

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                    |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | Н8/300Н                                                                     |
| Core Size                  | 16-Bit                                                                      |
| Speed                      | 20MHz                                                                       |
| Connectivity               | SCI                                                                         |
| Peripherals                | PWM, WDT                                                                    |
| Number of I/O              | 30                                                                          |
| Program Memory Size        | 16KB (16K x 8)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 2K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                   |
| Data Converters            | A/D 4x10b                                                                   |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -20°C ~ 75°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 64-LQFP                                                                     |
| Supplier Device Package    | 64-LFQFP (10x10)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/df36012fpv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|       | 11.3.6  | Timer I/O Control Register 1 (TIOR1)                 | 145 |
|-------|---------|------------------------------------------------------|-----|
|       | 11.3.7  | Timer Counter (TCNT)                                 | 147 |
|       | 11.3.8  | General Registers A to D (GRA to GRD)                | 147 |
| 11.4  | Operati | ion                                                  | 148 |
|       | 11.4.1  | Normal Operation                                     | 148 |
|       | 11.4.2  | PWM Operation                                        | 153 |
| 11.5  | Operati | ion Timing                                           | 158 |
|       | 11.5.1  | TCNT Count Timing                                    | 158 |
|       | 11.5.2  | Output Compare Output Timing                         | 159 |
|       | 11.5.3  | Input Capture Timing                                 | 160 |
|       | 11.5.4  | Timing of Counter Clearing by Compare Match          | 160 |
|       | 11.5.5  | Buffer Operation Timing                              | 161 |
|       | 11.5.6  | Timing of IMFA to IMFD Flag Setting at Compare Match | 161 |
|       | 11.5.7  | Timing of IMFA to IMFD Setting at Input Capture      | 162 |
|       | 11.5.8  | Timing of Status Flag Clearing                       | 163 |
| 11.6  | Usage I | Notes                                                | 163 |
|       |         |                                                      |     |
| Secti | on 12   | Watchdog Timer                                       | 167 |
| 12.1  | Feature | es                                                   | 167 |
| 12.2  | Registe | er Descriptions                                      | 168 |
|       | 12.2.1  | Timer Control/Status Register WD (TCSRWD)            | 168 |
|       | 12.2.2  | Timer Counter WD (TCWD)                              | 169 |
|       | 12.2.3  | Timer Mode Register WD (TMWD)                        | 170 |
| 12.3  | Operati | ion                                                  | 171 |
|       |         |                                                      |     |
| Secti | on 13   | Serial Communication Interface 3 (SCI3)              | 173 |
| 13.1  | Feature | es                                                   | 173 |
| 13.2  | Input/C | Dutput Pins                                          | 177 |
| 13.3  | Registe | er Descriptions                                      | 177 |
|       | 13.3.1  | Receive Shift Register (RSR)                         | 178 |
|       | 13.3.2  | Receive Data Register (RDR)                          | 178 |
|       | 13.3.3  | Transmit Shift Register (TSR)                        | 178 |
|       | 13.3.4  | Transmit Data Register (TDR)                         | 178 |
|       | 13.3.5  | Serial Mode Register (SMR)                           | 179 |
|       | 13.3.6  | Serial Control Register 3 (SCR3)                     | 180 |
|       | 13.3.7  | Serial Status Register (SSR)                         | 182 |
|       | 13.3.8  | Bit Rate Register (BRR)                              | 184 |
|       | 13.3.9  | SCI3_3 Module Control Register (SMCR)                | 191 |
| 13.4  | Operati | ion in Asynchronous Mode                             | 192 |
|       | 13.4.1  | Clock                                                | 192 |

# RENESAS

| Instruction | Size | Function                                                                                                                                                  |
|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEPMOV.B    | _    | if R4L $\neq$ 0 then<br>Repeat @ER5+ $\rightarrow$ @ER6+,<br>R4L-1 $\rightarrow$ R4L<br>Until R4L = 0<br>else next;                                       |
| EEPMOV.W    | _    | if R4 $\neq$ 0 then<br>Repeat @ER5+ $\rightarrow$ @ER6+,<br>R4-1 $\rightarrow$ R4<br>Until R4 = 0<br>else next;                                           |
|             |      | Transfers a data block. Starting from the address set in ER5, transfers data for the number of bytes set in R4L or R4 to the address location set in ER6. |
|             |      | Execution of the next instruction begins as soon as the transfer is completed.                                                                            |

#### Table 2.9 Block Data Transfer Instructions

#### 2.4.2 Basic Instruction Formats

H8/300H CPU instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (op field), a register field (r field), an effective address extension (EA field), and a condition field (cc).

Figure 2.7 shows examples of instruction formats.

• Operation Field

Indicates the function of the instruction, the addressing mode, and the operation to be carried out on the operand. The operation field always includes the first four bits of the instruction. Some instructions have two operation fields.

• Register Field

Specifies a general register. Address registers are specified by 3 bits, and data registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field.

Effective Address Extension

8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement. A24-bit address or displacement is treated as a 32-bit data in which the first 8 bits are 0 (H'00).

• Condition Field

Specifies the branching condition of Bcc instructions.



Figure 2.12 State Transitions

## 2.8 Usage Notes

#### 2.8.1 Notes on Data Access to Empty Areas

The address space of this LSI includes empty areas in addition to the ROM, RAM, and on-chip I/O registers areas available to the user. When data is transferred from CPU to empty areas, the transferred data will be lost. This action may also cause the CPU to malfunction. When data is transferred from an empty area to CPU, the contents of the data cannot be guaranteed.

#### 2.8.2 EEPMOV Instruction

EEPMOV is a block-transfer instruction and transfers the byte size of data indicated by R4L, which starts from the address indicated by R5, to the address indicated by R6. Set R4L and R6 so that the end address of the destination address (value of R6 + R4L) does not exceed H'FFFF (the value of R6 must not change from H'FFFF to H'0000 during execution).

#### 2.8.3 Bit Manipulation Instruction

The BSET, BCLR, BNOT, BST, and BIST instructions read data from the specified address in byte units, manipulate the data of the target bit, and write data to the same address again in byte units. Special care is required when using these instructions in cases where two registers are assigned to the same address or when a bit is directly manipulated for a port, because this may rewrite data of a bit other than the bit to be manipulated.



#### 3.2.3 Interrupt Enable Register 1 (IENR1)

| D:4  | Dit Nome | Initial | D // A/ | Description                                                                                                                                               |
|------|----------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIt  | Bit Name | value   | R/W     | Description                                                                                                                                               |
| 7    | IENDT    | 0       | R/W     | Direct Transfer Interrupt Enable                                                                                                                          |
|      |          |         |         | When this bit is set to 1, direct transition interrupt requests are enabled.                                                                              |
| 6    | _        | 0       | _       | Reserved                                                                                                                                                  |
|      |          |         |         | This bit is always read as 0.                                                                                                                             |
| 5    | IENWP    | 0       | R/W     | Wakeup Interrupt Enable                                                                                                                                   |
|      |          |         |         | This bit is an enable bit, which is common to the pins $\overline{WKP5}$ to $\overline{WKP0}$ . When the bit is set to 1, interrupt requests are enabled. |
| 4    | —        | 1       | _       | Reserved                                                                                                                                                  |
|      |          |         |         | This bit is always read as 1.                                                                                                                             |
| 3    | IEN3     | 0       | R/W     | IRQ3 Interrupt Enable                                                                                                                                     |
|      |          |         |         | When this bit is set to 1, interrupt requests of the $\overline{\text{IRQ3}}$ pin are enabled.                                                            |
| 2, 1 | _        | All 0   | _       | Reserved                                                                                                                                                  |
|      |          |         |         | These bits are always read as 0.                                                                                                                          |
| 0    | IEN0     | 0       | R/W     | IRQ0 Interrupt Enable                                                                                                                                     |
|      |          |         |         | When this bit is set to 1, interrupt requests of the $\overline{\text{IRQ0}}$ pin are enabled.                                                            |

IENR1 enables direct transition interrupts, and external pin interrupts.

When disabling interrupts by clearing bits in an interrupt enable register, or when clearing bits in an interrupt flag register, always do so while interrupts are masked (I = 1). If the above clear operations are performed while I = 0, and as a result a conflict arises between the clear instruction and an interrupt request, exception handling for the interrupt will be executed after the clear instruction has been executed.



# 6.3 Operating Frequency in Active Mode

Operation in active mode is clocked at the frequency designated by the MA2 to MA0 bits in SYSCR2. The operating frequency changes to the set frequency after SLEEP instruction execution.

# 6.4 Direct Transition

The CPU can execute programs in active mode. The operating frequency can be changed by making a transition directly from active mode to active mode. A direct transition can be made by executing a SLEEP instruction while the DTON bit in SYSCR2 is set to 1. The direct transition also enables operating frequency modification in active mode. After the mode transition, direct transition interrupt exception handling starts.

If the direct transition interrupt is disabled in interrupt enable register 1, a transition is made instead to sleep mode. Note that if a direct transition is attempted while the I bit in CCR is set to 1, sleep mode will be entered, and the resulting mode cannot be cleared by means of an interrupt.

# 6.5 Module Standby Function

The module-standby function can be set to any peripheral module. In module standby mode, the clock supply to modules stops to enter the power-down mode. Module standby mode enables each on-chip peripheral module to enter the standby state by setting a bit that corresponds to each module in MSTCR1 and MSTCR2 to 1 and cancels the mode by clearing the bit to 0.



# 7.2 **Register Descriptions**

The flash memory has the following registers.

- Flash memory control register 1 (FLMCR1)
- Flash memory control register 2 (FLMCR2)
- Erase block register 1 (EBR1)
- Flash memory enable register (FENR)

## 7.2.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is a register that makes the flash memory change to program mode, program-verify mode, erase mode, or erase-verify mode. For details on register setting, refer to section 7.4, Flash Memory Programming/Erasing.

|          | Initial                  |                                                   |                                                                                                                                                                                                       |
|----------|--------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit Name | Value                    | R/W                                               | Description                                                                                                                                                                                           |
| _        | 0                        | _                                                 | Reserved                                                                                                                                                                                              |
|          |                          |                                                   | This bit is always read as 0.                                                                                                                                                                         |
| SWE      | 0                        | R/W                                               | Software Write Enable                                                                                                                                                                                 |
|          |                          |                                                   | When this bit is set to 1, flash memory programming/erasing is enabled. When this bit is cleared to 0, other FLMCR1 register bits and all EBR1 bits cannot be set.                                    |
| ESU      | 0                        | R/W                                               | Erase Setup                                                                                                                                                                                           |
|          |                          |                                                   | When this bit is set to 1, the flash memory changes to the erase setup state. When it is cleared to 0, the erase setup state is cancelled. Set this bit to 1 before setting the E bit to 1 in FLMCR1. |
| PSU      | 0                        | R/W                                               | Program Setup                                                                                                                                                                                         |
|          |                          |                                                   | When this bit is set to 1, the flash memory changes to the program setup state. When it is cleared to 0, the program setup state is cancelled. Set this bit to 1 before setting the P bit in FLMCR1.  |
| EV       | 0                        | R/W                                               | Erase-Verify                                                                                                                                                                                          |
|          |                          |                                                   | When this bit is set to 1, the flash memory changes to erase-verify mode. When it is cleared to 0, erase-verify mode is cancelled.                                                                    |
|          | Bit Name  SWE ESU PSU EV | Initial<br>ValueBit NameValue0SWE0SWE0ESU0PSU0EV0 | Initial<br>ValueR/W—0—SWE0R/WESU0R/WPSU0R/WEV0R/W                                                                                                                                                     |



#### Table 7.2 Boot Mode Operation





## 9.6.1 Port Data Register B (PDRB)

PDRB is a general input-only port data register of port B.

| Bit    | Bit Name | Initial<br>Value | R/W | Description                                               |
|--------|----------|------------------|-----|-----------------------------------------------------------|
| 7 to 4 | _        | _                | _   | Reserved                                                  |
| 3      | PB3      | _                | R   | The input value of each pin is read by reading this       |
| 2      | PB2      |                  | R   | register.                                                 |
| 1      | PB1      | _                | R   | However, if a port B pin is designated as an analog input |
| 0      | PB0      |                  | R   | channel by ADCON III A/D convenier, 0 is read.            |

| Bit 2         Bit           CKS2         CK           0         0           1 |       |       | TCRV1 |                                                     |
|-------------------------------------------------------------------------------|-------|-------|-------|-----------------------------------------------------|
| Bit 2                                                                         | Bit 1 | Bit 0 | Bit 0 |                                                     |
| CKS2                                                                          | CKS1  | CKS0  | ICKS0 | Description                                         |
| 0                                                                             | 0     | 0     | _     | Clock input prohibited                              |
|                                                                               |       | 1     | 0     | Internal clock: counts on $\phi/4$ , falling edge   |
|                                                                               |       |       | 1     | Internal clock: counts on $\phi/8$ , falling edge   |
|                                                                               | 1     | 0     | 0     | Internal clock: counts on $\phi/16$ , falling edge  |
|                                                                               |       |       | 1     | Internal clock: counts on $\phi/32$ , falling edge  |
|                                                                               |       | 1     | 0     | Internal clock: counts on $\phi/64$ , falling edge  |
|                                                                               |       |       | 1     | Internal clock: counts on $\phi$ /128, falling edge |
| 1                                                                             | 0     | 0     | _     | Clock input prohibited                              |
|                                                                               |       | 1     | _     | External clock: counts on rising edge               |
|                                                                               | 1     | 0     | _     | External clock: counts on falling edge              |
|                                                                               |       | 1     |       | External clock: counts on rising and falling edge   |

# Table 10.2 Clock Signals to Input to TCNTV and Counting Conditions

## 10.3.4 Timer Control/Status Register V (TCSRV)

TCSRV indicates the status flag and controls outputs by using a compare match.

| Bit | Bit Name | Initial<br>Value | R/W | Description                                                                                  |
|-----|----------|------------------|-----|----------------------------------------------------------------------------------------------|
| 7   | CMFB     | 0                | R/W | Compare Match Flag B                                                                         |
|     |          |                  |     | Setting condition:                                                                           |
|     |          |                  |     | When the TCNTV value matches the TCORB value                                                 |
|     |          |                  |     | Clearing condition:                                                                          |
|     |          |                  |     | After reading $CMFB = 1$ , cleared by writing 0 to $CMFB$                                    |
| 6   | CMFA     | 0                | R/W | Compare Match Flag A                                                                         |
|     |          |                  |     | Setting condition:                                                                           |
|     |          |                  |     | When the TCNTV value matches the TCORA value                                                 |
|     |          |                  |     | Clearing condition:                                                                          |
|     |          |                  |     | After reading CMFA = 1, cleared by writing 0 to CMFA                                         |
| 5   | OVF      | 0                | R/W | Timer Overflow Flag                                                                          |
|     |          |                  |     | Setting condition:                                                                           |
|     |          |                  |     | When TCNTV overflows from H'FF to H'00                                                       |
|     |          |                  |     | Clearing condition:                                                                          |
|     |          |                  |     | After reading OVF = 1, cleared by writing 0 to OVF                                           |
| 4   | _        | 1                | _   | Reserved                                                                                     |
|     |          |                  |     | This bit is always read as 1.                                                                |
| 3   | OS3      | 0                | R/W | Output Select 3 and 2                                                                        |
| 2   | OS2      | 0                | R/W | These bits select an output method for the TMOV pin by the compare match of TCORB and TCNTV. |
|     |          |                  |     | 00: No change                                                                                |
|     |          |                  |     | 01: 0 output                                                                                 |
|     |          |                  |     | 10: 1 output                                                                                 |
|     |          |                  |     | 11: Output toggles                                                                           |



Figure 11.8 shows an example of buffer operation when the GRA is set as an input-capture register and GRC is set as the buffer register for GRA. TCNT operates as a free-running counter, and FTIOA captures both rising and falling edge of the input signal. Due to the buffer operation, the GRA value is transferred to GRC by input-capture A and the TCNT value is stored in GRA.



Figure 11.8 Buffer Operation Example (Input Capture)



# Section 13 Serial Communication Interface 3 (SCI3)

This LSI includes a serial communication interface 3 (SCI3). The SCI3 can handle both asynchronous and clocked synchronous serial communication. In asynchronous mode, serial data communication can be carried out using standard asynchronous communication chips such as a Universal Asynchronous Receiver/Transmitter (UART) or an Asynchronous Communication Interface Adapter (ACIA). A function is also provided for serial communication between processors (multiprocessor communication function).

Table 13.1 shows the SCI3 channel configuration and figure 13.1 shows a block diagram of the SCI3. Since pin functions are identical for each of the two channels (SCI3 and SCI3\_2), separate explanations are not given in this section.

# 13.1 Features

- Choice of asynchronous or clocked synchronous serial communication mode
- Full-duplex communication capability

The transmitter and receiver are mutually independent, enabling transmission and reception to be executed simultaneously.

Double-buffering is used in both the transmitter and the receiver, enabling continuous transmission and continuous reception of serial data.

- On-chip baud rate generator allows any bit rate to be selected
- External clock or on-chip baud rate generator can be selected as a transfer clock source.
- Six interrupt sources

Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, and parity error.

## Asynchronous mode

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RXD pin level directly in the case of a framing error







Figure 14.1 Block Diagram of A/D Converter



| Register<br>Name | Reset       | Active | Sleep | Subsleep    | Standby     | Module        |
|------------------|-------------|--------|-------|-------------|-------------|---------------|
| TCRV0            | Initialized |        |       | Initialized | Initialized |               |
| TCSBV            | Initialized | _      | _     | Initialized | Initialized |               |
| TCOBA            | Initialized |        |       | Initialized | Initialized | _             |
| TCORR            | Initialized |        |       | Initialized | Initialized | -             |
|                  | Initialized |        |       | Initialized | Initialized | -             |
|                  | Initialized |        | _     | Initialized | Initialized | -             |
|                  | Initialized |        | _     | Initialized | Initialized | SO13          |
|                  | Initialized |        | _     | Initialized | Initialized |               |
|                  |             |        | _     | Initialized |             | -             |
|                  | Initialized | _      | _     | Initialized | Initialized | _             |
|                  | Initialized |        | _     | Initialized |             | _             |
| SSR              | Initialized |        | _     | Initialized | Initialized | _             |
| RDR              | Initialized |        |       | Initialized | Initialized |               |
| ADDRA            | Initialized |        |       | Initialized | Initialized | A/D converter |
| ADDRB            | Initialized |        | —     | Initialized | Initialized | _             |
| ADDRC            | Initialized | _      | _     | Initialized | Initialized | _             |
| ADDRD            | Initialized |        | _     | Initialized | Initialized | _             |
| ADCSR            | Initialized |        |       | Initialized | Initialized | _             |
| ADCR             | Initialized | —      | —     | Initialized | Initialized |               |
| TCSRWD           | Initialized |        | _     | _           |             | WDT*          |
| TCWD             | Initialized |        | _     | _           | —           | _             |
| TMWD             | Initialized |        | _     | —           | —           |               |
| ABRKCR           | Initialized |        | —     | —           | —           | Address Break |
| ABRKSR           | Initialized |        | —     | —           | —           | _             |
| BARH             | Initialized | _      | _     | _           | _           |               |
| BARL             | Initialized | _      | _     | _           | _           | _             |
| BDRH             | Initialized | _      | _     | _           | _           | _             |
| BDRL             | Initialized | _      | —     | _           | —           | _             |
| PUCR1            | Initialized |        | _     | _           | _           | I/O port      |
| PUCR5            | Initialized |        | _     | _           | _           | _             |
| PDR1             | Initialized | _      | _     | _           | _           | -             |
| PDR2             | Initialized | _      | _     | _           | _           | _             |
| PDR5             | Initialized | _      | _     | _           | _           | _             |
| PDR7             | Initialized |        |       | _           | _           | _             |

|       |                                                                                             |        | Test      |     | Values |     |       |  |
|-------|---------------------------------------------------------------------------------------------|--------|-----------|-----|--------|-----|-------|--|
| ltem  |                                                                                             | Symbol | Condition | Min | Тур    | Max | Unit  |  |
| Erase | Wait time after SWE bit setting*1                                                           | x      |           | 1   | _      | _   | μs    |  |
|       | Wait time after ESU bit setting*1                                                           | У      |           | 100 | —      | _   | μs    |  |
|       | Wait time after E bit setting* <sup>1</sup> * <sup>6</sup>                                  | Z      |           | 10  | —      | 100 | ms    |  |
|       | Wait time after E bit clear* <sup>1</sup><br>Wait time after ESU<br>bit clear* <sup>1</sup> |        |           | 10  | _      | _   | μs    |  |
|       |                                                                                             |        |           | 10  | _      | _   | μs    |  |
|       | Wait time after EV bit setting*1                                                            | γ      |           | 20  | _      | _   | μs    |  |
|       | Wait time after<br>dummy write*1                                                            | ε      |           | 2   | _      | _   | μs    |  |
|       | Wait time after EV bit clear*1                                                              | η      |           | 4   | _      | _   | μs    |  |
|       | Wait time after SWE bit clear* <sup>1</sup>                                                 | θ      |           | 100 | _      | _   | μs    |  |
|       | Maximum erase count*1*6*7                                                                   | Ν      |           | _   | _      | 120 | Times |  |

Notes: 1. Make the time settings in accordance with the program/erase algorithms.

- 2. The programming time for 128 bytes. (Indicates the total time for which the P bit in flash memory control register 1 (FLMCR1) is set. The program-verify time is not included.)
- 3. The time required to erase one block. (Indicates the time for which the E bit in flash memory control register 1 (FLMCR1) is set. The erase-verify time is not included.)
- 4. Programming time maximum value (t\_{\_P} (max.)) = wait time after P bit setting (z)  $\times$  maximum programming count (N)
- 5. Set the maximum programming count (N) according to the actual set values of z1, z2, and z3, so that it does not exceed the programming time maximum value ( $t_p$  (max.)). The wait time after P bit setting (z1, z2) should be changed as follows according to the value of the programming count (n).

Programming count (n)

 $1 \leq n \leq 6 \qquad \qquad z1 = 30 \ \mu s$ 

$$7 \le n \le 1000$$
  $z2 = 200 \ \mu s$ 

- 6. Erase time maximum value (t<sub>e</sub> (max.)) = wait time after E bit setting (z)  $\times$  maximum erase count (N)
- 7. Set the maximum erase count (N) according to the actual set value of (z), so that it does not exceed the erase time maximum value ( $t_{e}$  (max.)).



## 18.2.7 Power-Supply-Voltage Detection Circuit Characteristics (Optional)

## Table 18.8 Power-Supply-Voltage Detection Circuit Characteristics

 $V_{ss} = 0.0 \text{ V}, T_a = -20 \text{ to } +75^{\circ}\text{C}$ , unless otherwise indicated.

|                                                     |                                  | Test                                                                               |     | _   |     |      |
|-----------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|-----|-----|-----|------|
| Item                                                | Symbol                           | Condition                                                                          | Min | Тур | Max | Unit |
| Power-supply falling detection voltage              | Vint (D)                         | LVDSEL = 0                                                                         | 3.3 | 3.7 | _   | V    |
| Power-supply rising detection voltage               | Vint (U)                         | LVDSEL = 0                                                                         | -   | 4.0 | 4.5 | V    |
| Reset detection voltage 1*1                         | Vreset1                          | LVDSEL = 0                                                                         | —   | 2.3 | 2.7 | V    |
| Reset detection voltage 2*2                         | Vreset2                          | LVDSEL = 1                                                                         | 3.0 | 3.6 | 4.2 | V    |
| Lower-limit voltage of LVDR operation* <sup>3</sup> | $V_{\scriptscriptstyle LVDRmin}$ |                                                                                    | 1.0 | _   |     | V    |
| LVD stabilization time                              | t <sub>lvdon</sub>               |                                                                                    | 50  | _   | _   | μs   |
| Current consumption in standby mode                 | I <sub>stby</sub>                | LVDE = 1,<br>Vcc = 5.0 V,<br>When a 32-<br>kHz crystal<br>resonator is<br>not used | _   | _   | 350 | μA   |

Notes: 1. This voltage should be used when the falling and rising voltage detection function is used.

2. Select the low-voltage reset 2 when only the low-voltage detection reset is used.

3. When the power-supply voltage (Vcc) falls below V<sub>LVDRmin</sub> = 1.0 V and then rises, a reset may not occur. Therefore sufficient evaluation is required.

# Table A.1 Instruction Set

## 1. Data transfer instructions

|     |                        |                     | Addressing Mode and<br>Instruction Length (bytes) |    |      |           |             |     |          | nd<br>/tes | ) |                                                                                   |                |                                                                                                                    |            |            |   |   | No.<br>Stat | of<br>es <sup>*1</sup> |
|-----|------------------------|---------------------|---------------------------------------------------|----|------|-----------|-------------|-----|----------|------------|---|-----------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------|------------|------------|---|---|-------------|------------------------|
|     | Mnemonic               | <b>Operand Size</b> | #xx                                               | Rn | @ERn | @(d, ERn) | @-ERn/@ERn+ | @aa | @(d, PC) | @ @ aa     | 1 | Operation                                                                         | Condition Code |                                                                                                                    | Normal     | Advanced   |   |   |             |                        |
| MOV | MOV.B #xx:8, Rd        | В                   | 2                                                 |    |      |           |             |     |          |            |   | #xx:8 → Rd8                                                                       | —              | -                                                                                                                  | \$         | \$         | 0 | — | 2           | 2                      |
|     | MOV.B Rs, Rd           | В                   |                                                   | 2  |      |           |             |     |          |            |   | $Rs8 \rightarrow Rd8$                                                             | —              | _                                                                                                                  | \$         | \$         | 0 | — | 2           | 2                      |
|     | MOV.B @ERs, Rd         | В                   |                                                   |    | 2    |           |             |     |          |            |   | @ERs $\rightarrow$ Rd8                                                            | —              | —                                                                                                                  | \$         | \$         | 0 | — | 4           | ŀ                      |
|     | MOV.B @(d:16, ERs), Rd | В                   |                                                   |    |      | 4         |             |     |          |            |   | @(d:16, ERs) → Rd8                                                                | —              | -                                                                                                                  | \$         | \$         | 0 | — | 6           | 6                      |
|     | MOV.B @(d:24, ERs), Rd | В                   |                                                   |    |      | 8         |             |     |          |            |   | @(d:24, ERs) → Rd8                                                                | —              | -                                                                                                                  | \$         | \$         | 0 | — | 1           | 0                      |
|     | MOV.B @ERs+, Rd        | В                   |                                                   |    |      |           | 2           |     |          |            |   | @ERs → Rd8<br>ERs32+1 → ERs32                                                     | —              | —                                                                                                                  | \$         | \$         | 0 | — | 6           | 6                      |
|     | MOV.B @aa:8, Rd        | В                   |                                                   |    |      |           |             | 2   |          |            |   | @aa:8 $\rightarrow$ Rd8                                                           | —              | -                                                                                                                  | \$         | \$         | 0 | — | 4           | ł                      |
|     | MOV.B @aa:16, Rd       | В                   |                                                   |    |      |           |             | 4   |          |            |   | @aa:16 $\rightarrow$ Rd8                                                          | —              | -                                                                                                                  | \$         | \$         | 0 | — | 6           | 6                      |
|     | MOV.B @aa:24, Rd       | В                   |                                                   |    |      |           |             | 6   |          |            |   | @aa:24 $\rightarrow$ Rd8                                                          | —              | $\begin{array}{c c} - & - & \uparrow & \uparrow & 0 & - \\ \hline - & - & \uparrow & \uparrow & 0 & - \end{array}$ |            | 8          | 3 |   |             |                        |
|     | MOV.B Rs, @ERd         | В                   |                                                   |    | 2    |           |             |     |          |            |   | $Rs8 \rightarrow @ERd$                                                            | —              |                                                                                                                    |            | 2          | Ļ |   |             |                        |
|     | MOV.B Rs, @(d:16, ERd) | В                   |                                                   |    |      | 4         |             |     |          |            |   | $Rs8 \rightarrow @(d:16, ERd)$                                                    | —              | -                                                                                                                  | \$         | \$         | 0 | — | 6           | 6                      |
|     | MOV.B Rs, @(d:24, ERd) | В                   |                                                   |    |      | 8         |             |     |          |            |   | $Rs8 \rightarrow @(d:24, ERd)$                                                    | —              | —                                                                                                                  | \$         | \$         | 0 | — | 1           | 0                      |
|     | MOV.B Rs, @-ERd        | В                   |                                                   |    |      |           | 2           |     |          |            |   | $\begin{array}{l} ERd32-1 \rightarrow ERd32 \\ Rs8 \rightarrow @ ERd \end{array}$ | —              | _                                                                                                                  | \$         | \$         | 0 | _ | 6           | 3                      |
|     | MOV.B Rs, @aa:8        | В                   |                                                   |    |      |           |             | 2   |          |            |   | $Rs8 \rightarrow @aa:8$                                                           | —              | -                                                                                                                  | \$         | \$         | 0 | — | 2           | Ļ                      |
|     | MOV.B Rs, @aa:16       | В                   |                                                   |    |      |           |             | 4   |          |            |   | $Rs8 \rightarrow @aa:16$                                                          | —              | —                                                                                                                  | \$         | \$         | 0 | — | 6           | 6                      |
|     | MOV.B Rs, @aa:24       | В                   |                                                   |    |      |           |             | 6   |          |            |   | $Rs8 \rightarrow @aa:24$                                                          | —              | -                                                                                                                  | \$         | \$         | 0 | - | 8           | 3                      |
|     | MOV.W #xx:16, Rd       | W                   | 4                                                 |    |      |           |             |     |          |            |   | #xx:16 → Rd16                                                                     | —              | —                                                                                                                  | \$         | \$         | 0 | — | 4           | Ļ                      |
|     | MOV.W Rs, Rd           | W                   |                                                   | 2  |      |           |             |     |          |            |   | $Rs16 \rightarrow Rd16$                                                           | —              | —                                                                                                                  | \$         | €          | 0 | — | 2           | 2                      |
|     | MOV.W @ERs, Rd         | W                   |                                                   |    | 2    |           |             |     |          |            |   | $@ERs \to Rd16$                                                                   | —              | -                                                                                                                  | \$         | €          | 0 | — | 4           | ł                      |
|     | MOV.W @(d:16, ERs), Rd | W                   |                                                   |    |      | 4         |             |     |          |            |   | @(d:16, ERs) → Rd16                                                               | —              | —                                                                                                                  | $\uparrow$ | $\uparrow$ | 0 | _ | 6           | 6                      |
|     | MOV.W @(d:24, ERs), Rd | W                   |                                                   |    |      | 8         |             |     |          |            |   | $@(d:24, ERs) \rightarrow Rd16$                                                   | —              | —                                                                                                                  | \$         | \$         | 0 | — | 1           | 0                      |
|     | MOV.W @ERs+, Rd        | w                   |                                                   |    |      |           | 2           |     |          |            |   | @ERs → Rd16<br>ERs32+2 → @ERd32                                                   | -              | -                                                                                                                  | \$         | \$         | 0 | _ | 6           | 5                      |
|     | MOV.W @aa:16, Rd       | W                   |                                                   |    |      |           |             | 4   |          |            |   | @aa:16 $\rightarrow$ Rd16                                                         | —              | —                                                                                                                  | \$         | \$         | 0 | — | 6           | 6                      |
|     | MOV.W @aa:24, Rd       | W                   |                                                   |    |      |           |             | 6   |          |            |   | @aa:24 $\rightarrow$ Rd16                                                         | —              | —                                                                                                                  | \$         | \$         | 0 | — | 8           | 3                      |
|     | MOV.W Rs, @ERd         | W                   |                                                   |    | 2    |           |             |     |          |            |   | $Rs16 \rightarrow @ERd$                                                           | —              | -                                                                                                                  | \$         | \$         | 0 | — | 4           | Ļ                      |
|     | MOV.W Rs, @(d:16, ERd) | W                   |                                                   |    |      | 4         |             |     |          |            |   | Rs16 $\rightarrow$ @(d:16, ERd)                                                   | —              | -                                                                                                                  | \$         | \$         | 0 | — | 6           | 6                      |
|     | MOV.W Rs, @(d:24, ERd) | W                   |                                                   |    |      | 8         |             |     |          |            |   | Rs16 $\rightarrow$ @(d:24, ERd)                                                   | _              | _                                                                                                                  | 1          | Ĵ          | 0 | _ | 1           | 0                      |



# A.3 Number of Execution States

The status of execution for each instruction of the H8/300H CPU and the method of calculating the number of states required for instruction execution are shown below. Table A.4 shows the number of cycles of each type occurring in each instruction, such as instruction fetch and data read/write. Table A.3 shows the number of states required for each cycle. The total number of states required for execution of an instruction can be calculated by the following expression:

Execution states =  $I \times S_1 + J \times S_2 + K \times S_K + L \times S_L + M \times S_M + N \times S_N$ 

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.

BSET #0, @FF00

From table A.4:  $I=L=2, \quad J=K=M=N{=}0$ 

From table A.3:  $S_1 = 2$ ,  $S_1 = 2$ 

Number of states required for execution  $= 2 \times 2 + 2 \times 2 = 8$ 

When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and on-chip RAM is used for stack area.

JSR @@ 30

From table A.4:  $I=2, \quad J=K=1, \quad L=M=N=0$ 

From table A.3:

$$\mathbf{S}_{\mathrm{I}} = \mathbf{S}_{\mathrm{J}} = \mathbf{S}_{\mathrm{K}} = 2$$

Number of states required for execution =  $2 \times 2 + 1 \times 2 + 1 \times 2 = 8$ 



# A.4 Combinations of Instructions and Addressing Modes

## Table A.5 Combinations of Instructions and Addressing Modes

| Functions                         | Instructions | Addressing Mode |          |           |             |             |            |       |          |          |           |            |          |          |
|-----------------------------------|--------------|-----------------|----------|-----------|-------------|-------------|------------|-------|----------|----------|-----------|------------|----------|----------|
|                                   |              | XX#             | Rn       | @ERn      | @(d:16.ERn) | @(d:24.ERn) | @ERn+/@ERn | @aa:8 | @aa:16   | @aa:24   | @(d:8.PC) | @(d:16.PC) | @ @ aa:8 |          |
| Data<br>transfer<br>instructions  | MOV          | BWL             | BWL      | BWL       | BWL         | BWL         | BWL        | В     | BWL      | BWL      | _         | —          | —        | —        |
|                                   | POP, PUSH    | —               | _        | —         | —           | —           | —          | _     | _        | —        | _         | _          | _        | WL       |
|                                   | MOVFPE,      | _               | _        | —         | —           | —           | —          | _     | _        | —        | _         | _          | —        | —        |
|                                   | MOVTPE       |                 |          |           |             |             |            |       |          |          |           |            |          |          |
| Arithmetic<br>operations          | ADD, CMP     | BWL             | BWL      | —         | —           | —           | —          | —     | —        | —        | —         | —          | —        | —        |
|                                   | SUB          | WL              | BWL      | —         | -           | —           | —          | —     |          | -        | —         | —          | —        | —        |
|                                   | ADDX, SUBX   | В               | В        | —         | -           | —           | —          | —     |          | -        | —         | —          | —        | —        |
|                                   | ADDS, SUBS   | -               | L        | —         | -           | —           | —          | —     |          | -        | —         | —          | —        | —        |
|                                   | INC, DEC     | —               | BWL      | —         | —           | —           | —          | —     | —        | —        | —         | —          | —        | —        |
|                                   | DAA, DAS     | -               | В        | —         | -           | —           | —          | —     |          | -        | —         | —          | —        | —        |
|                                   | MULXU,       | -               | BW       | —         | -           | —           | —          | —     |          | -        | —         | —          | —        | —        |
|                                   | MULXS,       |                 |          |           |             |             |            |       |          |          |           |            |          |          |
|                                   |              |                 |          |           |             |             |            |       |          |          |           |            |          |          |
|                                   | DIVXS        |                 |          |           |             |             |            |       |          |          |           |            |          |          |
|                                   | EVTILEVTS    | -               |          | <u> </u>  | -           | -           | <u> </u>   |       | -        | -        |           | -          | <u> </u> | <u> </u> |
|                                   | AND OR YOR   |                 |          | <u> </u>  | <u> </u>    |             |            |       | <u> </u> |          |           | <u> </u>   | <u> </u> | <u> </u> |
| operations                        | NOT          |                 | BWL      | <u> </u>  | <u> </u>    |             |            |       |          |          |           | <u> </u>   | <u> </u> | <u> </u> |
| Shift oporatio                    |              | -               | DVVL     |           | <u> </u>    |             |            |       |          |          |           |            | <u> </u> |          |
| Bit manipulations                 |              | -               | BVVL     |           | -           | -           | <u> </u>   |       | -        | -        |           | -          | <u> </u> | <u> </u> |
| Branching                         |              | -               | D        | D         | <u> </u>    |             |            | Б     |          |          |           |            | <u> </u> |          |
|                                   | IMD ISD      |                 | <u> </u> |           | <u> </u>    |             |            |       | <u> </u> |          |           |            | <u> </u> | <u> </u> |
|                                   |              | -               | <u> </u> | $\square$ | <u> </u>    |             |            |       |          |          |           | $\square$  |          |          |
| System<br>control<br>instructions | трара        |                 | <u> </u> | <u> </u>  | <u> </u>    |             |            |       | <u> </u> | $\vdash$ |           | <u> </u>   | $\vdash$ |          |
|                                   | DTE          |                 | <u> </u> | <u> </u>  | <u> </u>    |             |            |       | <u> </u> |          |           | <u> </u>   | <u> </u> |          |
|                                   |              |                 | <u> </u> | <u> </u>  | <u> </u>    |             |            |       | <u> </u> |          |           | <u> </u>   | <u> </u> |          |
|                                   |              |                 |          |           |             |             |            |       | <u> </u> | <u> </u> |           | <u> </u>   | <u> </u> |          |
|                                   | STC          |                 | B        | W/        | VV<br>\\/   | VV<br>\\/   | W/         |       |          | W        |           |            |          |          |
|                                   | ANDC OBC     | B               |          | ~~        | ~~          | ~~          | ~~         |       | ~~       | ~~       |           |            |          |          |
|                                   | XORC         |                 |          |           |             |             |            |       |          |          |           |            |          |          |
|                                   | NOP          | _               | _        | _         | _           | _           | _          |       | _        | _        | _         | _          | _        | 0        |
| Block data transfer instructions  |              |                 | _        | —         | _           | _           | _          | _     |          | _        | _         | _          | _        | BW       |







