
NXP USA Inc. - P87LPC764FN,112 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	<u> </u>
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-DIP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87lpc764fn-112

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P87LPC764

GENERAL DESCRIPTION

The P87LPC764 is a 20-pin single-chip microcontroller designed for low pin count applications demanding high-integration, low cost solutions over a wide range of performance requirements. A member of the Philips low pin count family, the P87LPC764 offers programmable oscillator configurations for high and low speed crystals or RC operation, wide operating voltage range, programmable port output configurations, selectable Schmitt trigger inputs, LED drive outputs, and a built-in watchdog timer. The P87LPC764 is based on an accelerated 80C51 processor architecture that executes instructions at twice the rate of standard 80C51 devices.

FEATURES

- An accelerated 80C51 CPU provides instruction cycle times of 300–600 ns for all instructions except multiply and divide when executing at 20 MHz. Execution at up to 20 MHz when V_{DD} = 4.5 V to 6.0 V, 10 MHz when V_{DD} = 2.7 V to 6.0 V.
- 4.5 V to 5.5 V for P87LPC764HDH.
- 2.7 V to 6.0 V operating range for digital functions.
- 4 kbytes EPROM code memory.
- 128 byte RAM data memory.
- 32 byte customer code EPROM allows serialization of devices, storage of setup parameters, etc.
- Two 16-bit counter/timers. Each timer may be configured to toggle a port output upon timer overflow.
- Two analog comparators.
- Full duplex UART.

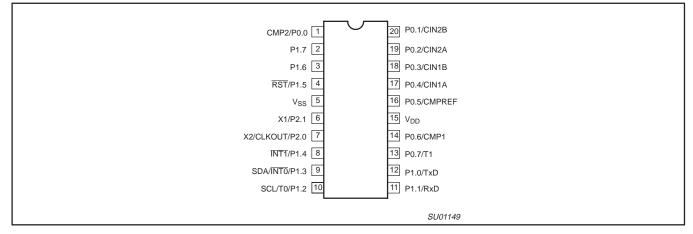
- I²C communication port.
- Eight keypad interrupt inputs, plus two additional external interrupt inputs.
- Four interrupt priority levels.
- Watchdog timer with separate on-chip oscillator, requiring no external components. The watchdog timeout time is selectable from 8 values.
- Active low reset. On-chip power-on reset allows operation with no external reset components.
- Low voltage reset. One of two preset low voltage levels may be selected to allow a graceful system shutdown when power fails. May optionally be configured as an interrupt.
- Oscillator Fail Detect. The watchdog timer has a separate fully on-chip oscillator, allowing it to perform an oscillator fail detect function.
- Configurable on-chip oscillator with frequency range and RC oscillator options (selected by user programmed EPROM bits). The RC oscillator option allows operation with no external oscillator components.
- Programmable port output configuration options: quasi-bidirectional, open drain, push-pull, input-only.
- Selectable Schmitt trigger port inputs.
- LED drive capability (20 mA) on all port pins.
- Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns minimum ramp times.
- 15 I/O pins minimum. Up to 18 I/O pins using on-chip oscillator and reset options.
- Only power and ground connections are required to operate the P87LPC764 when fully on-chip oscillator and reset options are selected.
- Serial EPROM programming allows simple in-circuit production coding. Two EPROM security bits prevent reading of sensitive application programs.
- Idle and Power Down reduced power modes. Improved wakeup from Power Down mode (a low interrupt input starts execution). Typical Power Down current is 1 μA.
- 20-pin DIP, SO, and TSSOP packages.

Product data

P87LPC764

ORDERING INFORMATION

Type number	Package				
	Name	Description	Frequency	Temperature Range (°C)	Version
P87LPC764BD/01	SO20	plastic small outline package; 20 leads; body width 7.5 mm	20 MHz (5 V), 10 MHz (3 V)	0 to +70	SOT163-1
P87LPC764BD	SO20	plastic small outline package; 20 leads; body width 7.5 mm	20 MHz (5 V), 10 MHz (3 V)	0 to +70	SOT163-1
P87LPC764BDH/01	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	20 MHz (5 V) 10 MHz (3 V)	0 to +70	SOT360-1
P87LPC764BDH	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	20 MHz (5 V) 10 MHz (3 V)	0 to +70	SOT360-1
P87LPC764BN	DIP20	plastic dual in-line package; 20 leads (300 mil)	20 MHz (5 V), 10 MHz (3 V)	0 to +70	SOT146-1
P87LPC764FN	DIP20	plastic dual in-line package; 20 leads (300 mil)	20 MHz (5 V), 10 MHz (3 V)	-40 to +85	SOT146-1
P87LPC764FD	SO20	plastic small outline package; 20 leads; body width 7.5 mm	20 MHz (5 V), 10 MHz (3 V)	-40 to +85	SOT163-1
P87LPC764FDH	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	20 MHz (5 V), 10 MHz (3 V)	-40 to +85	SOT360-1
P87LPC764HDH	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	16 MHz (5 V)	-40 to +125	SOT360-1


DEVICE COMPARISON TABLE¹

Part type	Internal RC oscillator
P87LPC764BD/01, BDH/01	±2.5% to 5%
P87LPC764BDH, HDH	±10%
P87LPC764BD, BN, FN, FD, FDH	±25%

NOTE:

1. Please see AC and DC characteristics for more details.

PIN CONFIGURATION, 20-PIN DIP, SO, AND TSSOP PACKAGES

P87LPC764

Low power, low price, low pin count (20 pin) microcontroller with 4 kbyte OTP

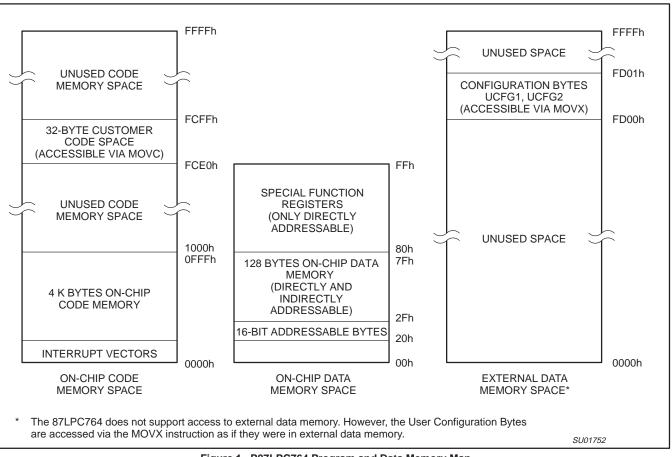


Figure 1. P87LPC764 Program and Data Memory Map

P87LPC764

PIN DESCRIPTIONS

MNEMONIC	PIN NO.	TYPE	NAME AND FUNCTION							
P0.0-P0.7	1, 13, 14, 16–20	I/O	the quasi-bic by the PRHI depends upo	directional mo bit in the UC on the port co	/O port with a user-configurable output type. Port 0 latches are configured in de and have either ones or zeros written to them during reset, as determined FG1 configuration byte. The operation of port 0 pins as inputs and outputs infiguration selected. Each port pin is configured independently. Refer to the uration and the DC Electrical Characteristics for details.					
			The Keyboa	rd Interrupt fe	eature operates with port 0 pins.					
			Port 0 also p	rovides vario	us special functions as described below.					
	1	0	P0.0	CMP2	Comparator 2 output.					
	20	I	P0.1	CIN2B	Comparator 2 positive input B.					
	19	I	P0.2	CIN2A	Comparator 2 positive input A.					
	18	I	P0.3	CIN1B	Comparator 1 positive input B.					
	17	I	P0.4	CIN1A	Comparator 1 positive input A.					
	16	I	P0.5	CMPREF	Comparator reference (negative) input.					
	14	0	P0.6	CMP1	Comparator 1 output.					
	13	I/O	P0.7	T1	Timer/counter 1 external count input or overflow output.					
P1.0-P1.7	2–4, 8–12	I/O	below. Port 1 written to the operation of selected. Ea port configur	I latches are em during res the configura ch of the con ration and the	/O port with a user-configurable output type, except for three pins as noted configured in the quasi-bidirectional mode and have either ones or zeros et, as determined by the PRHI bit in the UCFG1 configuration byte. The ble port 1 pins as inputs and outputs depends upon the port configuration figurable port pins are programmed independently. Refer to the section on I/O DC Electrical Characteristics for details.					
					us special functions as described below.					
	12	0	P1.0	TxD	Transmitter output for the serial port.					
	11	I	P1.1	RxD	Receiver input for the serial port.					
	10	I/O	P1.2	Т0	Timer/counter 0 external count input or overflow output.					
		I/O		SCL	I ² C serial clock input/output. When configured as an output, P1.2 is open drain, in order to conform to I ² C specifications.					
	9	I	P1.3	INT0	External interrupt 0 input.					
		I/O		SDA	I ² C serial data input/output. When configured as an output, P1.3 is open drain, in order to conform to I ² C specifications.					
	8	I	P1.4	INT1	External interrupt 1 input.					
	4	Ι	P1.5	RST	External Reset input (if selected via EPROM configuration). A low on this pin resets the microcontroller, causing I/O ports and peripherals to take on their default states, and the processor begins execution at address 0. When used as a port pin, P1.5 is a Schmitt trigger input only.					
P2.0–P2.1	6, 7	I/O	quasi-bidirec the PRHI bit depends upo section on I/0	tional mode a in the UCFG on the port co O port configu	D port with a user-configurable output type. Port 2 latches are configured in the and have either ones or zeros written to them during reset, as determined by 1 configuration byte. The operation of port 2 pins as inputs and outputs infiguration selected. Each port pin is configured independently. Refer to the uration and the DC Electrical Characteristics for details.					
	_				us special functions as described below.					
	7	0	P2.0	X2	Output from the oscillator amplifier (when a crystal oscillator option is selected via the EPROM configuration).					
				CLKOUT	CPU clock divided by 6 clock output when enabled via SFR bit and in conjunction with internal RC oscillator or external clock input.					
	6	I	P2.1	X1	Input to the oscillator circuit and internal clock generator circuits (when selected via the EPROM configuration).					
V _{SS}	5	I	Ground: 0V	reference.						
V _{DD}	15	I	Power Supp Power Down		e power supply voltage for normal operation as well as Idle and					

P87LPC764

Internal Reference Voltage

An internal reference voltage generator may supply a default reference when a single comparator input pin is used. The value of the internal reference voltage, referred to as V_{ref} , is 1.28 V ±10%.

Comparator Interrupt

Each comparator has an interrupt flag CMFn contained in its configuration register. This flag is set whenever the comparator output changes state. The flag may be polled by software or may be used to generate an interrupt. The interrupt will be generated when the corresponding enable bit ECn in the IEN1 register is set and the interrupt system is enabled via the EA bit in the IEN0 register.

Comparators and Power Reduction Modes

Either or both comparators may remain enabled when Power Down or Idle mode is activated. The comparators will continue to function in the power reduction mode. If a comparator interrupt is enabled, a change of the comparator output state will generate an interrupt and wake up the processor. If the comparator output to a pin is enabled, the pin should be configured in the push-pull mode in order to obtain fast switching times while in power down mode. The reason is that with the oscillator stopped, the temporary strong pull-up that normally occurs during switching on a quasi-bidirectional port pin does not take place.

Comparators consume power in Power Down and Idle modes, as well as in the normal operating mode. This fact should be taken into account when system power consumption is an issue.

Comparator Configuration Example

The code shown in Figure 5 is an example of initializing one comparator. Comparator 1 is configured to use the CIN1A and CMPREF inputs, outputs the comparator result to the CMP1 pin, and generates an interrupt when the comparator output changes.

The interrupt routine used for the comparator must clear the interrupt flag (CMF1 in this case) before returning.

CmpInit:	DE01D #20b	· Dischle divited impute on ping that any used
mov	PT0AD,#30h	; Disable digital inputs on pins that are used
_		; for analog functions: CIN1A, CMPREF.
anl	POM2,#0cfh	; Disable digital outputs on pins that are used
orl	P0M1,#30h	; for analog functions: CIN1A, CMPREF.
mov	CMP1,#24h	; Turn on comparator 1 and set up for:
		; - Positive input on CIN1A.
		; - Negative input from CMPREF pin.
		; - Output to CMP1 pin enabled.
call	delay10us	; The comparator has to start up for at
		; least 10 microseconds before use.
anl	CMP1,#0feh	; Clear comparator 1 interrupt flag.
setb	EC1	; Enable the comparator 1 interrupt. The
		; priority is left at the current value.
setb	EA	; Enable the interrupt system (if needed).
ret		; Return to caller.

Figure 5.

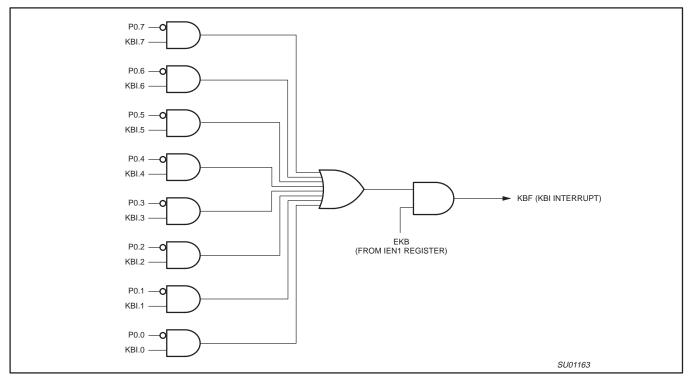


Figure 14. Keyboard Interrupt

	7					Not Bit Addressable										
	7															
		6	5	4	3	2	1	0								
	KBI.	7 KBI.6	KBI.5	KBI.4	KBI.3	KBI.2	KBI.1	KBI.0								
BIT	SYMBOL	FUNCTION														
					f - 1/	المحمد المل	t									
KBI.7	KBI.7	When set, ena					•									
KBI.6 KBI.6 When set, enables P0.6 as a cause of a Keyboard Interrupt.																
KBI.5	KBI.5	When set, ena	bles P0.5	as a caus	e of a Key	board Inte	errupt.									
KBI.4	KBI.4	When set, ena	bles P0.4	as a caus	e of a Key	board Inte	errupt.									
KBI.3	KBI.3	When set, ena	bles P0.3	as a caus	e of a Key	board Inte	errupt.									
KBI.2	KBI.2	When set, ena	bles P0.2	as a caus	e of a Key	board Inte	errupt.									
KBI.1	KBI.1	When set, ena	bles P0.1	as a caus	e of a Key	board Inte	errupt.									
KBI.0	KBI.0	When set, ena	bles P0.0	as a caus	e of a Key	board Inte	errupt.									
	Keyboard Inter		bled in or	der for the	e settings	of the KBI	register to	be effectiv	e. The interrupt flag							

Figure 15. Keyboard Interrupt Register (KBI)

P87LPC764

For correct activation of Brownout Detect, the V_{DD} fall time must be no faster than 50 mV/ μ s. When V_{DD} is restored, is should not rise faster than 2 mV/ μ s in order to insure a proper reset.

The brownout voltage (2.5 V or 3.8 V) is selected via the BOV bit in the EPROM configuration register UCFG1. When unprogrammed (BOV = 1), the brownout detect voltage is 2.5 V. When programmed (BOV = 0), the brownout detect voltage is 3.8 V.

If the Brownout Detect function is not required in an application, it may be disabled, thus saving power. Brownout Detect is disabled by setting the control bit BOD in the AUXR1 register (AUXR1.6).

Power On Detection

The Power On Detect has a function similar to the Brownout Detect, but is designed to work as power comes up initially, before the power supply voltage reaches a level where Brownout Detect can work. When this feature is activated, the POF flag in the PCON register is set to indicate an initial power up condition. The POF flag will remain set until cleared by software.

Power Reduction Modes

The P87LPC764 supports Idle and Power Down modes of power reduction.

Idle Mode

The Idle mode leaves peripherals running in order to allow them to activate the processor when an interrupt is generated. Any enabled interrupt source or Reset may terminate Idle mode. Idle mode is entered by setting the IDL bit in the PCON register (see Figure 19).

Power Down Mode

The Power Down mode stops the oscillator in order to absolutely minimize power consumption. Power Down mode is entered by setting the PD bit in the PCON register (see Figure 19).

The processor can be made to exit Power Down mode via Reset or one of the interrupt sources shown in Table 5. This will occur if the interrupt is enabled and its priority is higher than any interrupt currently in progress.

In Power Down mode, the power supply voltage may be reduced to the RAM keep-alive voltage V_{RAM}. This retains the RAM contents at the point where Power Down mode was entered. SFR contents are not guaranteed after V_{DD} has been lowered to V_{RAM}, therefore it is recommended to wake up the processor via Reset in this case. V_{DD} must be raised to within the operating range before the Power Down mode is exited. Since the watchdog timer has a separate oscillator, it may reset the processor upon overflow if it is running during Power Down.

Note that if the Brownout Detect reset is enabled, the processor will be put into reset as soon as V_{DD} drops below the brownout voltage. If Brownout Detect is configured as an interrupt and is enabled, it will wake up the processor from Power Down mode when V_{DD} drops below the brownout voltage.

When the processor wakes up from Power Down mode, it will start the oscillator immediately and begin execution when the oscillator is stable. Oscillator stability is determined by counting 1024 CPU clocks after start-up when one of the crystal oscillator configurations is used, or 256 clocks after start-up for the internal RC or external clock input configurations.

Some chip functions continue to operate and draw power during Power Down mode, increasing the total power used during Power Down. These include the Brownout Detect, Watchdog Timer, and Comparators.

PCON	Addres Not Bit	s: 87h Addressable						Reset Value	• 20	h for a Power On reset h for a Brownout reset h for other reset sources
		7	6	5	4	3	2	1	0	
		SMO	D1 SMOD0	BOF	POF	GF1	GF0	PD	IDL]
BI	т	SYMBOL	FUNCTION							
P	CON.7	SMOD1	When set, this	bit double	es the UAF	RT baud ra	ate for mo	des 1, 2, and	13.	
P	CON.6	SMOD0	This bit selects SCON.7 is the							the SM0 bit. When 1, ation.
P	CON.5	BOF	Brown Out Flag power on. Clea information.	g. Set aut red by so	omatically ftware. Re	when a b efer to the	rownout r Power Me	eset or interr onitoring Fun	upt has o ctions se	occurred. Also set at ection for additional
P	CON.4	POF	Power On Flag to the Power N							eared by software. Refer
P	CON.3	GF1	General purpo	se flag 1.	May be re	ad or writt	en by use	er software, b	ut has n	o effect on operation.
P	CON.2	GF0	General purpo	se flag 0.	May be re	ad or writt	en by use	er software, b	ut has n	o effect on operation.
P	CON.1	PD	Power Down c Power Down m				ates Pow	er Down moo	le operat	tion. Cleared when the
P	CON.0	IDL	Idle mode cont terminated (see		tting this b	it activate	s Idle mo	de operation.	Cleared	d when the Idle mode is SU01475

Figure 19. Power Control Register (PCON)

Table 8. Sources of Wakeup from Power Down Mode

Wakeup Source	Conditions
External Interrupt 0 or 1	The corresponding interrupt must be enabled.
Keyboard Interrupt	The keyboard interrupt feature must be enabled and properly set up. The corresponding interrupt must be enabled.
Comparator 1 or 2	The comparator(s) must be enabled and properly set up. The corresponding interrupt must be enabled.
Watchdog Timer Reset	The watchdog timer must be enabled via the WDTE bit in the UCFG1 EPROM configuration byte.
Watchdog Timer Interrupt	The WDTE bit in the UCFG1 EPROM configuration byte must not be set. The corresponding interrupt must be enabled.
Brownout Detect Reset	The BOD bit in AUXR1 must not be set (brownout detect not disabled). The BOI bit in AUXR1 must not be set (brownout interrupt disabled).
Brownout Detect Interrupt	The BOD bit in AUXR1 must not be set (brownout detect not disabled). The BOI bit in AUXR1 must be set (brownout interrupt enabled). The corresponding interrupt must be enabled.
Reset Input	The external reset input must be enabled.

Product data

P87LPC764

Low Voltage EPROM Operation

The EPROM array contains some analog circuits that are not required when V_{DD} is less than 4 V, but are required for a V_{DD} greater than 4 V. The LPEP bit (AUXR.4), when set by software, will power down these analog circuits resulting in a reduced supply current. LPEP is cleared only by power-on reset, so it may be set ONLY for applications that always operate with V_{DD} less than 4 V.

Reset

The P87LPC764 has an integrated power-on reset circuit which always provides a reset when power is initially applied to the device. It is recommended to use the internal reset whenever possible to save external components and to be able to use pin P1.5 as a general-purpose input pin.

The P87LPC764 can additionally be configured to use P1.5 as an external active-low reset pin $\overline{\text{RST}}$ by programming the RPD bit in the User Configuration Register UCFG1 to 0. The internal reset is still active on power-up of the device. While the signal on the $\overline{\text{RST}}$ pin is low, the P87LPC764 is held in reset until the signal goes high.

The watchdog timer on the LPC764 can act as an oscillator fail detect because it uses an independent, fully on-chip oscillator.

UCFG1 is described in the System Configuration Bytes section of this datasheet.

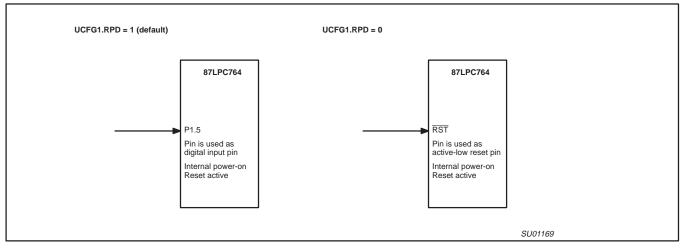


Figure 20. Using pin P1.5 as general purpose input pin or as low-active reset pin

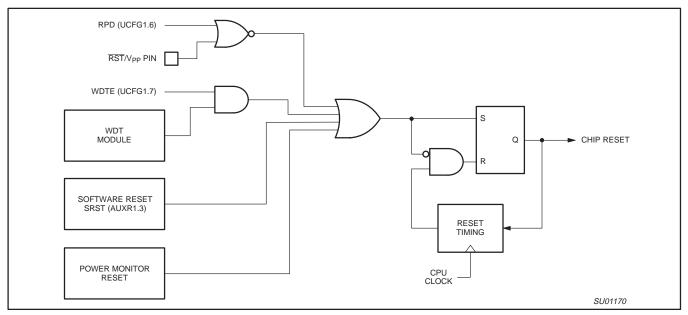


Figure 21. Block Diagram Showing Reset Sources

P87LPC764

Mode 1

Mode 1 is the same as Mode 0, except that all 16 bits of the timer register (THn and TLn) are used. See Figure 25

Mode 2

Mode 2 configures the Timer register as an 8-bit Counter (TL1) with automatic reload, as shown in Figure 26. Overflow from TLn not only sets TFn, but also reloads TLn with the contents of THn, which must be preset by software. The reload leaves THn unchanged. Mode 2 operation is the same for Timer 0 and Timer 1.

Mode 3

When Timer 1 is in Mode 3 it is stopped. The effect is the same as setting TR1 = 0.

Timer 0 in Mode 3 establishes TL0 and TH0 as two separate 8-bit counters. The logic for Mode 3 on Timer 0 is shown in Figure 27. TL0 uses the Timer 0 control bits: C/T, GATE, TR0 and pin INT0, and TF0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus, TH0 now controls the "Timer 1" interrupt.

Mode 3 is provided for applications that require an extra 8-bit timer. With Timer 0 in Mode 3, an P87LPC764 can look like it has three Timer/Counters. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it into and out of its own Mode 3. It can still be used by the serial port as a baud rate generator, or in any application not requiring an interrupt.

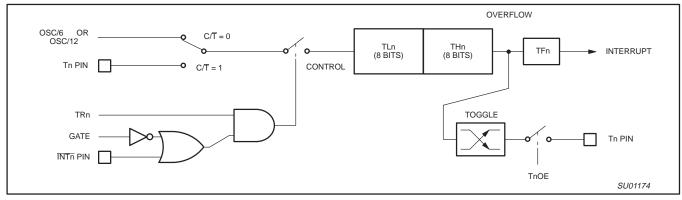


Figure 25. Timer/Counter 0 or 1 in Mode 1 (16-Bit Counter)

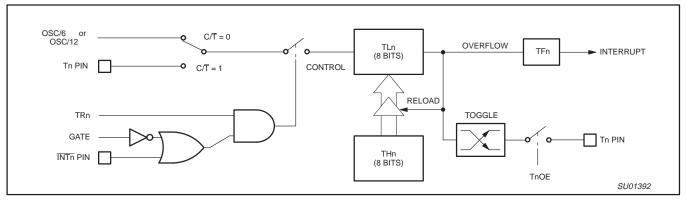


Figure 26. Timer/Counter 0 or 1 in Mode 2 (8-Bit Auto-Reload)

P87LPC764

Serial Port Control Register (SCON)

The serial port control and status register is the Special Function Register SCON, shown in Figure 28. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).

The Framing Error bit (FE) allows detection of missing stop bits in the received data stream. The FE bit shares the bit position SCON.7

with the SM0 bit. Which bit appears in SCON at any particular time is determined by the SMOD0 bit in the PCON register. If SMOD0 = 0, SCON.7 is the SM0 bit. If SMOD0 = 1, SCON.7 is the FE bit. Once set, the FE bit remains set until it is cleared by software. This allows detection of framing errors for a group of characters without the need for monitoring it for every character individually.

	ss: 98h dressable								Reset Value: 00h
	7	6	5	4	3	2	1	0	
	SM0/	FE SM1	SM2	REN	TB8	RB8	TI	RI]
BIT	SYMBOL	FUNCTION							
SCON.7	FE		ftware. The						is detected. Must be is bit to be accessible.
SCON.7	SM0	With SM1, de to be accessi				SMOD0 I	pit in the P	CON regis	ter must be 0 for this bit
SCON. 6	SM1	With SM0, de	fines the s	erial port r	node (see	table belo	ow).		
	<u>SM0, SM1</u>	UART Mode		Baud	Rate				
	0 0	0: shift registe	er	CPU	clock/6				
	0 1	1: 8-bit UART		Varia	ble (see te	ext)			
	10	2: 9-bit UART		CPU	clock/32 d	or CPU clo	ck/16		
	11	3: 9-bit UART		Varia	ble (see te	ext)			
SCON.5	SM2		vill not be a	activated if	the recei	ved 9th da	ta bit (RB8	8) is 0. In N	ode 2 or 3, if SM2 is set lode 1, if SM2=1 then RI ould be 0.
SCON.4	REN	Enables seria	I reception	. Set by so	oftware to	enable ree	ception. Cl	ear by sof	ware to disable reception
SCON.3	TB8	The 9th data	bit that will	be transm	itted in M	odes 2 an	d 3. Set or	clear by s	oftware as desired.
SCON.2	RB8	In Modes 2 a was received				s received	l. In Mode	1, it SM2=	0, RB8 is the stop bit that
SCON.1	ТІ								de 0, or at the beginning ed by software.
SCON.0	RI								de 0, or halfway through l2). Must be cleared by

Figure 28. Serial Port Control Register (SCON)

P87LPC764

Baud Rates

The baud rate in Mode 0 is fixed: Mode 0 Baud Rate = CPU clock/6. The baud rate in Mode 2 depends on the value of bit SMOD1 in Special Function Register PCON. If SMOD1 = 0 (which is the value on reset), the baud rate is 1/32 of the CPU clock frequency. If SMOD1 = 1, the baud rate is 1/16 of the CPU clock frequency.

Mode 2 Baud Rate =
$$\frac{1 + \text{SMOD1}}{32} \times \text{CPU}$$
 clock frequency

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD1. The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In the most typical applications, it is configured for "timer" operation, in the auto-reload mode (high nibble of TMOD = 0010b). In that case the baud rate is given by the formula:

Mode 1, 3 Baud Rate =
$$\frac{\frac{\text{CPU clock frequency}}{192 \text{ (or 96 if SMOD1 = 1)}}}{256 - (\text{TH1})}$$

Tables 6 and 7 list various commonly used baud rates and how they can be obtained using Timer 1 as the baud rate generator.

Table 9. Baud Rates, Timer Values, and CPU Clock Frequencies for SMOD1 = 0

Timer Count			Baud	Rate		
Timer Count	2400	4800	9600	19.2k	38.4k	57.6k
-1	0.4608	0.9216	* 1.8432	* 3.6864	* 7.3728	* 11.0592
-2	0.9216	1.8432	* 3.6864	* 7.3728	* 14.7456	
-3	1.3824	2.7648	5.5296	* 11.0592	-	-
-4	* 1.8432	* 3.6864	* 7.3728	* 14.7456	-	-
-5	2.3040	4.6080	9.2160	* 18.4320	-	-
-6	2.7648	5.5296	* 11.0592	-	-	-
-7	3.2256	6.4512	12.9024	-	-	-
-8	* 3.6864	* 7.3728	* 14.7456	-	-	-
-9	4.1472	8.2944	16.5888	-	-	-
-10	4.6080	9.2160	* 18.4320	-	-	-

P87LPC764

More About UART Modes 2 and 3

Eleven bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On transmit, the 9th data bit (TB8) can be assigned the value of 0 or 1. On receive, the 9the data bit goes into RB8 in SCON. The baud rate is programmable to either 1/16 or 1/32 of the CPU clock frequency in Mode 2. Mode 3 may have a variable baud rate generated from Timer 1.

Figures 31 and 32 show a functional diagram of the serial port in Modes 2 and 3. The receive portion is exactly the same as in Mode 1. The transmit portion differs from Mode 1 only in the 9th bit of the transmit shift register.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads TB8 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. (Thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal.)

The transmission begins with activation of SEND, which puts the start bit at TxD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TxD. The first shift pulse occurs one bit time after that. The first shift clocks a 1 (the stop bit) into the 9th bit position of the shift register. Thereafter, only zeros are clocked in. Thus, as data bits shift out to the right, zeros are clocked in from the left. When TB8 is at the output position of the shift register, then the stop bit is just to the left of TB8, and all positions to the left of that contain zeros. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 11th divide-by-16 rollover after "write to SBUF."

Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose RxD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written to the input shift register.

At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of R–D. The value accepted is the value that was seen in at least 2 of the 3 samples. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. If the start bit

proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in Modes 2 and 3 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI.

The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated. 1. RI = 0, and 2. Either SM2 = 0, or the received 9th data bit = 1.

If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set. If both conditions are met, the received 9th data bit goes into RB8, and the first 8 data bits go into SBUF. One bit time later, whether the above conditions were met or not, the unit goes back to looking for a 1-to-0 transition at the RxD input.

Multiprocessor Communications

UART modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are received or transmitted. When data is received, the 9th bit is stored in RB8. The UART can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. One way to use this feature in multiprocessor systems is as follows:

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that follow. The slaves that weren't being addressed leave their SM2 bits set and go on about their business, ignoring the subsequent data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit, although this is better done with the Framing Error flag. In a Mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

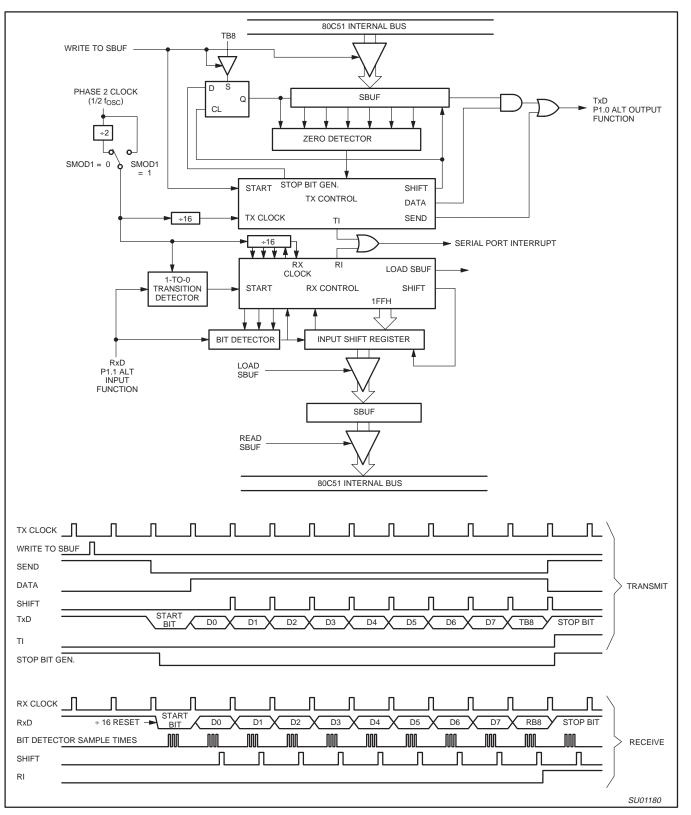


Figure 31. Serial Port Mode 2

P87LPC764

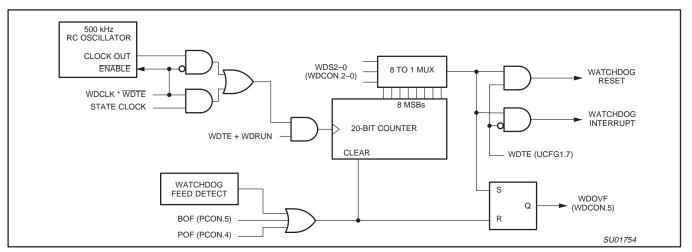


Figure 33. Block Diagram of the Watchdog Timer

NDCON Address: A7h	1	Reset Value	e: • 30h for a wa	tchdog res	ət.				
Not Bit Addre	essable		 10h for othe 	r rest sourc	es if the v	vatchdog is	enabled v	ia the WDTE confi	iguration bit.
			 00h for othe 	r reset sour	ces if the	watchdog is	s disabled	via the WDTE cor	nfiguration bit
Г	7	6	5 4	3	2	1	0		
	—	— WD	OVF WDRUN	WDCLK	WDS2	WDS1	WDS0		
		FUNCTION							
	MBOL	FUNCTION		and the set for a					
WDCON.7, 6			r future use. Sho			1 0		"	
WDCON.5 WI	DOVF	the watchdog tir		j. Set when	a watchd	og reset or	timer over	flow occurs. Clear	ed when
WDCON.4 WE	ORUN							1 and stopped when the	
WDCON.3 WI	DCLK	the watchdo		hen WDCL	K = 0. Th			when WDCLK = 1 sing the watchdog	
WDCON.2-0 WE	DS2-0	Watchdog ra	te select.						
WE	<u> 082–0</u>	Timeout Clo	ocks <u>Minimu</u>	<u>m Time</u>	N	ominal Time	2	<u>Maximum Time</u>	
0	000	8,192	10	ms		25 ms		40 ms	
0	01	16,384	20	ms		50 ms		80 ms	
0	010	32,768	41	ms		100 ms		160 ms	
0)11	65,536	82	ms		200 ms		320 ms	
1	0 0	131,072	165	ms		400 ms		640 ms	
1	0 1	262,144	330	ms		800 ms		1280 ms	
1	10	524,288	660	ms		1.60 sec		2.60 sec	
1	11	1,048,57	6 1.3	sec		3.20 sec		5.30 sec	
		. ,							SU01476

Figure 34. Watchdog Timer Control Register (WDCON)

P87LPC764

DC ELECTRICAL CHARACTERISTICS (FOR P87LPC764HDH)

 $V_{DD} = 4.5 \text{ V}$ to 5.5 V; $T_{amb} = -40^{\circ}\text{C}$ to +125°C.

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS		UNIT
STMBUL	PARAMETER	TEST CONDITIONS	MIN	TYP ¹	MAX	UNIT
I _{DD}	Power supply current, operating	5.0 V, 20 MHz ¹¹		15	25	mA
I _{ID}	Power supply current, Idle mode	5.0 V, 20 MHz ¹¹		6	10	mA
I _{PD}	Power supply current, Power Down mode	5.0 V ¹¹		1	10	μΑ
V _{RAM}	RAM keep-alive voltage		1.5			V
V _{IL}	Input low voltage (TTL input)	4.0 V < V _{DD} < 6.0 V	-0.5		0.2 V _{DD} -0.1	V
V _{IL1}	Negative going threshold (Schmitt input)		-0.5		0.3 V _{DD}	V
VIH	Input high voltage (TTL input)		0.2 V _{DD} +0.9		V _{DD} +0.5	V
V _{IH1}	Positive going threshold (Schmitt input)		0.7 V _{DD}		V _{DD} +0.5	V
HYS	Hysteresis voltage			0.2 V _{DD}		V
V _{OL}	Output low voltage all ports ^{5, 9}	I _{OL} = 3.2 mA, V _{DD} = 2.7 V			0.4	V
V _{OL1}	Output low voltage all ports ^{5, 9}	I _{OL} = 20 mA, V _{DD} = 2.7 V			1.0	V
V _{OH}	Output high voltage, all ports ³	I _{OH} = -30 μA, V _{DD} = 4.5 V	V _{DD} -0.7			V
V _{OH1}	Output high voltage, all ports ⁴	$I_{OH} = -1.0 \text{ mA}, \text{ V}_{DD} = 2.7 \text{ V}$	V _{DD} -0.7			V
CIO	Input/Output pin capacitance ¹⁰				15	pF
۱ _{IL}	Logical 0 input current, all ports ⁸	V _{IN} = 0.4 V			-50	μΑ
ILI	Input leakage current, all ports ⁷	$V_{IN} = V_{IL}$ or V_{IH}			±2	μΑ
I _{TL}	Logical 1 to 0 transition current, all ports ^{3, 6}	V_{IN} = 2.0 V at V_{DD} = 5.5 V	-150		-650	μΑ
R _{RST}	Internal reset pull-up resistor ¹⁴		40		225	kΩ
VBOLOW	Brownout trip voltage with BOV = 1^{12}		2.35		2.69	V
V _{BOHI}	Brownout trip voltage with BOV = 0		3.45		3.99	V
V _{REF}	Reference voltage		1.11	1.26	1.41	V
t _C (V _{REF})	Temperature coefficient			tbd		ppm/°C
SS	Supply sensitivity			tbd		%/V

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.

2. See other Figures for details.

Active mode: $I_{CC(MAX)} = tbd$

Idle mode: $I_{CC(MAX)} = tbd$

3. Ports in quasi-bidirectional mode with weak pull-up (applies to all port pins with pull-ups). Does not apply to open drain pins.

4. Ports in PUSH-PULL mode. Does not apply to open drain pins.

5. In all output modes except high impedance mode.

Port pins source a transition current when used in quasi-bidirectional mode and externally driven from 1 to 0. This current is highest when 6. V_{IN} is approximately 2 V.

7. Measured with port in high impedance mode. Parameter is guaranteed but not tested at cold temperature.

8. Measured with port in guasi-bidirectional mode.

9. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

- Maximum IOL per port pin: 20 mA
- Maximum total IOL for all outputs: 80 mA
- Maximum total IOH for all outputs: 5 mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 10. Pin capacitance is characterized but not tested.
- 11. The IDD, IDD, and IPD specifications are measured using an external clock with the following functions disabled: comparators, brownout detect, and watchdog timer. For V_{DD} = 3 V, LPEP = 1. Refer to the appropriate figures on the following pages for additional current drawn by each of these functions and detailed graphs for other frequency and voltage combinations.
- 12. Devices initially operating at $V_{DD} = 2.7V$ or above and at $f_{OSC} = 10$ MHz or less are guaranteed to continue to execute instructions correctly at the brownout trip point. Initial power-on operation below $V_{DD} = 2.7$ V is not guaranteed. 13. Devices initially operating at $V_{DD} = 4.0$ V or above and at $f_{OSC} = 20$ MHz or less are guaranteed to continue to execute instructions correctly at the brownout trip point. Initial power-on operation below $V_{DD} = 2.0$ MHz or less are guaranteed to continue to execute instructions correctly at the brownout trip point. Initial power-on operation below $V_{DD} = 4.0$ V and $F_{OSC} > 10$ MHz is not guaranteed.
- 14. This internal resistor is disconnected if P1.5 is used as a general purpose input pin instead of the reset pin.

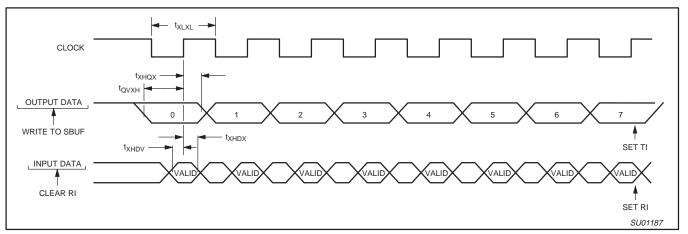


Figure 38. Shift Register Mode Timing

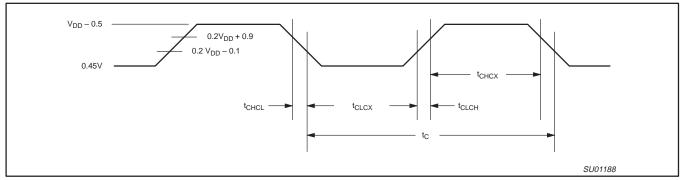


Figure 39. External Clock Timing

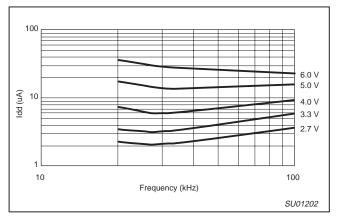


Figure 40. Typical Idd versus frequency (low frequency oscillator, 25°C)

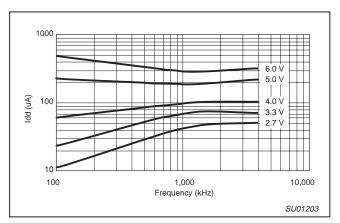
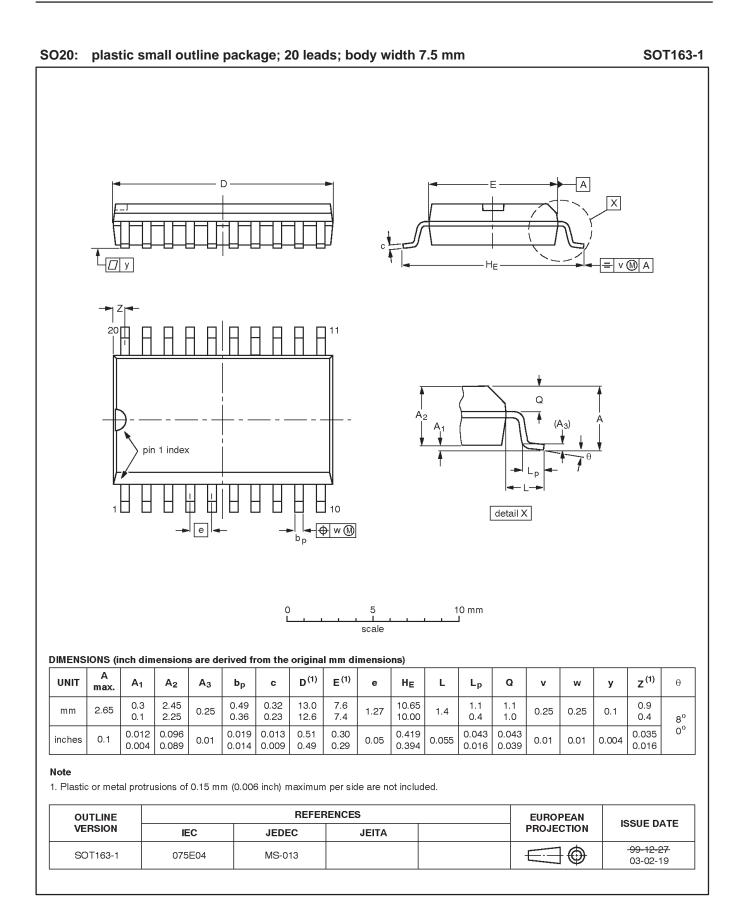
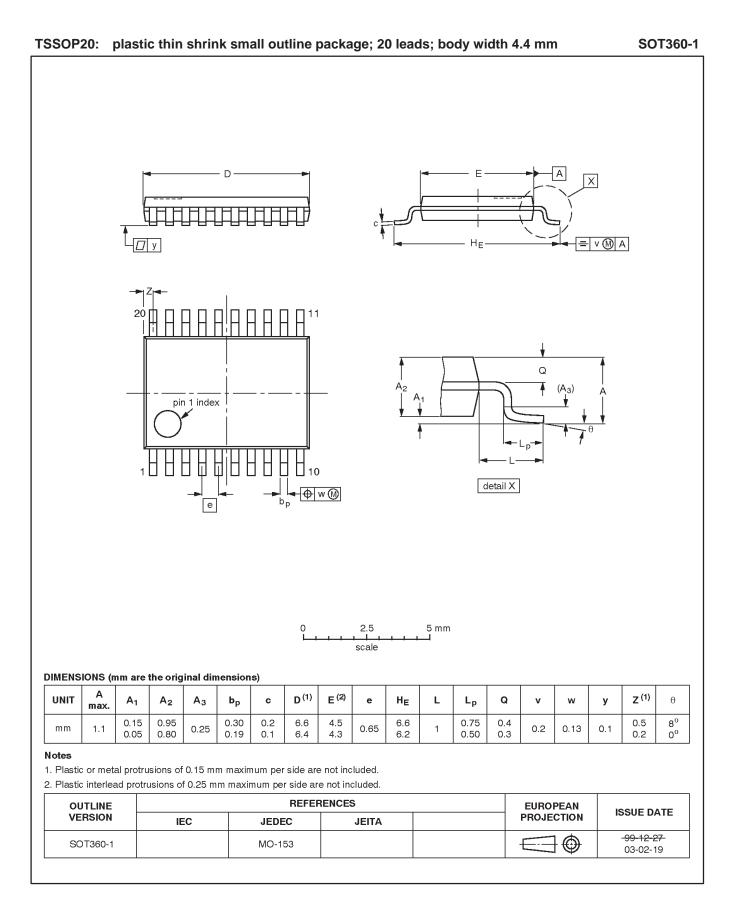




Figure 41. Typical Idd versus frequency (medium frequency oscillator, 25°C)

P87LPC764

Product data

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specifications defined by Philips. This specification can be ordered using the code 9398 393 40011.

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax:

sales.addresses@www.semiconductors.philips.com

For sales offices addresses send e-mail to:

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2003 All rights reserved. Printed in U.S.A.

Date of release: 09-03

9397 750 11121

Let's make things better.

Document order number:

