

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	PWM, WDT
Number of I/O	30
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36012fyv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	13.4.2	SCI3 Initialization	193
	13.4.3	Data Transmission	194
	13.4.4	Serial Data Reception	196
13.5	Operat	ion in Clocked Synchronous Mode	200
	13.5.1	Clock	200
	13.5.2	SCI3 Initialization	201
	13.5.3	Serial Data Transmission	201
	13.5.4	Serial Data Reception (Clocked Synchronous Mode)	203
	13.5.5	Simultaneous Serial Data Transmission and Reception	205
13.6	Multip	rocessor Communication Function	207
	13.6.1	Multiprocessor Serial Data Transmission	208
	13.6.2	Multiprocessor Serial Data Reception	210
13.7	Interru	pts	214
13.8	Usage	Notes	215
	13.8.1	Break Detection and Processing	215
	13.8.2	Mark State and Break Sending	215
	13.8.3	Receive Error Flags and Transmit Operations	
		(Clocked Synchronous Mode Only)	215
	13.8.4	Receive Data Sampling Timing and Reception Margin in Asynchronous	
	13.8.4	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode	216
	13.8.4	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode	216
Secti	13.8.4 ion 14	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter	216 217
Secti 14.1	13.8.4 ion 14 Feature	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Ss	216 217 217
Secti 14.1 14.2	13.8.4 ion 14 Feature Input/C	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter es Dutput Pins	216 217 217 219
Secti 14.1 14.2 14.3	13.8.4 ion 14 Feature Input/C Registe	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter es Dutput Pins er Description	216 217 217 219 220
Secti 14.1 14.2 14.3	13.8.4 ion 14 Feature Input/C Registe 14.3.1	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter es Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD)	216 217 217 219 220 220
Secti 14.1 14.2 14.3	13.8.4 ion 14 Feature Input/C Registe 14.3.1 14.3.2	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter es Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR)	216 217 217 219 220 220 221
Secti 14.1 14.2 14.3	13.8.4 ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Ss Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR) A/D Control Register (ADCR)	216 217 217 219 220 220 221 222
Secti 14.1 14.2 14.3	13.8.4 ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat:	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR) A/D Control Register (ADCR)	216 217 217 219 220 220 221 222 223
Secti 14.1 14.2 14.3	13.8.4 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat 14.4.1	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Dutput Pins Dutput Pins Part Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR) A/D Control Register (ADCR) Single Mode	216 217 217 219 220 220 221 222 223 223
Secti 14.1 14.2 14.3	13.8.4 ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat: 14.4.1 14.4.2	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Ss Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR) A/D Control Register (ADCR) Single Mode Scan Mode	216 217 217 219 220 221 222 223 223 223
Secti 14.1 14.2 14.3	13.8.4 ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat: 14.4.1 14.4.2 14.4.3	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Sc Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR) A/D Control Register (ADCR) Single Mode Scan Mode Input Sampling and A/D Conversion Time	216 217 217 219 220 220 221 222 223 223 223 223 224
Secti 14.1 14.2 14.3	13.8.4 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat: 14.4.1 14.4.2 14.4.3 14.4.4	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Dutput Pins Dutput Pins A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR) A/D Control Register (ADCR) Single Mode Scan Mode Input Sampling and A/D Conversion Time External Trigger Input Timing	216 217 217 219 220 220 221 222 223 223 223 224 225
Secti 14.1 14.2 14.3 14.4	13.8.4 ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat 14.4.1 14.4.2 14.4.3 14.4.4 A/D Co	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Dutput Pins Dutput Pins Part Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR) A/D Control Register (ADCR) Single Mode Scan Mode Input Sampling and A/D Conversion Time External Trigger Input Timing ponversion Accuracy Definitions	216 217 217 219 220 220 221 222 223 223 223 224 225 226
Secti 14.1 14.2 14.3 14.4 14.4	13.8.4 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat: 14.4.1 14.4.2 14.4.3 14.4.4 A/D Co Usage	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR) A/D Control Register (ADCR) Single Mode Scan Mode Input Sampling and A/D Conversion Time External Trigger Input Timing Sonversion Accuracy Definitions	216 217 217 219 220 220 221 223 223 223 223 225 226 226 228
Secti 14.1 14.2 14.3 14.4 14.4	13.8.4 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat: 14.4.1 14.4.2 14.4.3 14.4.4 A/D Ce Usage 14.6.1	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode A/D Converter Ss Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR) A/D Control Register (ADCR) Single Mode Scan Mode Input Sampling and A/D Conversion Time External Trigger Input Timing ponversion Accuracy Definitions Notes Permissible Signal Source Impedance	216 217 217 219 220 220 220 221 222 223 223 223 223 224 225 226 228 228

Section 1 Overview

1.1 Features

- High-speed H8/300H central processing unit with an internal 16-bit architecture
 - Upward-compatible with H8/300 CPU on an object level
 - Sixteen 16-bit general registers
 - 62 basic instructions
- Various peripheral functions
 - Timer V (8-bit timer)
 - Timer W (16-bit timer)
 - Watchdog timer
 - SCI3 (Asynchronous or clocked synchronous serial communication interface)
 - 10-bit A/D converter
- On-chip memory

		Мо	odel			
Product Classification		On-Chip Power- On Reset and Low-Voltage Standard Detecting Version Circuit Version		ROM	RAM	
Flash memory	H8/36024F	HD64F36024	HD64F36024G	32 kbytes	2,048 bytes	
	H8/36022F	HD64F36022	HD64F36022G	16 kbytes	2,048 bytes	
(F-ZIAI wersion)	H8/36014F	HD64F36014	HD64F36014G	32 kbytes	2,048 bytes	
,	H8/36012F	HD64F36012	HD64F36012G	16 kbytes	2,048 bytes	
Masked ROM	H8/36024	HD64336024	HD64336024G	32 kbytes	1,024 bytes	
version	H8/36023	HD64336023	HD64336023G	24 kbytes	1,024 bytes	
	H8/36022	HD64336022	HD64336022G	16 kbytes	512 bytes	
	H8/36014	HD64336014	HD64336014G	32 kbytes	1,024 bytes	
	H8/36013	HD64336013	HD64336013G	24 kbytes	1,024 bytes	
	H8/36012	HD64336012	HD64336012G	16 kbytes	512 bytes	
	H8/36011	HD64336011	HD64336011G	12 kbytes	512 bytes	
	H8/36010	HD64336010	HD64336010G	8 kbytes	512 bytes	

RENESAS

Figure 2.1 Memory Map (2)

3.2.4 Interrupt Flag Register 1 (IRR1)

IRR1 is a status flag register for direct transition interrupts, and $\overline{IRQ3}$ and $\overline{IRQ0}$ interrupt requests.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	IRRDT	0	R/W	Direct Transfer Interrupt Request Flag
				[Setting condition]
				When a direct transfer is made by executing a SLEEP instruction while DTON in SYSCR2 is set to 1.
				[Clearing condition]
				When IRRDT is cleared by writing 0
6	_	0	_	Reserved
				This bit is always read as 0.
5, 4	_	All 1		Reserved
				These bits are always read as 1.
3	IRRI3	0	R/W	IRQ3 Interrupt Request Flag
				[Setting condition]
				When IRQ3 pin is designated for interrupt input and the designated signal edge is detected.
				[Clearing condition]
				When IRRI3 is cleared by writing 0
2, 1	_	All 0		Reserved
				These bits are always read as 0.
0	IRRI0	0	R/W	IRQ0 Interrupt Request Flag
				[Setting condition]
				When IRQ0 pin is designated for interrupt input and the designated signal edge is detected.
				[Clearing condition]
				When IRRI0 is cleared by writing 0

4.1.3 Break Address Registers (BARH, BARL)

BARH and BARL are 16-bit read/write registers that set the address for generating an address break interrupt. When setting the address break condition to the instruction execution cycle, set the first byte address of the instruction. The initial value of this register is H'FFFF.

4.1.4 Break Data Registers (BDRH, BDRL)

BDRH and BDRL are 16-bit read/write registers that set the data for generating an address break interrupt. BDRH is compared with the upper 8-bit data bus. BDRL is compared with the lower 8-bit data bus. When memory or registers are accessed by byte, the upper 8-bit data bus is used for even and odd addresses in the data transmission. Therefore, comparison data must be set in BDRH for byte access. For word access, the data bus used depends on the address. See section 4.1.1, Address Break Control Register (ABRKCR), for details. The initial value of this register is undefined.

4.2 Operation

When the ABIF and ABIE bits in ABRKSR are set to 1, the address break function generates an interrupt request to the CPU. The ABIF bit in ABRKSR is set to 1 by the combination of the address set in BAR, the data set in BDR, and the conditions set in ABRKCR. When the interrupt request is accepted, interrupt exception handling starts after the instruction being executed ends. The address break interrupt is not masked because of the I bit in CCR of the CPU.

When the address break is sp	pecified in the data read cycle
Register setting • ABRKCR = H'A0 • BAR = H'025A	Program 0258 NOP 025A NOP * 025C MOV.W @H'025A,R0 0260 NOP Underline indicates the address 0262 NOP to be stacked. : :
MOV instruc- in tion 1 prefetch p	MOV NOP MOV NOP Next instruc- instruc- instruc- tion 2 tion tion tion ction Internal Stack prefetch prefetch execution prefetch processing save
	Interrupt acceptance

Figure 4.2 Address Break Interrupt Operation Example (2)

RENESAS

7.2 **Register Descriptions**

The flash memory has the following registers.

- Flash memory control register 1 (FLMCR1)
- Flash memory control register 2 (FLMCR2)
- Erase block register 1 (EBR1)
- Flash memory enable register (FENR)

7.2.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is a register that makes the flash memory change to program mode, program-verify mode, erase mode, or erase-verify mode. For details on register setting, refer to section 7.4, Flash Memory Programming/Erasing.

	Initial		
Bit Name	Value	R/W	Description
_	0	_	Reserved
			This bit is always read as 0.
SWE	0	R/W	Software Write Enable
			When this bit is set to 1, flash memory programming/erasing is enabled. When this bit is cleared to 0, other FLMCR1 register bits and all EBR1 bits cannot be set.
ESU	0	R/W	Erase Setup
			When this bit is set to 1, the flash memory changes to the erase setup state. When it is cleared to 0, the erase setup state is cancelled. Set this bit to 1 before setting the E bit to 1 in FLMCR1.
PSU	0	R/W	Program Setup
			When this bit is set to 1, the flash memory changes to the program setup state. When it is cleared to 0, the program setup state is cancelled. Set this bit to 1 before setting the P bit in FLMCR1.
EV	0	R/W	Erase-Verify
			When this bit is set to 1, the flash memory changes to erase-verify mode. When it is cleared to 0, erase-verify mode is cancelled.
	Bit Name SWE ESU PSU EV	Initial ValueBit NameValue0SWE0SWE0ESU0PSU0EV0	Initial ValueR/W—0—SWE0R/WESU0R/WPSU0R/WEV0R/W

9.4.1 Port Control Register 7 (PCR7)

Bit	Bit Name	Initial Value	R/W	Description
7	_		—	Reserved
6	PCR76	0	W	Setting a PCR7 bit to 1 makes the corresponding pin an
5	PCR75	0	W	output port, while clearing the bit to 0 makes the pin an
4	PCR74	0	W	priority for deciding input/output direction of the
3	PCR73	0	W	P76/TMOV pin.
2	PCR72	0	W	
1	PCR71	0	W	
0	PCR70	0	W	

PCR7 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 7.

Port Data Register 7 (PDR7) 9.4.2

PDR7 is a general I/O port data register of port 7.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	—	1	_	Reserved
				This bit is always read as 1.
6	P76	0	R/W	PDR7 stores output data for port 7 pins.
5	P75	0	R/W	If PDR7 is read while PCR7 bits are set to 1, the value
4	P74	0	R/W	stored in PDR7 is read. If PDR7 is read while PCR7 bits
3	P73	0	R/W	value stored in PDR7.
2	P72	0	R/W	
1	P71	0	R/W	
0	P70	0	R/W	

10.4 Operation

10.4.1 Timer V Operation

- According to table 10.2, six internal/external clock signals output by prescaler S can be selected as the timer V operating clock signals. When the operating clock signal is selected, TCNTV starts counting-up. Figure 10.2 shows the count timing with an internal clock signal selected, and figure 10.3 shows the count timing with both edges of an external clock signal selected.
- 2. When TCNTV overflows (changes from H'FF to H'00), the overflow flag (OVF) in TCRV0 will be set. The timing at this time is shown in figure 10.4. An interrupt request is sent to the CPU when OVIE in TCRV0 is 1.
- 3. TCNTV is constantly compared with TCORA and TCORB. Compare match flag A or B (CMFA or CMFB) is set to 1 when TCNTV matches TCORA or TCORB, respectively. The compare-match signal is generated in the last state in which the values match. Figure 10.5 shows the timing. An interrupt request is generated for the CPU when CMIEA or CMIEB in TCRV0 is 1.
- 4. When a compare match A or B is generated, the TMOV responds with the output value selected by bits OS3 to OS0 in TCSRV. Figure 10.6 shows the timing when the output is toggled by compare match A.
- 5. When CCLR1 or CCLR0 in TCRV0 is 01 or 10, TCNTV can be cleared by the corresponding compare match. Figure 10.7 shows the timing.
- 6. When CCLR1 or CCLR0 in TCRV0 is 11, TCNTV can be cleared by the rising edge of the input of TMRIV pin. A TMRIV input pulse-width of at least 1.5 system clocks is necessary. Figure 10.8 shows the timing.
- 7. When a counter-clearing source is generated with TRGE in TCRV1 set to 1, the counting-up is halted as soon as TCNTV is cleared. TCNTV resumes counting-up when the edge selected by TVEG1 or TVEG0 in TCRV1 is input from the TGRV pin.

Figure 10.8 Clear Timing by TMRIV Input

11.3.7 Timer Counter (TCNT)

TCNT is a 16-bit readable/writable up-counter. The clock source is selected by bits CKS2 to CKS0 in TCRW. TCNT can be cleared to H'0000 through a compare match with GRA by setting the CCLR in TCRW to 1. When TCNT overflows (changes from H'FFFF to H'0000), the OVF flag in TSRW is set to 1. If OVIE in TIERW is set to 1 at this time, an interrupt request is generated. TCNT must always be read or written in 16-bit units; 8-bit access is not allowed. TCNT is initialized to H'0000 by a reset.

11.3.8 General Registers A to D (GRA to GRD)

Each general register is a 16-bit readable/writable register that can function as either an outputcompare register or an input-capture register. The function is selected by settings in TIOR0 and TIOR1.

When a general register is used as an input-compare register, its value is constantly compared with the TCNT value. When the two values match (a compare match), the corresponding flag (IMFA, IMFB, IMFC, or IMFD) in TSRW is set to 1. An interrupt request is generated at this time, when IMIEA, IMIEB, IMIEC, or IMIED is set to 1. Compare match output can be selected in TIOR.

When a general register is used as an input-capture register, an external input-capture signal is detected and the current TCNT value is stored in the general register. The corresponding flag (IMFA, IMFB, IMFC, or IMFD) in TSRW is set to 1. If the corresponding interrupt-enable bit (IMIEA, IMIEB, IMIEC, or IMIED) in TSRW is set to 1 at this time, an interrupt request is generated. The edge of the input-capture signal is selected in TIOR.

GRC and GRD can be used as buffer registers of GRA and GRB, respectively, by setting BUFEA and BUFEB in TMRW.

For example, when GRA is set as an output-compare register and GRC is set as the buffer register for GRA, the value in the buffer register GRC is sent to GRA whenever compare match A is generated.

When GRA is set as an input-capture register and GRC is set as the buffer register for GRA, the value in TCNT is transferred to GRA and the value in the buffer register GRC is transferred to GRA whenever an input capture is generated.

GRA to GRD must be written or read in 16-bit units; 8-bit access is not allowed. GRA to GRD are initialized to H'FFFF by a reset.

14.3.2 A/D Control/Status Register (ADCSR)

ADCSR consists of the control bits and conversion end status bits of the A/D converter.

Bit	Bit Name	Initial Value	R/W	Description
7	ADF	0	R/W	A/D End Flag
				[Setting conditions]
				When A/D conversion ends in single mode
				 When A/D conversion ends on all the channels selected in scan mode
				[Clearing conditions]
				• When 0 is written after reading ADF = 1
6	ADIE	0	R/W	A/D Interrupt Enable
				A/D conversion end interrupt (ADI) request enabled by ADF when 1 is set
5	ADST	0	R/W	A/D Start
				Setting this bit to 1 starts A/D conversion. In single mode, this bit is cleared to 0 automatically when conversion on the specified channel is complete. In scan mode, conversion continues sequentially on the specified channels until this bit is cleared to 0 by software, a reset, or a transition to standby mode.
4	SCAN	0	R/W	Scan Mode
				Selects single mode or scan mode as the A/D conversion operating mode.
				0: Single mode
				1: Scan mode
3	CKS	0	R/W	Clock Select
				Selects the A/D conversions time
				0: Conversion time = 134 states (max.)
				1: Conversion time = 70 states (max.)
				Clear the ADST bit to 0 before switching the conversion time.

14.5 A/D Conversion Accuracy Definitions

This LSI's A/D conversion accuracy definitions are given below.

Resolution

The number of A/D converter digital output codes

• Quantization error

The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 14.4).

Offset error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from the minimum voltage value 00000000000 to 0000000001 (see figure 14.5).

• Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from 1111111110 to 111111111 (see figure 14.5).

• Nonlinearity error

The error with respect to the ideal A/D conversion characteristics between zero voltage and full-scale voltage. Does not include offset error, full-scale error, or quantization error.

• Absolute accuracy

The deviation between the digital value and the analog input value. Includes offset error, full-scale error, quantization error, and nonlinearity error.

ш	Table A-2 (3)		INC						EXTS		DEC		BLE		
ш													BGT		
D	Table A-2 (3)		INC						EXTS		DEC		ВLТ		
U	Table A-2 (3)	Q		2						B		ЧЬ	BGE		
В		AL		W	SHAL	SHAR	ROTL	ROTR	NEG	ิเร		C	BMI		
A													BPL		
6			DS		AL	AR	тL	TR	ß		B		BVS		
ω	SLEEP		ADI		HS	SH	RO	RO	NE		SL		BVC		
7			INC						EXTU		DEC		BEQ		
9													BNE	AND	AND
5			INC						EXTU		DEC		BCS	XOR	XOR
4	LDC/STC												BCC	OR	OR
e					SHLL	SHLR	ROTXL	ROTXR	NOT				BLS	SUB	SUB
N													BHI	CMP	CMP
-					, LL	LR	TXL	TXR	ЭТ				BRN	ADD	ADD
0	MOV	INC	ADDS	DAA	SH	R	RO ⁻	ROT	N	DEC	SUBS	DAS	BRA	MOV	MOV
AH AL	01	οA	OB	OF	10	11	12	13	17	1A	18	Ħ	58	79	AA

Table A.2 Operation Code Map (2)

Rev. 4.00 Sep. 23, 2005 Page 301 of 354 REJ09B0025-0400

RENESAS

Table A.3	Number o	of Cycles in	Each	Instruction
-----------	----------	--------------	------	-------------

Execution Status		Access Location				
(Instruction Cycle)		On-Chip Memory	On-Chip Peripheral Module			
Instruction fetch	S	2	_			
Branch address read	SJ	-				
Stack operation	S _K	-				
Byte data access	S	-	2 or 3*			
Word data access	S_{M}	-	2 or 3*			
Internal operation	S _N		1			
	1 * 1					

Note: * Depends on which on-chip peripheral module is accessed. See section 17.1, Register Addresses (Address Order).

Figure B.10 Port 5 Block Diagram (P57) (H8/36024)

Figure B.12 Port 5 Block Diagram (P55)

H8/36013 Masked ROM version Standard product HD64336013FP HD64336013(***)FP LQFP-64 (FP-4) HD64336013FX HD64336013FX HD64336013(***)FX LQFP-48 (FP-4)	64E) 48F)
version product HD64336013FX HD64336013(***)FX LQFP-48 (FP	48F)
HD64336013FY HD64336013(***)FY LQFP-48 (FP-	48B)
HD64336013FT HD64336013(***)FT QFN-48(TNP-4	48)
Product HD64336013GFP HD64336013G(***)FP LQFP-64 (FP-	64E)
with POR HD64336013GFX HD64336013G(***)FX LQFP-48 (FP	48F)
HD64336013GFY HD64336013G(***)FY LQFP-48 (FP-	48B)
HD64336013GFT HD64336013G(***)FT QFN-48(TNP-4	48)
H8/36012 Flash memory Standard HD64F36012FP HD64F36012FP LQFP-64 (FP-	64E)
version product HD64F36012FX HD64F36012FX LQFP-48 (FP-	48F)
HD64F36012FY HD64F36012FY LQFP-48 (FP-	48B)
HD64F36012FT HD64F36012FT QFN-48(TNP-4	48)
Product HD64F36012GFP HD64F36012GFP LQFP-64 (FP-	64E)
with POR HD64F36012GFX HD64F36012GFX LQFP-48 (FP-	48F)
HD64F36012GFY HD64F36012GFY LQFP-48 (FP-	48B)
HD64F36012GFT HD64F36012GFT QFN-48(TNP-4	48)
Masked ROM Standard HD64336012FP HD64336012(***)FP LQFP-64 (FP-	64E)
version product HD64336012FX HD64336012(***)FX LQFP-48 (FP	48F)
HD64336012FY HD64336012(***)FY LQFP-48 (FP-	48B)
HD64336012FT HD64336012(***)FT QFN-48(TNP-4	48)
Product HD64336012GFP HD64336012G(***)FP LQFP-64 (FP-	64E)
with POR HD64336012GFX HD64336012G(***)FX LQFP-48 (FP	48F)
HD64336012GFY HD64336012G(***)FY LQFP-48 (FP-	48B)
HD64336012GFT HD64336012G(***)FT QFN-48(TNP-4	48)
H8/36011 Masked ROM Standard HD64336011FP HD64336011(***)FP LQFP-64 (FP-	64E)
version product HD64336011FX HD64336011(***)FX LQFP-48 (FP	48F)
HD64336011FY HD64336011(***)FY LQFP-48 (FP-	48B)
HD64336011FT HD64336011(***)FT QFN-48(TNP-4	48)
Product HD64336011GFP HD64336011G(***)FP LQFP-64 (FP-	64E)
with POR HD64336011GFX HD64336011G(***)FX LQFP-48 (FP	48F)
HD64336011GFY HD64336011G(***)FY LQFP-48 (FP-	48B)
HD64336011GFT HD64336011G(***)FT QFN-48(TNP-	48)