

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36014gfpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 7.4	Reprogram Data Computation Table	88
Table 7.5	Additional-Program Data Computation Table	88
Table 7.6	Programming Time	88
Section 10	Timer V	
Table 10.1	Pin Configuration	119
Table 10.2	Clock Signals to Input to TCNTV and Counting Conditions	
Section 11	Timer W	126
Table 11.1	Timer W Functions	
Table 11.2	Pin Configuration	138
Section 13	Serial Communication Interface 3 (SCI3)	
Table 13.1	Channel Configuration	
Table 13.2	Pin Configuration	
Table 13.3	Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (1)	185
Table 13.3	Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (2)	
Table 13.3	Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (3)	187
Table 13.4	Maximum Bit Rate for Each Frequency (Asynchronous Mode)	188
Table 13.5	Examples of BRR Settings for Various Bit Rates (Clocked Synchronous Mode	e)
	(1)	189
Table 13.5	Examples of BRR Settings for Various Bit Rates (Clocked Synchronous Mode	e)
	(2)	190
Table 13.6	SSR Status Flags and Receive Data Handling	197
Table 13.7	SCI3 Interrupt Requests	214
Section 14	A/D Converter	
Table 14.1	Pin Configuration	219
Table 14.2	Analog Input Channels and Corresponding ADDR Registers	
Table 14.3	A/D Conversion Time (Single Mode)	
Section 15	Power-On Reset and Low-Voltage Detection Circuits (Optional)	
Section 15 Table 15.1	LVDCR Settings and Select Functions	222
	L V DCR Settings and Select Functions	232
Section 18	Electrical Characteristics	
Table 18.1	Absolute Maximum Ratings	
Table 18.2	DC Characteristics (1)	
Table 18.2	DC Characteristics (2)	
Table 18.3	AC Characteristics	
Table 18.4	Serial Interface (SCI3) Timing	
Table 18.5	A/D Converter Characteristics	
Table 18.6	Watchdog Timer Characteristics	
Table 18.7	Flash Memory Characteristics	264

		Pir	n No.		
Туре	Symbol	FP-64E	FP-48F, FP-48B, TNP-48	- I/O	Functions
Timer V	TMOV	30	24	Output	This is an output pin for waveforms generated by the output compare function.
	TMCIV	29	23	Input	External event input pin.
	TMRIV	28	22	Input	Counter reset input pin.
	TRGV	54	40	Input	Counter start trigger input pin.
Timer W	FTCI	36	26	Input	External event input pin.
	FTIOA to FTIOD	37 to 40	27 to 30	I/O	Output compare output/ input capture input/ PWM output pin
Serial com- munication interface	TXD, TXD_2, TXD_3*	46, 56, 27	36, 42, 21	Output	Transmit data output pin
(SCI)	RXD, RXD_2, RXD_3*	45, 57, 26	35, 43, 20	Input	Receive data input pin
	SCK3, SCK3_2, SCK3_3*	44, 58, 25	34, 44, 19	I/O	Clock I/O pin
A/D	AN3 to AN0	59 to 62	45 to 48	Input	Analog input pin
converter	ADTRG	22	16	Input	A/D converter trigger input pin.
I/O ports	PB3 to PB0	59 to 62	45 to 48	Input	4-bit input port.
	P17 to P14, P12 to P10	54 to 51, 25 to 23	40 to 37, 19 to 17	I/O	7-bit I/O port.
	P22 to P20	46 to 44	36 to 34	I/O	3-bit I/O port.
	P57 to P50	27, 26, 22 to 19, 14, 13	21, 20, 16 to 11	I/O	8-bit I/O port
	P76 to P70	30 to 28, 55 to 58	24 to 22, 41 to 44	I/O	7-bit I/O port
	P84 to P80	40 to 36	30 to 26	I/O	5-bit I/O port.
E10T	E10T _0, E10T _1, E10T _2	41, 42, 43	31, 32, 33		Interface pin for the E10T, E8, or E7 emulator

Note: * The SCK3_3, RXD_3, and TXD_3 pins are not multiplexed in the H8/36014.

• Prior to executing BCLR

MOV.B	#3F,	ROL
MOV.B	ROL,	@RAM0
MOV.B	ROL,	@PCR5

The PCR5 value (H'3F) is written to a work area in memory (RAM0) as well as to PCR5.

	P57	P56	P55	P54	P53	P52	P51	P50
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1	1
PDR5	1	0	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1	1

• BCLR instruction executed

BCLR #0, @RAMO

The BCLR instructions executed for the PCR5 work area (RAM0).

• After executing BCLR

MOV.B	@RAMO, ROL	
MOV.B	ROL, @PCR5	

The work area (RAM0) value is written to PCR5.

	P57	P56	P55	P54	P53	P52	P51	P50
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR5	0	0	1	1	1	1	1	0
PDR5	1	0	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1	0

3.2 Register Descriptions

Interrupts are controlled by the following registers.

- Interrupt edge select register 1 (IEGR1)
- Interrupt edge select register 2 (IEGR2)
- Interrupt enable register 1 (IENR1)
- Interrupt flag register 1 (IRR1)
- Wakeup interrupt flag register (IWPR)

3.2.1 Interrupt Edge Select Register 1 (IEGR1)

IEGR1 selects the direction of an edge that generates interrupt requests of pins and $\overline{IRQ3}$ and $\overline{IRQ0}.$

Bit	Bit Name	Initial Value	R/W	Description
7	_	0	-	Reserved
				This bit is always read as 0.
6 to 4	_	All 1		Reserved
				These bits are always read as 1.
3	IEG3	0	R/W	IRQ3 Edge Select
				0: Falling edge of IRQ3 pin input is detected
				1: Rising edge of IRQ3 pin input is detected
2, 1	_	All 0		Reserved
				These bits are always read as 0.
0	IEG0	0	R/W	IRQ0 Edge Select
				0: Falling edge of IRQ0 pin input is detected
				1: Rising edge of IRQ0 pin input is detected

3.2.5 Wakeup Interrupt Flag Register (IWPR)

IWPR is a status flag register for $\overline{WKP5}$ to $\overline{WKP0}$ interrupt requests.

Bit	Bit Name	Initial Value	R/W	Description
7,6		All 1		Reserved
7,0		7.01 1		These bits are always read as 1.
5	IWPF5	0	R/W	WKP5 Interrupt Request Flag
0		U		[Setting condition]
				When $\overline{WKP5}$ pin is designated for interrupt input and the designated signal edge is detected.
				[Clearing condition]
				When IWPF5 is cleared by writing 0.
4	IWPF4	0	R/W	WKP4 Interrupt Request Flag
				[Setting condition]
				When $\overline{WKP4}$ pin is designated for interrupt input and the designated signal edge is detected.
				[Clearing condition]
				When IWPF4 is cleared by writing 0.
3	IWPF3	0	R/W	WKP3 Interrupt Request Flag
				[Setting condition]
				When $\overline{WKP3}$ pin is designated for interrupt input and the designated signal edge is detected.
				[Clearing condition]
				When IWPF3 is cleared by writing 0.
2	IWPF2	0	R/W	WKP2 Interrupt Request Flag
				[Setting condition]
				When $\overline{WKP2}$ pin is designated for interrupt input and the designated signal edge is detected.
				[Clearing condition]
				When IWPF2 is cleared by writing 0.
1	IWPF1	0	R/W	WKP1 Interrupt Request Flag
				[Setting condition]
				When $\overline{WKP1}$ pin is designated for interrupt input and the designated signal edge is detected.
				[Clearing condition]
				When IWPF1 is cleared by writing 0.

Section 4 Address Break

The address break simplifies on-board program debugging. It requests an address break interrupt when the set break condition is satisfied. The interrupt request is not affected by the I bit of CCR. Break conditions that can be set include instruction execution at a specific address and a combination of access and data at a specific address. With the address break function, the execution start point of a program containing a bug is detected and execution is branched to the correcting program. Figure 4.1 shows a block diagram of the address break.

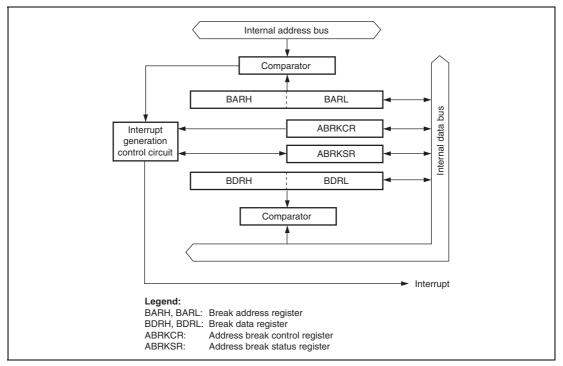


Figure 4.1 Block Diagram of Address Break

4.1 **Register Descriptions**

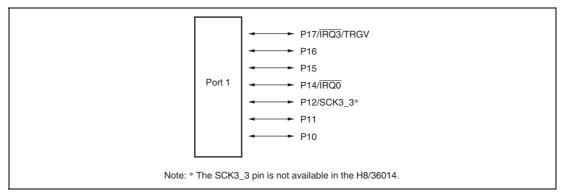
Address break has the following registers.

- Address break control register (ABRKCR)
- Address break status register (ABRKSR)
- Break address register (BARH, BARL)

Bit	Bit Name	Initial Value	R/W	Description
2	PV	0	R/W	Program-Verify
				When this bit is set to 1, the flash memory changes to program-verify mode. When it is cleared to 0, program-verify mode is cancelled.
1	E	0	R/W	Erase
				When this bit is set to 1, and while the SWE = 1 and ESU = 1 bits are 1, the flash memory changes to erase mode. When it is cleared to 0, erase mode is cancelled.
0	Р	0	R/W	Program
				When this bit is set to 1, and while the SWE = 1 and PSU = 1 bits are 1, the flash memory changes to program mode. When it is cleared to 0, program mode is cancelled.

7.2.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is a register that displays the state of flash memory programming/erasing. FLMCR2 is a read-only register, and should not be written to.


Bit	Bit Name	Initial Value	R/W	Description
7	FLER	0	R	Flash Memory Error
				Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.
				See 7.5.3, Error Protection, for details.
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

Section 9 I/O Ports

The group of this LSI has thirty general I/O ports and four general input-only ports. Port 8 is a large current port, which can drive 20 mA ($@V_{ot} = 1.5$ V) when a low level signal is output. Any of these ports can become an input port immediately after a reset. They can also be used as I/O pins of the on-chip peripheral modules or external interrupt input pins, and these functions can be switched depending on the register settings. The registers for selecting these functions can be divided into two types: those included in I/O ports and those included in each on-chip peripheral module. General I/O ports are comprised of the port control register for controlling inputs/outputs and the port data register for storing output data and can select inputs/outputs in bit units. For functions in each port, see Appendix B.1, I/O Port Block Diagrams. For the execution of bit manipulation instructions to the port control register and port data register, see section 2.8.3, Bit Manipulation Instruction.

9.1 Port 1

Port 1 is a general I/O port also functioning as IRQ interrupt input pins, timer V input pin, and SCI3 I/O pin. Figure 9.1 shows its pin configuration.

Figure 9.1 Port 1 Pin Configuration

RENESAS

Port 1 has the following registers.

- Port mode register 1 (PMR1)
- Port control register 1 (PCR1)
- Port data register 1 (PDR1)
- Port pull-up control register 1 (PUCR1)

Bit	Bit Name	Initial Value	R/W	Description
1	IOA1	0	R/W	I/O Control A1 and A0
0	IOA0	0	R/W	When $IOA2 = 0$,
				00: No output at compare match
				01: 0 output to the FTIOA pin at GRA compare match
				10: 1 output to the FTIOA pin at GRA compare match
				11: Output toggles to the FTIOA pin at GRA compare match
				When IOA2 = 1,
				00: Input capture at rising edge of the FTIOA pin
				01: Input capture at falling edge of the FTIOA pin
				1X: Input capture at rising and falling edges of the FTIOA pin

Legend X: Don't care.

11.3.6 Timer I/O Control Register 1 (TIOR1)

TIOR1 selects the functions of GRC and GRD, and specifies the functions of the FTIOC and FTIOD pins.

Bit	Bit Name	Initial Value	R/W	Description
7	—	1	—	Reserved
				This bit is always read as 1.
6	IOD2	0	R/W	I/O Control D2
				Selects the GRD function.
				0: GRD functions as an output compare register
				1: GRD functions as an input capture register

5. The TOA to TOD bits in TCRW decide the value of the FTIO pin, which is output until the first compare match occurs. Once a compare match occurs and this compare match changes the values of FTIOA to FTIOD output, the values of the FTIOA to FTIOD pin output and the values read from the TOA to TOD bits may differ. Moreover, when the writing to TCRW and the generation of the compare match A to D occur at the same timing, the writing to TCRW has the priority. Thus, output change due to the compare match is not reflected to the FTIOA to FTIOD pins. Therefore, when bit manipulation instruction is used to write to TCRW, the values of the FTIOA to FTIOD pin output may result in an unexpected result. When TCRW is to be written to while compare match is operating, stop the counter once before accessing to TCRW, read the port 8 state to reflect the values of FTIOA to FTIOD output, to TOA to TOD, and then restart the counter. Figure 11.26 shows an example when the compare match and the bit manipulation instruction to TCRW occur at the same timing.

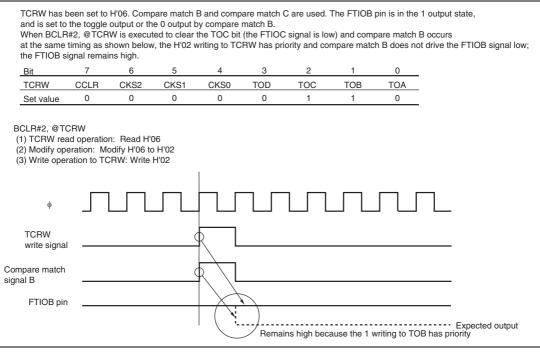


Figure 11.26 When Compare Match and Bit Manipulation Instruction to TCRW Occur at the Same Timing

13.2 Input/Output Pins

Table 13.2 shows the SCI3 pin configuration.

Table 13.2 Pin Configuration

Pin Name	Abbreviation	I/O	Function
SCI3 clock	SCK3	I/O	SCI3 clock input/output
SCI3 receive data input	RXD	Input	SCI3 receive data input
SCI3 transmit data output	TXD	Output	SCI3 transmit data output

13.3 Register Descriptions

The SCI3 has the following registers for each channel.

- Receive Shift Register (RSR)
- Receive Data Register (RDR)
- Transmit Shift Register (TSR)
- Transmit Data Register (TDR)
- Serial Mode Register (SMR)
- Serial Control Register 3 (SCR3)
- Serial Status Register (SSR)
- Bit Rate Register (BRR)
- SCI3_3 Module Control Register (SMCR)

Bit	Bit Name	Initial Value	R/W	Description
1	CKS1	0	R/W	Clock Select 0 and 1
0	CKS0	0	R/W	These bits select the clock source for the baud rate generator.
				00: φ clock (n = 0)
				01:
				10: φ/16 clock (n = 2)
				11:
				For the relationship between the bit rate register setting and the baud rate, see section 13.3.8, Bit Rate Register (BRR). n is the decimal representation of the value of n in BRR (see section 13.3.8, Bit Rate Register (BRR)).

13.3.6 Serial Control Register 3 (SCR3)

SCR3 is a register that enables or disables SCI3 transfer operations and interrupt requests, and is also used to select the transfer clock source. For details on interrupt requests, refer to section 13.7, Interrupts.

Bit	Bit Name	Initial Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, the TXI interrupt request is enabled.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrupt requests are enabled.
5	TE	0	R/W	Transmit Enable
				When this bit s set to 1, transmission is enabled.
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enabled.

13.8 Usage Notes

13.8.1 Break Detection and Processing

When framing error detection is performed, a break can be detected by reading the RXD pin value directly. In a break, the input from the RXD pin becomes all 0s, setting the FER flag, and possibly the PER flag. Note that as the SCI3 continues the receive operation after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again.

13.8.2 Mark State and Break Sending

When TE is 0, the TXD pin is used as an I/O port whose direction (input or output) and level are determined by PCR and PDR. This can be used to set the TXD pin to mark state (high level) or send a break during serial data transmission. To maintain the communication line at mark state until TE is set to 1, set both PCR and PDR to 1. As TE is cleared to 0 at this point, the TXD pin becomes an I/O port, and 1 is output from the TXD pin. To send a break during serial transmission, first set PCR to 1 and clear PDR to 0, and then clear TE to 0. When TE is cleared to 0, the transmitter is initialized regardless of the current transmission state, the TXD pin becomes an I/O port, and 0 is output from the TXD pin.

13.8.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)

Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, even if the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0.

Section 14 A/D Converter

This LSI includes a successive approximation type 10-bit A/D converter that allows up to four analog input channels to be selected. The block diagram of the A/D converter is shown in figure 14.1.

14.1 Features

- 10-bit resolution
- Four input channels
- Conversion time: at least 3.5 µs per channel (at 20 MHz operation)
- Two operating modes
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers
 - Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Two conversion start methods
 - Software
 - External trigger signal
- Interrupt request
 - An A/D conversion end interrupt request (ADI) can be generated

Register Name	Abbre- viation	Bit No	Address	Module Name	Data Bus Width	Access State
Timer mode register WD	TMWD	8	H'FFC2	WDT* ³	8	2
Address break control register	ABRKCR	8	H'FFC8	Address break	8	2
Address break status register	ABRKSR	8	H'FFC9	Address break	8	2
Break address register H	BARH	8	H'FFCA	Address break	8	2
Break address register L	BARL	8	H'FFCB	Address break	8	2
Break data register H	BDRH	8	H'FFCC	Address break	8	2
Break data register L	BDRL	8	H'FFCD	Address break	8	2
Port pull-up control register 1	PUCR1	8	H'FFD0	I/O port	8	2
Port pull-up control register 5	PUCR5	8	H'FFD1	I/O port	8	2
Port data register 1	PDR1	8	H'FFD4	I/O port	8	2
Port data register 2	PDR2	8	H'FFD5	I/O port	8	2
Port data register 5	PDR5	8	H'FFD8	I/O port	8	2
Port data register 7	PDR7	8	H'FFDA	I/O port	8	2
Port data register 8	PDR8	8	H'FFDB	I/O port	8	2
Port data register B	PDRB	8	H'FFDD	I/O port	8	2
Port mode register 1	PMR1	8	H'FFE0	I/O port	8	2
Port mode register 5	PMR5	8	H'FFE1	I/O port	8	2
Port control register 1	PCR1	8	H'FFE4	I/O port	8	2
Port control register 2	PCR2	8	H'FFE5	I/O port	8	2
Port control register 5	PCR5	8	H'FFE8	I/O port	8	2
Port control register 7	PCR7	8	H'FFEA	I/O port	8	2
Port control register 8	PCR8	8	H'FFEB	I/O port	8	2
System control register 1	SYSCR1	8	H'FFF0	Power- down	8	2
System control register 2	SYSCR2	8	H'FFF1	Power- down	8	2
Interrupt edge select register 1	IEGR1	8	H'FFF2	Interrupts	8	2

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
GRC	GRC15	GRC14	GRC13	GRC12	GRC11	GRC10	GRC9	GRC8	Timer W
	GRC7	GRC6	GRC5	GRC4	GRC3	GRC2	GRC1	GRC0	•
GRD	GRD15	GRD14	GRD13	GRD12	GRD11	GRD10	GRD9	GRD8	•
	GRD7	GRD6	GRD5	GRD4	GRD3	GRD2	GRD1	GRD0	•
FLMCR1	_	SWE	ESU	PSU	EV	PV	E	Р	ROM
FLMCR2	FLER	_	_	_	_	_	_	_	
EBR1	_	_	_	EB4	EB3	EB2	EB1	EB0	
FENR	FLSHE		_	_	_	_		_	•
TCRV0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	Timer V
TCSRV	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	•
TCORA	TCORA7	TCORA6	TCORA5	TCORA4	TCORA3	TCORA2	TCORA1	TCORA0	•
TCORB	TCORB7	TCORB6	TCORB5	TCORB4	TCORB3	TCORB2	TCORB1	TCORB0	-
TCNTV	TCNTV7	TCNTV6	TCNTV5	TCNTV4	TCNTV3	TCNTV2	TCNTV1	TCNTV0	•
TCRV1	_	_	_	TVEG1	TVEG0	TRGE	_	ICKS0	-
SMR	COM	CHR	PE	PM	STOP	MP	CKS1	CKS0	SCI3
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0	-
SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	•
SSR	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT	•
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	•
ADDRA	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D converter
	AD1	AD0	_	_	_	_	_	_	
ADDRB	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	_	_	_	_	-
ADDRC	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	_	_	_	_	
ADDRD	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	_	_	_	_	
ADCSR	ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0	•
ADCR	TRGE		_	_	—	_		—	-
TCSRWD	B6WI	TCWE	B4WI	TCSRWE	B2WI	WDON	B0WI	WRST	WDT*
TCWD	TCWD7	TCWD6	TCWD5	TCWD4	TCWD3	TCWD2	TCWD1	TCWD0	-
TMWD	_		_	_	CKS3	CKS2	CKS1	CKS0	-

18.2.3 AC Characteristics

Table 18.3 AC Characteristics

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C, unless otherwise specified.

		Applicable			Value	s		Reference
Item	Symbol	Pins	Test Condition	Min	Тур	Max	Unit	Figure
System clock oscillation	f _{osc}	OSC1, OSC2	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	2.0	—	20.0	MHz	*1
frequency				2.0	_	10.0	MHz	_
System clock (ø)	t _{cyc}			1	_	64	t _{osc}	*2
cycle time				—	—	12.8	μs	_
Instruction cycle time				2	_	_	t _{cyc}	
Oscillation stabilization time (crystal resonator)	t _{rc}	OSC1, OSC2		_		10.0	ms	
Oscillation stabilization time (ceramic resonator)	t _{rc}	OSC1, OSC2		_	_	5.0	ms	
External clock	t _{CPH}	OSC1	$V_{\rm CC}$ = 4.0 V to 5.5 V	20.0	—	—	ns	Figure 18.1
high width				40.0	_	—	ns	_
External clock	t _{cpl}	OSC1	$V_{\rm CC}$ = 4.0 V to 5.5 V	20.0	_	_	ns	-
low width				40.0	_	—	ns	_
External clock	t _{CPr}	OSC1	$V_{\rm CC}$ = 4.0 V to 5.5 V	—	_	10.0	ns	_
rise time				—	—	15.0	ns	_
External clock	t _{CPf}	OSC1	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	—	—	10.0	ns	_
fall time						15.0	ns	-

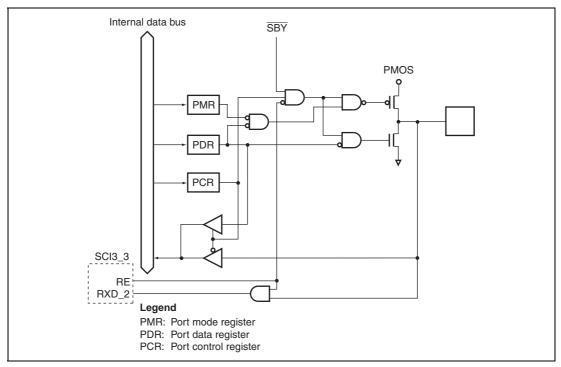


Figure B.11 Port 5 Block Diagram (P56) (H8/36024)

Product Ty	уре		Product Code	Model Marking	Package Code
H8/36010	Masked ROM	Standard	HD64336010FP	HD64336010(***)FP	LQFP-64 (FP-64E)
	version	product	HD64336010FX	HD64336010(***)FX	LQFP-48 (FP-48F)
			HD64336010FY	HD64336010(***)FY	LQFP-48 (FP-48B)
			HD64336010FT	HD64336010(***)FT	QFN-48(TNP-48)
		Product with POR & LVDC	HD64336010GFP	HD64336010G(***)FP	LQFP-64 (FP-64E)
			HD64336010GFX	HD64336010G(***)FX	LQFP-48 (FP-48F)
			HD64336010GFY	HD64336010G(***)FY	LQFP-48 (FP-48B)
			HD64336010GFT	HD64336010G(***)FT	QFN-48(TNP-48)

Legend

POR & LVDC: Power-on reset and low-voltage detection circuits

(***): ROM code

