

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN
Supplier Device Package	48-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36014ftv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Section 1	Overview	
Figure 1.1	Internal Block Diagram	
Figure 1.2	Pin Arrangement (FP-64E)	4
Figure 1.3	Pin Arrangement (FP-48F, FP-48B, TNP-48)	5
Section 2	CPU	
Figure 2.1	Memory Map (1)	10
Figure 2.1	Memory Map (2)	11
Figure 2.2	CPU Registers	12
Figure 2.3	Usage of General Registers	13
Figure 2.4	Relationship between Stack Pointer and Stack Area	14
Figure 2.5	General Register Data Formats (1)	
Figure 2.5	General Register Data Formats (2)	17
Figure 2.6	Memory Data Formats	
Figure 2.7	Instruction Formats	
Figure 2.8	Branch Address Specification in Memory Indirect Mode	
Figure 2.9	On-Chip Memory Access Cycle	
Figure 2.10	On-Chip Peripheral Module Access Cycle (3-State Access)	
Figure 2.11	CPU Operation States	
Figure 2.12	State Transitions	
Figure 2.13	Example of Timer Configuration with Two Registers Allocated to Same	
	Address	
Section 3	Exception Handling	
Figure 3.1	Reset Sequence	
Figure 3.2	Stack Status after Exception Handling	
Figure 3.3	Interrupt Sequence	
Figure 3.4	Port Mode Register Setting and Interrupt Request Flag Clearing Procedure	
Section 4	Address Break	
Figure 4.1	Block Diagram of Address Break	
Figure 4.2	Address Break Interrupt Operation Example (1)	63
Figure 4.2	Address Break Interrupt Operation Example (2)	63
Section 5	Clock Pulse Generators	
Figure 5.1	Block Diagram of Clock Pulse Generators	65
Figure 5.2	Block Diagram of System Clock Generator	65
Figure 5.3	Typical Connection to Crystal Resonator	
Figure 5.4	Equivalent Circuit of Crystal Resonator	

RENESAS

Figure 2.5 General Register Data Formats (2)

Figure 3.2 Stack Status after Exception Handling

3.4.4 Interrupt Response Time

Table 3.2 shows the number of wait states after an interrupt request flag is set until the first instruction of the interrupt handling-routine is executed.

Table 3.2Interrupt Wait States

Item	States	Total
Waiting time for completion of executing instruction*	1 to 23	15 to 37
Saving of PC and CCR to stack	4	
Vector fetch	2	
Instruction fetch	4	
Internal processing	4	

Note: * Not including EEPMOV instruction.

7.1 Block Configuration

Figure 7.1 shows the block configuration of 32-kbyte flash memory. The thick lines indicate erasing units, the narrow lines indicate programming units, and the values are addresses. The flash memory is divided into 1 kbyte \times 4 blocks and 28 kbytes \times 1 block. Erasing is performed in these units. Programming is performed in 128-byte units starting from an address with lower eight bits H'00 or H'80.

	1.110.000	10001	110000	De la la contra	
_	H'0000	H'0001	H'0002	← Programming unit: 128 bytes ->	H'007F
Erase unit	H'0080	H'0081	H'0082		H'00FF
1kbyte		1 1 1			1
	H'0380	H'0381	H'0382		H'03FF
	H'0400	H'0401	H'0402	🗕 Programming unit: 128 bytes	H'047F
Erase unit	H'0480	H'0481	H'0481		H'04FF
1kbyte		1 1			
	H'0780	H'0781	H'0782		H'07FF
	H'0800	H'0801	H'0802	- Programming unit: 128 bytes	H'087F
Erase unit	H'0880	H'0881	H'0882		H'08FF
1kbyte		1			1
		1 1 1			1
	H'0B80	H'0B81	H'0B82		H'0BFF
	H'0C00	H'0C01	H'0C02	- Programming unit: 128 bytes -	H'0C7F
Erase unit	H'0C80	H'0C81	H'0C82		H'0CFF
1kbyte		1			1
		1 1 1			1
	H'0F80	H'0F81	H'0F82		H'0FFF
	H'1000	H'1001	H'1002	- Programming unit: 128 bytes -	H'107F
Erase unit	H'1080	H'1081	H'1082		H'10FF
28 kbytes		1			
.,					
	H'7E80	H'7E81	H'7E82		

Figure 7.1 Flash Memory Block Configuration

Bit	Bit Name	Initial Value	R/W	Description
2	PV	0	R/W	Program-Verify
				When this bit is set to 1, the flash memory changes to program-verify mode. When it is cleared to 0, program-verify mode is cancelled.
1	E	0	R/W	Erase
				When this bit is set to 1, and while the SWE = 1 and ESU = 1 bits are 1, the flash memory changes to erase mode. When it is cleared to 0, erase mode is cancelled.
0	Р	0	R/W	Program
				When this bit is set to 1, and while the SWE = 1 and PSU = 1 bits are 1, the flash memory changes to program mode. When it is cleared to 0, program mode is cancelled.

7.2.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is a register that displays the state of flash memory programming/erasing. FLMCR2 is a read-only register, and should not be written to.

Bit	Bit Name	Initial Value	R/W	Description
7	FLER	0	R	Flash Memory Error
				Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.
				See 7.5.3, Error Protection, for details.
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

• P83/FTIOC pin

Register	TIOR1			PCR8	
Bit Name	IOC2	IOC1	IOC0	PCR83	Pin Function
Setting Value	0	0	0	0	P83 input/FTIOC input pin
				1	P83 output/FTIOC input pin
	0	0	1	Х	FTIOC output pin
	0	1	Х	Х	FTIOC output pin
	1	Х	Х	0	P83 input/FTIOC input pin
				1	P83 output/FTIOC input pin

Legend X: Don't care.

• P82/FTIOB pin

Register	TIOR0			PCR8	
Bit Name	IOB2	IOB1	IOB0	PCR82	Pin Function
Setting Value	0	0	0	0	P82 input/FTIOB input pin
				1	P82 output/FTIOB input pin
	0	0	1	Х	FTIOB output pin
	0	1	Х	Х	FTIOB output pin
	1	Х	Х	0	P82 input/FTIOB input pin
				1	P82 output/FTIOB input pin

Legend X: Don't care.

• P81/FTIOA pin

Register	TIOR0			PCR8	
Bit Name	IOA2	IOA1	IOA0	PCR81	Pin Function
Setting Value	0	0	0	0	P81 input/FTIOA input pin
				1	P81 output/FTIOA input pin
	0	0	1	Х	FTIOA output pin
	0	1	Х	Х	FTIOA output pin
	1	Х	Х	0	P81 input/FTIOA input pin
				1	P81 output/FTIOA input pin

Legend X: Don't care.

9.6.1 Port Data Register B (PDRB)

PDRB is a general input-only port data register of port B.

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	_	_	_	Reserved
3	PB3	_	R	The input value of each pin is read by reading this
2	PB2		R	register.
1	PB1	_	R	However, if a port B pin is designated as an analog inp
0	PB0		R	channel by ADCON III A/D convenier, 0 is read.

Section 10 Timer V

Timer V is an 8-bit timer based on an 8-bit counter. Timer V counts external events. Comparematch signals with two registers can also be used to reset the counter, request an interrupt, or output a pulse signal with an arbitrary duty cycle. Counting can be initiated by a trigger input at the TRGV pin, enabling pulse output control to be synchronized to the trigger, with an arbitrary delay from the trigger input. Figure 10.1 shows a block diagram of timer V.

10.1 Features

- Choice of seven clock signals is available.
 Choice of six internal clock sources (φ/128, φ/64, φ/32, φ/16, φ/8, φ/4) or an external clock.
- Counter can be cleared by compare match A or B, or by an external reset signal. If the count stop function is selected, the counter can be halted when cleared.
- Timer output is controlled by two independent compare match signals, enabling pulse output with an arbitrary duty cycle, PWM output, and other applications.
- Three interrupt sources: compare match A, compare match B, timer overflow
- Counting can be initiated by trigger input at the TRGV pin. The rising edge, falling edge, or both edges of the TRGV input can be selected.

10.5 Timer V Application Examples

10.5.1 Pulse Output with Arbitrary Duty Cycle

Figure 10.9 shows an example of output of pulses with an arbitrary duty cycle.

- 1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare match with TCORA.
- 2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with TCORA and to 0 at compare match with TCORB.
- 3. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clock source.
- 4. With these settings, a waveform is output without further software intervention, with a period determined by TCORA and a pulse width determined by TCORB.

Figure 10.9 Pulse Output Example

10.6 Usage Notes

The following types of contention or operation can occur in timer V operation.

- 1. Writing to registers is performed in the T3 state of a TCNTV write cycle. If a TCNTV clear signal is generated in the T3 state of a TCNTV write cycle, as shown in figure 10.11, clearing takes precedence and the write to the counter is not carried out. If counting-up is generated in the T3 state of a TCNTV write cycle, writing takes precedence.
- 2. If a compare match is generated in the T3 state of a TCORA or TCORB write cycle, the write to TCORA or TCORB takes precedence and the compare match signal is inhibited. Figure 10.12 shows the timing.
- 3. If compare matches A and B occur simultaneously, any conflict between the output selections for compare match A and compare match B is resolved by the following priority: toggle output > output 1 > output 0.
- 4. Depending on the timing, TCNTV may be incremented by a switch between different internal clock sources. When TCNTV is internally clocked, an increment pulse is generated from the falling edge of an internal clock signal, that is divided system clock (φ). Therefore, as shown in figure 10.3 the switch is from a high clock signal to a low clock signal, the switchover is seen as a falling edge, causing TCNTV to increment. TCNTV can also be incremented by a switch between internal and external clocks.

Figure 10.11 Contention between TCNTV Write and Clear

11.3.7 Timer Counter (TCNT)

TCNT is a 16-bit readable/writable up-counter. The clock source is selected by bits CKS2 to CKS0 in TCRW. TCNT can be cleared to H'0000 through a compare match with GRA by setting the CCLR in TCRW to 1. When TCNT overflows (changes from H'FFFF to H'0000), the OVF flag in TSRW is set to 1. If OVIE in TIERW is set to 1 at this time, an interrupt request is generated. TCNT must always be read or written in 16-bit units; 8-bit access is not allowed. TCNT is initialized to H'0000 by a reset.

11.3.8 General Registers A to D (GRA to GRD)

Each general register is a 16-bit readable/writable register that can function as either an outputcompare register or an input-capture register. The function is selected by settings in TIOR0 and TIOR1.

When a general register is used as an input-compare register, its value is constantly compared with the TCNT value. When the two values match (a compare match), the corresponding flag (IMFA, IMFB, IMFC, or IMFD) in TSRW is set to 1. An interrupt request is generated at this time, when IMIEA, IMIEB, IMIEC, or IMIED is set to 1. Compare match output can be selected in TIOR.

When a general register is used as an input-capture register, an external input-capture signal is detected and the current TCNT value is stored in the general register. The corresponding flag (IMFA, IMFB, IMFC, or IMFD) in TSRW is set to 1. If the corresponding interrupt-enable bit (IMIEA, IMIEB, IMIEC, or IMIED) in TSRW is set to 1 at this time, an interrupt request is generated. The edge of the input-capture signal is selected in TIOR.

GRC and GRD can be used as buffer registers of GRA and GRB, respectively, by setting BUFEA and BUFEB in TMRW.

For example, when GRA is set as an output-compare register and GRC is set as the buffer register for GRA, the value in the buffer register GRC is sent to GRA whenever compare match A is generated.

When GRA is set as an input-capture register and GRC is set as the buffer register for GRA, the value in TCNT is transferred to GRA and the value in the buffer register GRC is transferred to GRA whenever an input capture is generated.

GRA to GRD must be written or read in 16-bit units; 8-bit access is not allowed. GRA to GRD are initialized to H'FFFF by a reset.

Figure 11.11 shows an example of buffer operation when the FTIOB pin is set to PWM mode and GRD is set as the buffer register for GRB. TCNT is cleared by compare match A, and FTIOB outputs 1 at compare match B and 0 at compare match A.

Due to the buffer operation, the FTIOB output level changes and the value of buffer register GRD is transferred to GRB whenever compare match B occurs. This procedure is repeated every time compare match B occurs.

Figure 11.11 Buffer Operation Example (Output Compare)

13.3.9 SCI3_3 Module Control Register (SMCR)

SMCR controls the SCI3_3 and module standby function.

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	_	All 1	_	Reserved
				These bits are always read as 1.
3, 2	_	All 1		Reserved
				These bits are always read as 1. When the emulator is used, these bits must be cleared to 0.
1	TXD_3	0	R/W	TXD_3 Output Select
				Selects the function of the P57/TXD_3 pin.
				0: General I/O port
				1: TXD_3 output pin
0	MSTS3_3	0	R/W	SCI3_3 Module Standby
				When this bit is set to 1, the SCI3_3 enters the standby state.

Figure 13.8 Sample Serial Reception Data Flowchart (Asynchronous Mode)(1)

13.5.2 SCI3 Initialization

Before transmitting and receiving data, the SCI3 should be initialized as described in a sample flowchart in figure 13.4.

13.5.3 Serial Data Transmission

Figure 13.10 shows an example of SCI3 operation for transmission in clocked synchronous mode. In serial transmission, the SCI3 operates as described below.

- 1. The SCI3 monitors the TDRE flag in SSR, and if the flag is 0, the SCI3 recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- 2. The SCI3 sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR3 is set to 1 at this time, a transmit data empty interrupt (TXI) is generated.
- 3. 8-bit data is sent from the TXD pin synchronized with the output clock when output clock mode has been specified, and synchronized with the input clock when use of an external clock has been specified. Serial data is transmitted sequentially from the LSB (bit 0), from the TXD pin.
- 4. The SCI3 checks the TDRE flag at the timing for sending the MSB (bit 7).
- 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission of the next frame is started.
- 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag maintains the output state of the last bit. If the TEIE bit in SCR3 is set to 1 at this time, a TEI interrupt request is generated.
- 7. The SCK3 pin is fixed high at the end of transmission.

Figure 13.11 shows a sample flow chart for serial data transmission. Even if the TDRE flag is cleared to 0, transmission will not start while a receive error flag (OER, FER, or PER) is set to 1. Make sure that the receive error flags are cleared to 0 before starting transmission.

Figure 14.1 Block Diagram of A/D Converter

15.2.1 Low-Voltage-Detection Control Register (LVDCR)

LVDCR is used to enable or disable the low-voltage detection circuit, set the detection levels for the LVDR function, enable or disable the LVDR function, and enable or disable generation of an interrupt when the power-supply voltage rises above or falls below the respective levels.

Table 15.1 shows the relationship between the LVDCR settings and select functions. LVDCR should be set according to table 15.1.

D:4	Dit Nama	Initial Volue		Description				
	Bit Name	value	R/W	Description				
7	LVDE	0*	R/W	LVD Enable				
				0: The low-voltage detection circuit is not used (In standby mode)				
				1: The low-voltage detection circuit is used				
6 to 4	_	All 1		Reserved				
				These bits are always read as 1, and cannot be modified.				
3	LVDSEL	0*	R/W	LVDR Detection Level Select				
				0: Reset detection voltage is 2.3 V (typ.)				
				1: Reset detection voltage is 3.6 V (typ.)				
				When the falling or rising voltage detection interrupt is used, reset detection voltage of 2.3 V (typ.) should be used. When only a reset detection interrupt is used, reset detection voltage of 3.6 V (typ.) should be used.				
2	LVDRE	0*	R/W	LVDR Enable				
				0: Disables the LVDR function				
				1: Enables the LVDR function				
1	LVDDE	0	R/W	Voltage-Fall-Interrupt Enable				
				0: Interrupt on the power-supply voltage falling below the selected detection level disabled				
				1: Interrupt on the power-supply voltage falling below the selected detection level enabled				
0	LVDUE	0	R/W	Voltage-Rise-Interrupt Enable				
				0: Interrupt on the power-supply voltage rising above the selected detection level disabled				
				1: Interrupt on the power-supply voltage rising above the selected detection level enabled				
Note:								

Figure B.11 Port 5 Block Diagram (P56) (H8/36024)

PCR7	109, 228, 232, 235
PCR8	112, 228, 232, 235
PDR1	97, 228, 232, 234
PDR2	101, 228, 232, 234
PDR5	105, 228, 232, 234
PDR7	109, 228, 232, 234
PDR8	113, 228, 232, 235
PDRB	116, 228, 232, 235
PMR1	96, 228, 232, 235
PMR5	103, 228, 232, 235
PUCR1	98, 228, 232, 234
PUCR5	105, 228, 232, 234
RDR	178, 227, 231, 234
RSR	
SCR3	180, 227, 231, 234
SMCR	191, 226, 230, 233
SMR	179, 227, 231, 234
SSR	182, 227, 231, 234
SYSCR1	70, 228, 232, 235
SYSCR2	71, 228, 232, 235
TCNT	147, 226, 230, 233
TCNTV	119, 227, 231, 234
TCORA	120, 227, 231, 234
TCORB	120, 227, 231, 234
TCRV0	121, 227, 231, 234
TCRV1	125, 227, 231, 234
TCRW	140, 226, 230, 233
TCSRV	123, 227, 231, 234
TCSRWD	168, 227, 231, 234
TCWD	169, 227, 231, 234
TDR	178, 227, 231, 234
TIERW	141, 226, 230, 233
TIOR0	144, 226, 230, 233
TIOR1	145, 226, 230, 233

TMRW	139, 226, 230, 233
TMWD	170, 228, 231, 234
TSR	
TSRW	142, 226, 230, 233

S

Serial communication interface 3 (S	SCI3) 173
Asynchronous mode	192
Bit rate	
Break	
Clocked synchronous mode	
Framing error	
Mark state	
Multiprocessor communication	
function	
Overrun error	196
Parity error	196
Stack pointer (SP)	13
System clocks	65
•	

Т

Timer V	117
Timer W	135

V

Vector a	ddress	45
----------	--------	----

W

Watchdog	timer	167
----------	-------	-----

