

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36014fpwv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

16

H8/36024Group, H8/36014Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series

H8/36024F H8/36022F H8/36014F H8/36012F H8/36024 H8/36023 H8/36022 H8/36014 H8/36013 H8/36012 H8/36011

H8/36010 Renesas Electronics

www.renesas.com

Rev.4.00 2005.09

HD64F36024, HD64F36024G,

HD64F36022, HD64F36022G,

HD64F36014, HD64F36014G, HD64F36012G,

HD64336024, HD64336024G,

HD64336023, HD64336023G,

HD64336022, HD64336022G,

HD64336014, HD64336014G, HD64336013G,

HD64336012, HD64336012G,

HD64336011, HD64336011G,

HD64336010, HD64336010G

Figure 5.5 Typical Connection to Ceramic Resonator	
Figure 5.6 Example of External Clock Input	67
Figure 5.7 Example of Incorrect Board Design	
Section 6 Power-Down Modes	
Figure 6.1 Mode Transition Diagram	73
Section 7 ROM	-
Figure 7.1 Flash Memory Block Configuration.	
Figure 7.2 Programming/Erasing Flowchart Example in User Program Mode	
Figure 7.3 Program/Program-Verify Flowchart	
Figure 7.4 Erase/Erase-Verify Flowchart	90
Section 9 I/O Ports	
Figure 9.1 Port 1 Pin Configuration.	
Figure 9.2 Port 2 Pin Configuration.	
Figure 9.3 Port 5 Pin Configuration.	
Figure 9.4 Port 7 Pin Configuration.	
Figure 9.5 Port 8 Pin Configuration.	
Figure 9.6 Port B Pin Configuration	
Section 10 Timer V	
Figure 10.1 Block Diagram of Timer V	118
Figure 10.2 Increment Timing with Internal Clock	
Figure 10.3 Increment Timing with External Clock	
Figure 10.4 OVF Set Timing	
Figure 10.5 CMFA and CMFB Set Timing	
Figure 10.6 TMOV Output Timing	
Figure 10.7 Clear Timing by Compare Match	
Figure 10.8 Clear Timing by TMRIV Input	
Figure 10.9 Pulse Output Example	
Figure 10.10 Example of Pulse Output Synchronized to TRGV Input	
Figure 10.11 Contention between TCNTV Write and Clear	
Figure 10.12 Contention between TCORA Write and Compare Match	
Figure 10.13 Internal Clock Switching and TCNTV Operation	
Section 11 Timer W	127
Figure 11.1 Timer W Block Diagram	
Figure 11.2 Free-Running Counter Operation	
Figure 11.3 Periodic Counter Operation	
Figure 11.4 0 and 1 Output Example ($TOA = 0$, $TOB = 1$)	
Figure 11.5 Toggle Output Example (TOA = 0, TOB = 1)	
Figure 11.6 Toggle Output Example (TOA = 0, TOB = 1)	150

Rev. 4.00 Sep. 23, 2005 Page xviii of xxvi

	Input Capture Operating Example	151
Figure 11.8	Buffer Operation Example (Input Capture)	152
Figure 11.9	PWM Mode Example (1)	153
Figure 11.10	PWM Mode Example (2)	
Figure 11.11	Buffer Operation Example (Output Compare)	155
Figure 11.12	PWM Mode Example	
	(TOB, TOC, and TOD = 0: initial output values are set to 0)	156
Figure 11.13	PWM Mode Example	
	(TOB, TOC, and TOD = 1: initial output values are set to 1)	157
Figure 11.14	Count Timing for Internal Clock Source	158
Figure 11.15	Count Timing for External Clock Source	158
Figure 11.16	Output Compare Output Timing	159
Figure 11.17	Input Capture Input Signal Timing	
Figure 11.18	Timing of Counter Clearing by Compare Match	
Figure 11.19	Buffer Operation Timing (Compare Match)	161
Figure 11.20	Buffer Operation Timing (Input Capture)	161
Figure 11.21	Timing of IMFA to IMFD Flag Setting at Compare Match	162
Figure 11.22	Timing of IMFA to IMFD Flag Setting at Input Capture	
Figure 11.23	Timing of Status Flag Clearing by CPU	163
Figure 11.24	Contention between TCNT Write and Clear	164
Figure 11.25	Internal Clock Switching and TCNT Operation	
Figure 11.26	When Compare Match and Bit Manipulation Instruction to TCRW Occur a	t the
		t the
	Same Timing	
Section 12	Same Timing	
	Same Timing	165
Figure 12.1	Same Timing Watchdog Timer Block Diagram of Watchdog Timer	165
Figure 12.1 Figure 12.2	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example	165
Figure 12.1 Figure 12.2 Section 13	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3)	165 167 171
Figure 12.1 Figure 12.2 Section 13 Figure 13.1	Same Timing	165 167 171 176
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2	Same Timing	165 167 171 176
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2	Same Timing	165 167 171 176 192
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3	Same Timing	165 167 171 176 192 192
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart	165 167 171 176 192 192
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart Example of SCI3 Transmission in Asynchronous Mode	165 167 171 176 192 192 193
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing	165 167 171 176 192 192 193 194
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing	165 167 171 176 192 192 193 194
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing	165 167 171 176 192 192 193 194 195
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6 Figure 13.7	Same Timing	165 167 171 176 192 192 193 194 195 196
Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing	165 167 171 176 192 192 193 194 195 196 198

RENESAS

Figure 13.9	Data Format in Clocked Synchronous Communication	200
-	Example of SCI3 Transmission in Clocked Synchronous Mode	
Figure 13.11		
Figure 13.12		
Figure 13.13		
Figure 13.14		
8	(Clocked Synchronous Mode)	206
Figure 13.15		
C	(Transmission of Data H'AA to Receiving Station A)	208
Figure 13.16		
Figure 13.17	· ·	
Figure 13.17		
Figure 13.18	Example of SCI3 Reception Using Multiprocessor Format	
•	(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)	213
Figure 13.19	Receive Data Sampling Timing in Asynchronous Mode	216
Section 14	A/D Converter	
Figure 14.1	Block Diagram of A/D Converter	218
Figure 14.1	A/D Conversion Timing	
Figure 14.3	External Trigger Input Timing	
Figure 14.4	A/D Conversion Accuracy Definitions (1)	
Figure 14.5	A/D Conversion Accuracy Definitions (2)	
Figure 14.6	Analog Input Circuit Example	
-		
	Power-On Reset and Low-Voltage Detection Circuits (Optional)	220
Figure 15.1	Block Diagram of Power-On Reset Circuit and Low-Voltage Detection Circuit.	
Figure 15.2	Operational Timing of Power-On Reset Circuit	
Figure 15.3	Operational Timing of LVDR Circuit	
Figure 15.4	Operational Timing of LVDI Circuit	
Figure 15.5	Timing for Operation/Release of Low-Voltage Detection Circuit	236
Section 16	Power Supply Circuit	
Figure 16.1	Power Supply Connection when Internal Step-Down Circuit is Used	237
Figure 16.2	Power Supply Connection when Internal Step-Down Circuit is Not Used	238
Section 18	Electrical Characteristics	
Figure 18.1	System Clock Input Timing	281
Figure 18.2	RES Low Width Timing	
Figure 18.3	Input Timing	
Figure 18.4	SCK3 Input Clock Timing	
Figure 18.5	SCI3 Input/Output Timing in Clocked Synchronous Mode	
Figure 18.6	Output Load Circuit	

1.3 Pin Arrangement

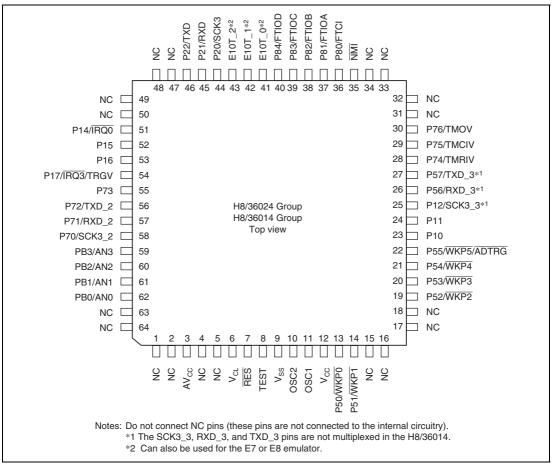
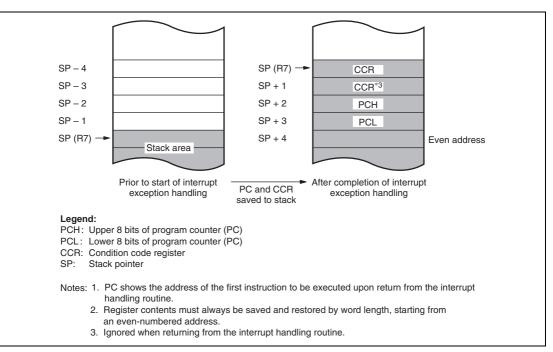


Figure 1.2 Pin Arrangement (FP-64E)

Instruction	n Size*	Function
BXOR	В	$C \oplus (\langle bit-No. \rangle of \langle EAd \rangle) \rightarrow C$ XORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
BIXOR	В	$C \oplus \neg$ (<bit-no.> of <ead>) $\rightarrow C$ XORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BLD	В	(kit-No.> of <ead>) \rightarrow C Transfers a specified bit in a general register or memory operand to the carry flag.</ead>
BILD	В	¬ (<bit-no.> of <ead>) → C Transfers the inverse of a specified bit in a general register or memory operand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BST	В	$C \rightarrow$ (<bit-no.> of <ead>) Transfers the carry flag value to a specified bit in a general register or memory operand.</ead></bit-no.>
BIST	В	\neg C \rightarrow (<bit-no.> of <ead>) Transfers the inverse of the carry flag value to a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
Note: *	Refers to the	operand size.

 Table 2.6
 Bit Manipulation Instructions (2)

Note: * Refers to the operand size.


B: Byte

3.2.2 Interrupt Edge Select Register 2 (IEGR2)

IEGR2 selects the direction of an edge that generates interrupt requests of the pins $\overline{\text{ADTRG}}$ and $\overline{\text{WKP5}}$ to $\overline{\text{WKP0}}$.

Bit	Bit Name	Initial Value	R/W	Description
7, 6		All 1		Reserved
				These bits are always read as 1.
5	WPEG5	0	R/W	WKP5 Edge Select
				0: Falling edge of $\overline{WKP5}$ (\overline{ADTRG}) pin input is detected
				1: Rising edge of $\overline{WKP5}$ (\overline{ADTRG}) pin input is detected
4	WPEG4	0	R/W	WKP4 Edge Select
				0: Falling edge of $\overline{WKP4}$ pin input is detected
				1: Rising edge of $\overline{WKP4}$ pin input is detected
3	WPEG3	0	R/W	WKP3 Edge Select
				0: Falling edge of $\overline{WKP3}$ pin input is detected
				1: Rising edge of WKP3 pin input is detected
2	WPEG2	0	R/W	WKP2 Edge Select
				0: Falling edge of $\overline{WKP2}$ pin input is detected
				1: Rising edge of WKP2 pin input is detected
1	WPEG1	0	R/W	WKP1Edge Select
				0: Falling edge of $\overline{WKP1}$ pin input is detected
				1: Rising edge of $\overline{WKP1}$ pin input is detected
0	WPEG0	0	R/W	WKP0 Edge Select
				0: Falling edge of $\overline{WKP0}$ pin input is detected
				1: Rising edge of WKP0 pin input is detected

Figure 3.2 Stack Status after Exception Handling

3.4.4 Interrupt Response Time

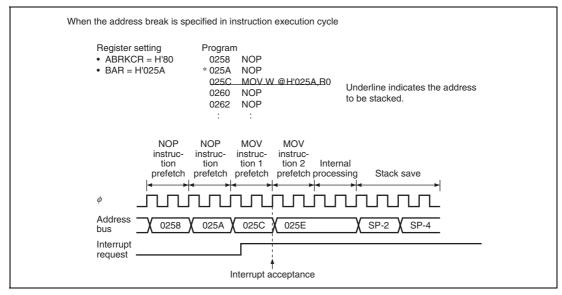

Table 3.2 shows the number of wait states after an interrupt request flag is set until the first instruction of the interrupt handling-routine is executed.

Table 3.2Interrupt Wait States

Item	States	Total
Waiting time for completion of executing instruction*	1 to 23	15 to 37
Saving of PC and CCR to stack	4	
Vector fetch	2	
Instruction fetch	4	
Internal processing	4	
Netse W Net in shading EEDMOV/ in struction		

Note: * Not including EEPMOV instruction.

When the address break is	s specified in the data read cycle
Register setting • ABRKCR = H'A0 • BAR = H'025A	Program 0258 NOP 025A NOP * 025C MOV.W @H'025A,R0 0260 NOP Underline indicates the address 0262 NOP to be stacked. : :
MOV instruc- tion 1 prefetch Address bus Interrupt request	MOV NOP MOV NOP Next instruction 2 tion tion tion tion prefetch prefetch execution prefetch prefetch processing save

Figure 4.2 Address Break Interrupt Operation Example (2)

RENESAS

7.5 Program/Erase Protection

There are three kinds of flash memory program/erase protection; hardware protection, software protection, and error protection.

7.5.1 Hardware Protection

Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted because of a transition to reset, subsleep mode or standby mode. Flash memory control register 1 (FLMCR1), flash memory control register 2 (FLMCR2), and erase block register 1 (EBR1) are initialized. In a reset via the $\overline{\text{RES}}$ pin, the reset state is not entered unless the $\overline{\text{RES}}$ pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the $\overline{\text{RES}}$ pin low for the $\overline{\text{RES}}$ pulse width specified in the AC Characteristics section.

7.5.2 Software Protection

Software protection can be implemented against programming/erasing of all flash memory blocks by clearing the SWE bit in FLMCR1. When software protection is in effect, setting the P or E bit in FLMCR1 does not cause a transition to program mode or erase mode. By setting the erase block register 1 (EBR1), erase protection can be set for individual blocks. When EBR1 is set to H'00, erase protection is set for all blocks.

7.5.3 Error Protection

In error protection, an error is detected when CPU runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

When the following errors are detected during programming/erasing of flash memory, the FLER bit in FLMCR2 is set to 1, and the error protection state is entered.

- When the flash memory of the relevant address area is read during programming/erasing (including vector read and instruction fetch)
- Immediately after exception handling excluding a reset during programming/erasing
- When a SLEEP instruction is executed during programming/erasing

9.4.3 Pin Functions

The correspondence between the register specification and the port functions is shown below.

• P76/TMOV pin

Register	TCSRV	PCR7	
Bit Name	OS3 to OS0	PCR76	Pin Function
Setting Value	0000	0	P76 input pin
		1	P76 output pin
	Other than the above values	Х	TMOV output pin

Legend X: Don't care.

• P75/TMCIV pin

Register	PCR7	
Bit Name	PCR75	Pin Function
Setting Value	0	P75 input/TMCIV input pin
	1	P75 output/TMCIV input pin

• P74/TMRIV pin

Register	PCR7	
Bit Name	PCR74	Pin Function
Setting Value	0	P74 input/TMRIV input pin
	1	P74 output/TMRIV input pin

• P73 pin

Register	PCR7	
Bit Name	PCR73	Pin Function
Setting Value	0	P73 input pin
	1	P73 output pin

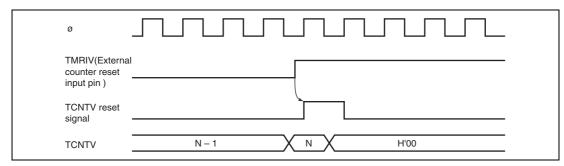


Figure 10.8 Clear Timing by TMRIV Input

11.4.2 PWM Operation

In PWM mode, PWM waveforms are generated by using GRA as the period register and GRB, GRC, and GRD as duty registers. PWM waveforms are output from the FTIOB, FTIOC, and FTIOD pins. Up to three-phase PWM waveforms can be output. In PWM mode, a general register functions as an output compare register automatically. The output level of each pin depends on the corresponding timer output level set bit (TOB, TOC, and TOD) in TCRW. When TOB is 1, the FTIOB output goes to 1 at compare match A and to 0 at compare match B. When TOB is 0, the FTIOB output goes to 0 at compare match A and to 1 at compare match B. Thus the compare match output level settings in TIOR0 and TIOR1 are ignored for the output pin set to PWM mode. If the same value is set in the cycle register and the duty register, the output does not change when a compare match occurs.

Figure 11.9 shows an example of operation in PWM mode. The output signals go to 1 and TCNT is cleared at compare match A, and the output signals go to 0 at compare match B, C, and D (TOB, TOC, and TOD = 1: initial output values are set to 1).

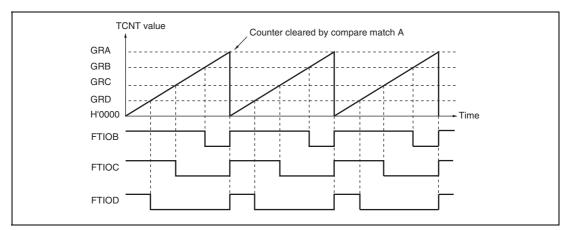


Figure 11.9 PWM Mode Example (1)

13.6 Multiprocessor Communication Function

Use of the multiprocessor communication function enables data transfer between a number of processors sharing communication lines by asynchronous serial communication using the multiprocessor format, in which a multiprocessor bit is added to the transfer data. When multiprocessor communication is performed, each receiving station is addressed by a unique ID code. The serial communication cycle consists of two component cycles; an ID transmission cycle that specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle. If the multiprocessor bit is 1, the cycle is an ID transmission cycle; if the multiprocessor bit is 0, the cycle is a data transmission cycle. Figure 13.15 shows an example of inter-processor communication using the multiprocessor format. The transmitting station first sends the ID code of the receiving station with which it wants to perform serial communication as data with a 1 multiprocessor bit added. When data with a 1 multiprocessor bit is received, the receiving station compares that data with its own ID. The station whose ID matches then receives the data sent next. Stations whose IDs do not match continue to skip data until data with a 1 multiprocessor bit is again received.

The SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is set to 1, transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status flags, RDRF, FER, and OER, to 1, are inhibited until data with a 1 multiprocessor bit is received. On reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to 1 and the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is rendered invalid. All other bit settings are the same as those in normal asynchronous mode. The clock used for multiprocessor communication is the same as that in normal asynchronous mode.

14.4.3 Input Sampling and A/D Conversion Time

The A/D converter has a built-in sample-and-hold circuit. The A/D converter samples the analog input when the A/D conversion start delay time (t_D) has passed after the ADST bit is set to 1, then starts conversion. Figure 14.2 shows the A/D conversion timing. Table 14.3 shows the A/D conversion time.

As indicated in figure 14.2, the A/D conversion time includes t_D and the input sampling time. The length of t_D varies depending on the timing of the write access to ADCSR. The total conversion time therefore varies within the ranges indicated in table 14.3.

In scan mode, the values given in table 14.3 apply to the first conversion time. In the second and subsequent conversions, the conversion time is 128 states (fixed) when CKS = 0 and 66 states (fixed) when CKS = 1.

Figure 14.2 A/D Conversion Timing

RENESAS

Table 18.4 Serial Interface (SCI3) Timing

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C, unless otherwise specified.

Item		Symbol	Applicable Pins		Values				Reference
				Test Condition	Min	Тур	Max	Unit	Figure
Input clock	Asynchro- nous	t _{Scyc}	SCK3, SCK3_2,		4	_	_	t _{cyc}	Figure 18.4
cycle	Clocked synchro- nous	SCK3_3* 6 —	_	—	t _{cyc}	_			
Input clock pulse width		t _{sскw}	SCK3, SCK3_2, SCK3_3*		0.4	_	0.6	t _{Scyc}	_
Transmit data delay time (clocked synchronous)		t _{TXD}	TXD, TXD_2, TXD_3*	V_{cc} = 4.0 V to 5.5 V	—	—	1	t _{cyc}	Figure 18.5
					_	_	1	t _{cyc}	
Receive data setup time (clocked synchronous)		t _{RXS}	RXD, RXD_2, RXD_3*	V_{cc} = 4.0 V to 5.5 V	50.0	_	_	ns	
					100.0	_	_	ns	_
	e data hold	t _{RXH}	RXD,	V_{cc} = 4.0 V to 5.5 V	50.0		_	ns	
time (clocked synchronous)			RXD_2, RXD_3*		100.0	_	_	ns	_

Note: * The SCK3_3, RXD_3, and TXD_3 pins are not available in the H8/36014.

18.2.6 Flash Memory Characteristics

Table 18.7 Flash Memory Characteristics

 V_{cc} = 3.0 V to 5.5 V, V_{ss} = 0.0 V, T_a = -20°C to +75°C, unless otherwise specified.

			Test				
Item		Symbol	Condition	Min	Тур	Max	Unit
Programming time (per 128 bytes)*1*2*4		t _P		_	7	200	ms
Erase time (per block) * ¹ * ³ * ⁶ Reprogramming count		t _e		_	100	1200 —	ms Times
		N_{wec}		1000	10000		
Programming	Wait time after SWE bit setting*1	x		1	_	_	μs
	Wait time after PSU bit setting*1	у		50	_	_	μs
	Wait time after P bit setting	z1	$1 \le n \le 6$	28	30	32	μs
	*1*4	z2	$7 \le n \le 1000$	198	200	202	μs
		z3	Additional- programming	8	10	12	μs
	Wait time after P bit clear*1	α		5	—	_	μs
	Wait time after PSU bit clear*1	β		5	—	—	μs
	Wait time after PV bit setting*1	γ		4	—	—	μs
	Wait time after dummy write* ¹	ε		2	_	_	μs
	Wait time after PV bit clear*1	η		2	—	—	μs
	Wait time after SWE bit clear*1	θ		100	_	_	μs
	Maximum programming count*1*4*5	Ν		_		1000	Times

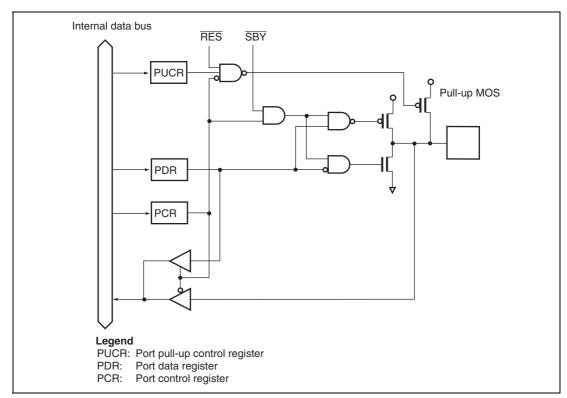


Figure B.3 Port 1 Block Diagram (P16, P15, P12*, P10)

Note: * This pin is available only in the H8/36014.

