

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	·
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f102cbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8	Revis	ion hist	ory	77
7	Order	ring info	rmation scheme	76
		6.4.1	Evaluating the maximum junction temperature for an application	75
	6.4	Referen	ce document	74
	6.3	Therma	characteristics	74
	6.2	LQFP48	package information	71
	6.1	LQFP64	package information	68
6	Packa	age cha	racteristics	68
		5.3.18	Temperature sensor characteristics	67
		5.3.17	12-bit ADC characteristics	63
		5.3.16	Communications interfaces	57
		5.3.15	TIM timer characteristics	57
		5.3.14	NRST pin characteristics	55
		5.3.13	I/O port characteristics	49

Table 45.	ADC characteristics	1
Table 46.	R _{AIN} max for f _{ADC} = 12 MHz	5
Table 47.	ADC accuracy - limited test conditions	5
Table 48.	ADC accuracy	5
Table 49.	TS characteristics	7
Table 50.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat	
	package mechanical data 68	3
Table 51.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
	mechanical data	2
Table 52.	Package thermal characteristics	1
Table 53.	Ordering information scheme	3
Table 54.	Document revision history	7

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of STM32F102x8 and STM32F102xB medium-density USB access line microcontrollers. For more details on the whole STMicroelectronics STM32F102xx family. please refer to *Section 2.2: Full compatibility throughout the family*.

The medium-density STM32F102xx datasheet should be read in conjunction with the low-, medium- and high-density STM32F10xxx reference manual.

For information on programming, erasing and protection of the internal Flash memory please refer to the *STM32F10xxx Flash programming manual*.

The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the ARM[®] website.

Figure 2. Clock tree

1. For the USB function to be available, both HSE and PLL must be enabled, with the USB clock output (USBCLK) at 48 MHz.

- 2. To have an ADC conversion time of 1.2 $\mu s,$ APB2 must be at 12 MHz, 24 MHz or 48 MHz.
- 3. The Flash memory programming interface clock (FLITFCLK) is always the HSI clock.

Low-power modes

The STM32F102xx medium-density USB access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and registers content are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general purpose timers TIMx and ADC.

RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare

The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3 Pinout and pin description

Figure 3. STM32F102xx medium-density USB access line LQFP48 pinout

5.3 Operating conditions

5.3.1 General operating conditions

Table	8.	General	operating	conditions
-------	----	---------	-----------	------------

Symbol	Parameter	Co	onditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency		-	0	48		
f _{PCLK1}	Internal APB1 clock frequency	-		0	24	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-		0	48		
V _{DD}	Standard operating voltage		-	2	3.6	V	
V (1)	Analog operating voltage (ADC not used)	Must be the s	ame potential	2	3.6		
VDDA` ′	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾		2.4	3.6		
		Standard IO		-0.3	V _{DD} + 0.3	V	
V _{IN}	I/O input voltage	ETIO ⁽³⁾	$2~V < V_{DD} \leq~3.6~V$	-0.3	5.5		
			V _{DD} = 2 V	-0.3	5.2		
		BOOT0		0	5.5		
р	Dower dissipation at T = $95 \circ C^{(4)}$	LQFP48		-	363	m\//	
ΓD	Power dissipation at T _A = 65° C [×]	LQFP64		-	444	11100	
Т	Ambient temperature	Maximum power dissipation		-40	85	°C	
IA		Low power dissipation ⁽⁵⁾		-40	105	°C	
TJ	Junction temperature range		-	-40	105	°C	

1. When the ADC is used, refer to *Table 45: ADC characteristics*.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

3. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Section 6.3: Thermal characteristics).

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Section 6.3: Thermal characteristics).

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A.

Table 9. Operating conditions at power-up / power-do
--

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{VDD}	V _{DD} rise time rate		0	∞	
	V _{DD} fall time rate		20	8	µs/v

Figure 10. Typical current consumption in Run mode versus temperature (at 3.6 V) - code with data processing running from RAM, peripherals enabled

Figure 11. Typical current consumption in Run mode versus temperature (at 3.6 V) - code with data processing running from RAM, peripherals disabled

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Typ ⁽¹⁾	Typ ⁽¹⁾	Unit	
Symbol	Parameter	Conditions	^f hclk	All peripherals enabled ⁽²⁾	All peripherals disabled		
			48 MHz	9.9	3.9		
			36 MHz	7.6	3.1		
			24 MHz	5.3	2.3		
			16 MHz	3.8	1.8		
		External clock ⁽³⁾	8 MHz	2.1	1.2		
		External clock."	4 MHz	1.6	1.1		
	Supply current in Sleep mode			2 MHz	1.3	1	
			1 MHz	1.11	0.98		
			500 kHz	1.04	0.96		
			125 kHz	0.98	0.95	m۸	
'DD		Running on High	48 MHz	9.3	3.3	mA	
			36 MHz	7	2.5		
			24 MHz	4.8	1.8		
			16 MHz	3.2	1.2		
		RC (HSI), AHB	8 MHz	1.6	0.6		
		prescaler used to	4 MHz	1	0.5		
		frequency	2 MHz	0.72	0.47		
			1 MHz	0.56	0.44		
			500 kHz	0.49	0.42		
				125 kHz	0.43	0.41	

Table 17. Typical current consumption in Sleep mode, code running from Flash or
RAM

1. Typical values are measures at $T_A = 25 \text{ °C}$, $V_{DD} = 3.3 \text{ V}$.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 18*. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions as summarized in Table 5.

Р	eripheral	μA/MHz
	DMA1	16.53
	BusMatrix ⁽²⁾	8.33
	APB1-Bridge	10.28
	TIM2	32.50
PB1 (up to 48 MHz) PB1 (up to 24 MHz) PB2 (up to 48 MHz)	TIM3	31.39
	TIM4	31.94
	SPI2	4.17
	Perpineral µA/MH2 DA8 MH2) DMA1 16.53 BusMatrix ⁽²⁾ 8.33 APB1-Bridge 10.28 TIM2 32.50 TIM3 31.39 TIM4 31.94 SPI2 4.17 USART2 12.22 USART3 12.22 I2C1 10.00 I2C2 10.00 USB 17.78 WWDG 2.50 PWR 1.67 BKP 2.50 IWDG 11.67 APB2-Bridge 3.75 GPIOA 6.67 GPIOB 6.53 GPIOD 6.53 SPI1 4.72 USART1 11.94	
AHB (up to 48 MHz) DMA1 16.53 BusMatrix ⁽²⁾ 8.33 APB1-Bridge 10.28 TIM2 32.50 TIM3 31.39 TIM4 31.94 SPI2 4.17 USART2 12.22 USART3 12.22 I2C1 10.00 I2C2 10.00 USB 17.78 WWDG 2.50 PWR 1.67 BKP 2.50 IWDG 11.67 APB2 (up to 48 MHz) APB2-Bridge 3.75 GPIOA 6.67 GPIOD 6.53 SPI1 4.72 USART1 11.94		
	I2C1	10.00
	I2C2	10.00
	USB	17.78
	WWDG	2.50
	PWR	1.67
	ВКР	2.50
	IWDG	11.67
	APB2-Bridge	3.75
	GPIOA	6.67
	GPIOB	6.53
APB2 (up to 48 MHz)	GPIOC	6.53
	GPIOD	16.53 8.33 je 10.28 32.50 31.39 31.94 4.17 12.22 12.22 10.00 10.00 10.00 10.00 11.07 2.50 11.67 3.75 6.67 6.53 6.53 6.53 4.72 11.94 17.50
APB1 (up to 24 MHz)	SPI1	4.72
	USART1	11.94
	ADC1 ^{(3) (4)}	17.50

Table 18. Peripheral current consumption⁽¹⁾

1. f_{HCLK} = 48 MHz, f_{APB1} = $f_{HCLK}/2$, f_{APB2} = f_{HCLK} , default prescaler value for each peripheral.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(LSE)	Duty cycle		30	-	70	%
١	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 20. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Output voltage levels

Unless otherwise specified, the parameters given in *Table 35* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output Low level voltage for an I/O pin when 8 pins are sunk at the same time	CMOS port ⁽²⁾ .	-	0.4	V
V _{OH} ⁽³⁾	Output High level voltage for an I/O pin when 8 pins are sourced at the same time	$2.7 V < V_{DD} < 3.6 V$	V _{DD} -0.4	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	TTL port ⁽²⁾	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +20 mA ⁽⁴⁾	-	1.3	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +6 mA ⁽⁴⁾	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2.0 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	v

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 6* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 6 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Based on characterization data, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 24* and *Table 36*, respectively.

Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

MODEx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Max	Unit	
10	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V	2	MHz	
	t _{f(IO)out}	Output high to low level fall time		125 ⁽³⁾	- ns	
	t _{r(IO)out}	Output low to high level rise time	C _L = 50 μr, ν _{DD} = 2 v to 3.6 v	125 ⁽³⁾		
01	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	10	MHz	
	t _{f(IO)out}	Output high to low level fall time		25 ⁽³⁾	ns	
	t _{r(IO)out}	Output low to high level rise time	CL- 50 μr, v _{DD} - 2 v to 3.6 v	25 ⁽³⁾		
	F _{max(IO)out}	Maximum Frequency ⁽²⁾	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	50	MHz	
			C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	30	MHz	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	20	MHz	
	t _{f(IO)out}	Output high to low level fall time	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	5 ⁽³⁾	5 ⁽³⁾ 3 ⁽³⁾	
11			C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	8 ⁽³⁾		
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	12 ⁽³⁾	ns	
	t _{r(IO)out}	Output low to high level rise time	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	5 ⁽³⁾		
			C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	8 ⁽³⁾		
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	12 ⁽³⁾		
-	t _{EXTIPW}	Pulse width of external signals detected by the EXTI controller	-	10	ns	

Table 36. I/O AC characteristics⁽¹⁾

 The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 24*.

3. Guaranteed by design, not tested in production.

5.3.15 TIM timer characteristics

The parameters given in *Table 38* are guaranteed by design.

Refer to Section 5.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{res(TIM)}	Timer resolution time	-	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 48 MHz	20.84	-	ns
f _{EXT}	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
	frequency on CH1 to CH4	f _{TIMxCLK} = 48 MHz	0	24	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
t _{COUNTER}	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
	selected	f _{TIMxCLK} = 48 MHz	0.0208	1365	μs
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
		f _{TIMxCLK} = 48 MHz	-	89.48	s

Table 38. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.

5.3.16 Communications interfaces

I²C interface characteristics

The STM32F102xx medium-density USB access line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 39*. Refer also to *Section 5.3.13: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Figure 31. ADC accuracy characteristics

Figure 32. Typical connection diagram using the ADC

- 1. Refer to *Table 46* for the values of R_{AIN} , R_{ADC} and C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

Device marking for LQFP64

Figure 36 is an example of topside marking orientation versus pin 1 identifier location.

Figure 36. LQFP64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7 Ordering information scheme

Example:	STM32 F 102 C	8 T	6	xxx
Device family				
STM32 = ARM-based 32-bit microcontroller				
Product type				
F = general-purpose				
Device subfamily				
102 = USB access line, USB 2.0 full-speed interfac	се			
Pin count				
C = 48 pins				
R = 64 pins				
Flash memory size				
8 = 64 Kbytes of Flash memory				
B = 128 Kbytes of Flash memory				
Package				
T = LQFP				
Temperature range				
6 = Industrial temperature range, -40 to 85 °C.				
Options				

Table 53. Ordering information scheme

xxx = programmed parts

TR = tape and reel

Date	Revision	Changes	
02-Aug-2013	5	Removed sentence in "Unless otherwise specified the parameters" in <i>I2C interface characteristics</i> section. Added V _{IN} in <i>Table 8: General operating conditions</i> . Added note 5 in <i>Table 23: HSI oscillator characteristics</i> Modified charge device model in <i>Table 33: ESD absolute maximum ratings</i> Updated 'V _{IL} ' and 'V _{IH} ' in <i>Table 34: I/O static characteristics</i> Added notes to <i>Figure 20: Standard I/O input characteristics - CMOS port</i> , <i>Figure 21: Standard I/O input characteristics - TTL port</i> , <i>Figure 22: 5 V tolerant I/O input characteristics - TTL port</i> , <i>Figure 23: 5 V tolerant I/O input characteristics - TTL port</i> Updated Figure 24: <i>I/O AC characteristics definition</i> Updated note 2. and 3. in <i>Table 39: I²C characteristics</i> Updated <i>Figure 26: I2C bus AC waveforms and measurement circuit(1)</i> Updated title of <i>Table 40: SCL frequency</i> (f _{PCLK1} = 36 MHz, V _{DD_12C} = 3.3 V) Updated <i>Table 47: ADC characteristics</i>	
03-Jun-2015	6	 Updated Table 18: Peripheral current consumption and Table 39: l²C characteristics Updated Section 6: Package characteristics Updated Section 6.1: LQFP64 package information with addition of Device marking for LQFP64 and Figure 36. Updated Section 6.2: LQFP48 package information with addition of Device marking for LQFP48 and Figure 39. Updated Disclaimer. 	

Table 54. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID15056 Rev 6

