiving, RDRF is 1 when RE is cleared to 0 after 2.5 to 3.5 Pφ clocks from the rising edge of the RxD D7 bit SCK input, but copying to RDR is not possible.

Register	Bit	Bit Name	Initial Value	R/W	Description
PECRL1	7	PE11MD1	0	R/W	PE11 Mode
PECRL1	6	PE11MD0	0	R/W	Select the function of the PE11/TIOC3D/RXD3 pin.
					00: PE11 I/O (port)
					01: TIOC3D I/O (MTU)
					10: Setting prohibited
					11: RXD3 input (SCI)
PECRL1	5	PE10MD1	0	R/W	PE10 Mode
PECRL1	4	PE10MD0	0	R/W	Select the function of the PE10/TIOC3C/TXD2 pin.
					00: PE10 I/O (port)
					01: TIOC3C I/O (MTU)
					10: TXD2 output (SCI)
					11: Setting prohibited
PECRL1	3	PE9MD1	0	R/W	PE9 Mode
PECRL1	2	PE9MD0	0	R/W	Select the function of the PE9/TIOC3B/SCK3 pin.
					00: PE9 I/O (port)
					01: TIOC3B I/O (MTU)
					10: Setting prohibited
					11: SCK3 I/O (SCI)
PECRL1	1	PE8MD1	0	R/W	PE8 Mode
PECRL1	0	PE8MD0	0	R/W	Select the function of the PE8/TIOC3A/SCK2 pin.
					00: PE8 I/O (port)
					01: TIOC3A I/O (MTU)
					10: SCK2 I/O (SCI)
					11: Setting prohibited
PECRL2	15	PE7MD1	0	R/W	PE7 Mode
PECRL2	14	PE7MD0	0	R/W	Select the function of the PE7/TIOC2B/RXD2 pin.
					00: PE7 I/O (port)
					01: TIOC2B I/O (MTU)
					10: RXD2 input (SCI)
					11: Setting prohibited

Bit	Bit Name	Initial Value	R/W	Description
7	PF7DR	0/1*	R	See table 18.6*
6	PF6DR	0/1*	R	_
5	PF5DR	0/1*	R	_
4	PF4DR	0/1*	R	_
3	PF3DR	0/1*	R	_
2	PF2DR	0/1*	R	_
1	PF1DR	0/1*	R	_
0	PF0DR	0/1*	R	_

Notes: * Initial values are dependent on the state of the pins.

Table 18.6 Port F Data Register (PFDR) Read/Write Operations

• Bits 7 to 0

Pin Function	Read	Write
General input	Pin state	Ignored (no effect on pin state)
ANn input (analog input)	1	Ignored (no effect on pin state)

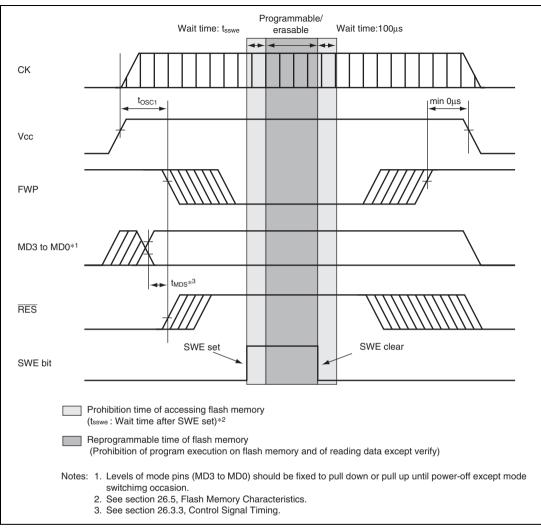


Figure 19.12 Power On/Off Timing (User Program Mode)

24.4 Usage Notes

24.4.1 I/O Port Status

When a transition is made to software standby mode while the port high-impedance bit (HIZ) in SBYCR is 0, I/O port states are retained. Therefore, there is no reduction in current consumption for the output current when a high-level signal is output.

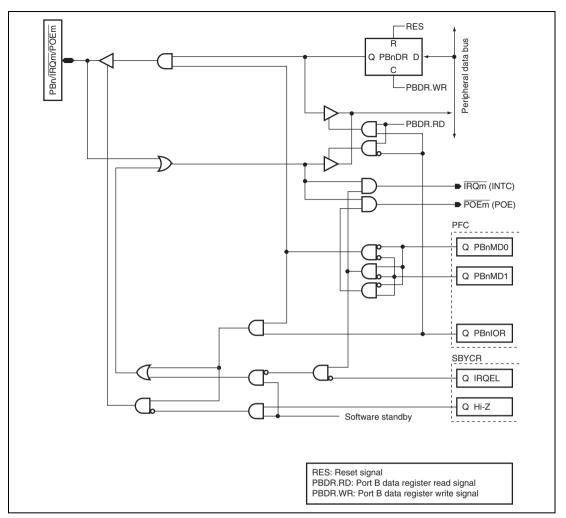
24.4.2 Current Consumption during Oscillation Stabilization Wait Period

Current consumption increases during the oscillation stabilization wait period.

24.4.3 On-Chip Peripheral Module Interrupt

Relevant interrupt operations cannot be performed in module standby mode. Consequently, if the CPU enters module standby mode while an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DMAC/DTC activation source.

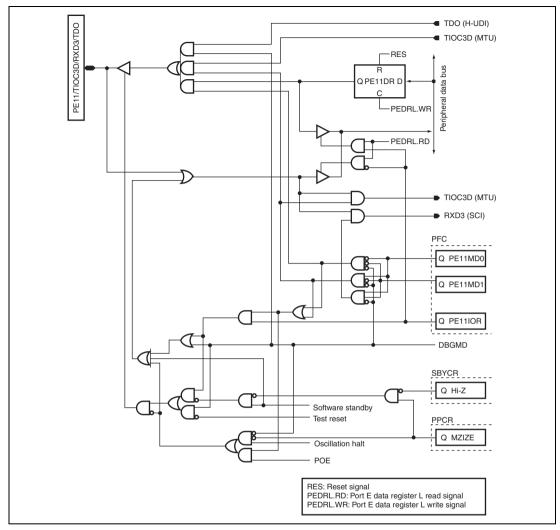
Interrupts should therefore be disabled before entering module standby mode.


24.4.4 Writing to MSTCR1 and MSTCR2

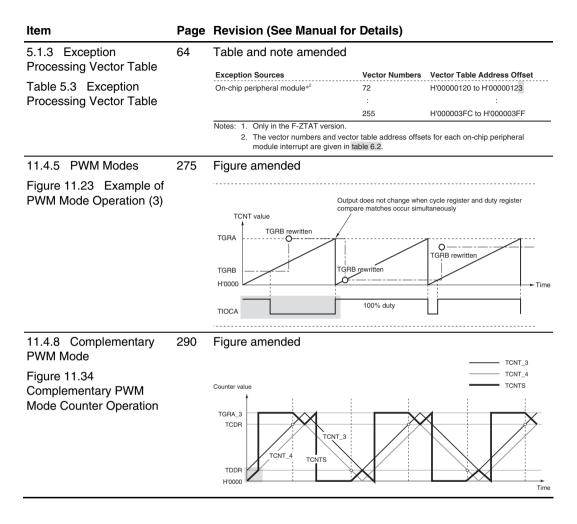
MSTCR1 and MSTCR2 should only be written to by the CPU.

24.4.5 DMAC, DTC, or AUD Operation in Sleep Mode

In sleep mode, data should not be accessed by the DMAC, DTC, or AUD.


Register abbreviation	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Module
TCR_3	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	MTU
TCR_4	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	(Channels 3, 4)
TMDR_3	_	_	BFB	BFA	MD3	MD2	MD1	MD0	
TMDR_4	_	_	BFB	BFA	MD3	MD2	MD1	MD0	
TIORH_3	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	
TIORL_3	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	
TIORH_4	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	
TIORL_4	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	
TIER_3	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA	
TIER_4	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA	
TOER	_	_	OE4D	OE4C	OE3D	OE4B	OE4A	OE3B	
TOCR	_	PSYE	_	_	_	_	OLSN	OLSP	
TGCR	_	BDC	Ν	Р	FB	WF	VF	UF	
TCNT_3									
TCNT_4									
TCDR									_
TDDR									
TGRA_3									
TGRB_3									
TGRA_4									_
TGRB_4									_
TCNTS									_
TCBR									

	Symb	ol in Fig	ure D.16	Available Products					
				S	SH7144	SH7145			
Pins	s PBn IRQm POEm		F-ZTAT version	Masked ROM version/ ROM less version	F-ZTAT version	Masked ROM version/ ROM less version			
PB4/IRQ2/ POE2	PB4	IRQ2 (INTC)	POE2 (POE)	\checkmark	_	\checkmark	_		
PB5/IRQ3/ POE3	PB5	IRQ3 (INTC)	POE3 (POE)				_		


Rev.4.00 Mar. 27, 2008 Page 828 of 882 REJ09B0108-0400

	Symbol in Figure D.55				Available Products				
					:	SH7144	SH7145		
Pins	PE11	TIOC3D	RXD3	TDO	F-ZTAT version	Masked ROM version/ ROM less version	F-ZTAT version	Masked ROM version/ ROM less version	
PE11/TIOC3D/ RXD3/TDO	PE11	TIOC3D (MTU)	RXD3 (SCI)	TDO (H-UDI)	_	—		_	

Main Revisions for this Edition

