

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36014gfyv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Preface

The H8/36024 Group and H8/36014 Group are single-chip microcomputers made up of the high-speed H8/300H CPU employing Renesas Technology original architecture as their cores, and the peripheral functions required to configure a system. The H8/300H CPU has an instruction set that is compatible with the H8/300 CPU.

- Target Users: This manual was written for users who will be using the H8/36024 Group and H8/36014 Group in the design of application systems. Target users are expected to understand the fundamentals of electrical circuits, logical circuits, and microcomputers.
- Objective: This manual was written to explain the hardware functions and electrical characteristics of the H8/36024 Group and H8/36014 Group to the target users. Refer to the H8/300H Series Software Manual for a detailed description of the instruction set.

Notes on reading this manual:

- In order to understand the overall functions of the chip Read the manual according to the contents. This manual can be roughly categorized into parts on the CPU, system control functions, peripheral functions and electrical characteristics.
- In order to understand the details of the CPU's functions Read the H8/300H Series Software Manual.
- In order to understand the details of a register when its name is known Read the index that is the final part of the manual to find the page number of the entry on the register. The addresses, bits, and initial values of the registers are summarized in section 17, List of Registers.

Example: Bit order: The MSB is on the left and the LSB is on the right.

Notes:

When using the on-chip emulator (E7, E8) for H8/36014 program development and debugging, the following restrictions must be noted.

- 1. The $\overline{\text{NMI}}$ pin is reserved for the E7 or E8, and cannot be used.
- 2. Area H'7000 to H'7FFF is used by the E7 or E8, and is not available to the user.
- 3. Area H'F780 to H'FB7F must on no account be accessed.

RENESAS

	Input Capture Operating Example	151
Figure 11.8	Buffer Operation Example (Input Capture)	152
Figure 11.9	PWM Mode Example (1)	153
Figure 11.10	PWM Mode Example (2)	
Figure 11.11	Buffer Operation Example (Output Compare)	155
Figure 11.12	PWM Mode Example	
	(TOB, TOC, and TOD = 0: initial output values are set to 0)	156
Figure 11.13	PWM Mode Example	
	(TOB, TOC, and TOD = 1: initial output values are set to 1)	157
Figure 11.14	Count Timing for Internal Clock Source	158
Figure 11.15	Count Timing for External Clock Source	158
Figure 11.16	Output Compare Output Timing	159
Figure 11.17	Input Capture Input Signal Timing	
Figure 11.18	Timing of Counter Clearing by Compare Match	
Figure 11.19	Buffer Operation Timing (Compare Match)	161
Figure 11.20	Buffer Operation Timing (Input Capture)	161
Figure 11.21	Timing of IMFA to IMFD Flag Setting at Compare Match	162
Figure 11.22	Timing of IMFA to IMFD Flag Setting at Input Capture	
Figure 11.23	Timing of Status Flag Clearing by CPU	163
Figure 11.24	Contention between TCNT Write and Clear	
Figure 11.25	Internal Clock Switching and TCNT Operation	
Figure 11.26	When Compare Match and Bit Manipulation Instruction to TCRW Occur a	t the
	1 1	t the
	Same Timing	165
Section 12	Same Timing	165
Section 12	Same Timing Watchdog Timer Block Diagram of Watchdog Timer	165 167
Section 12 Figure 12.1 Figure 12.2	Same Timing	
Section 12 Figure 12.1 Figure 12.2	Same Timing	165 167 171
Section 12 Figure 12.1 Figure 12.2 Section 13	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3)	165 167 171
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1	Same Timing	
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2	Same Timing	165 167 171 176 192
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3	Same Timing	165 167 171 176 192
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits)	
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart	165 165 171 176 192 192 193
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart Example of SCI3 Transmission in Asynchronous Mode	165 167 171 176 192 192 192
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing	
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart Example of SCI3 Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit) Sample Serial Transmission Data Flowchart (Asynchronous Mode)	165 165 167 171 176 192 192 193 193 194 195
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6 Figure 13.7	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart Example of SCI3 Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit) Sample Serial Transmission Data Flowchart (Asynchronous Mode) Example of SCI3 Reception in Asynchronous Mode	165
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6 Figure 13.7	Same Timing	
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6 Figure 13.7	Same Timing	165

RENESAS

Instruction	Size*	Function
DIVXS	B/W	$\begin{array}{l} \text{Rd} \div \text{Rs} \rightarrow \text{Rd} \\ \text{Performs signed division on data in two general registers: either 16 bits} \\ \div 8 \text{ bits} \rightarrow 8\text{-bit quotient and 8-bit remainder or 32 bits} \div 16 \text{ bits} \rightarrow 16\text{-bit} \\ \text{quotient and 16-bit remainder.} \end{array}$
СМР	B/W/L	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.
NEG	B/W/L	$0-\text{Rd} \rightarrow \text{Rd}$ Takes the two's complement (arithmetic complement) of data in a general register.
EXTU	W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left.
EXTS	W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit.
Note: * Re	efers to the	operand size.
B: Byt	te	
\ \ /· \ \ /	ord	

Arithmetic Operations Instructions (2) Table 2.3

W: Word

L: Longword

Logic Operations Instructions Table 2.4

Instruction	Size*	Function
AND	B/W/L	$Rd \wedge Rs \rightarrow Rd$, $Rd \wedge \#IMM \rightarrow Rd$ Performs a logical AND operation on a general register and another general register or immediate data.
OR	B/W/L	$Rd \lor Rs \rightarrow Rd$, $Rd \lor \#IMM \rightarrow Rd$ Performs a logical OR operation on a general register and another general register or immediate data.
XOR	B/W/L	$Rd \oplus Rs \rightarrow Rd$, $Rd \oplus #IMM \rightarrow Rd$ Performs a logical exclusive OR operation on a general register and another general register or immediate data.
NOT	B/W/L	\neg (Rd) \rightarrow (Rd) Takes the one's complement of general register contents.

Instruction	Size*	Function
TRAPA		Starts trap-instruction exception handling.
RTE		Returns from an exception-handling routine.
SLEEP		Causes a transition to a power-down state.
LDC	B/W	$(EAs) \rightarrow CCR$ Moves the source operand contents to the CCR. The CCR size is one byte, but in transfer from memory, data is read by word access.
STC	B/W	$CCR \rightarrow (EAd), EXR \rightarrow (EAd)$ Transfers the CCR contents to a destination location. The condition code register size is one byte, but in transfer to memory, data is written by word access.
ANDC	В	$\label{eq:CCR} CCR \wedge \#IMM \rightarrow CCR, EXR \wedge \#IMM \rightarrow EXR \\ \mbox{Logically ANDs the CCR with immediate data.}$
ORC	В	$\label{eq:CCR} CCR \lor \#IMM \to CCR, EXR \lor \#IMM \to EXR \\ \mbox{Logically ORs the CCR with immediate data.}$
XORC	В	$\begin{array}{l} CCR \oplus \#IMM \to CCR, EXR \oplus \#IMM \to EXR \\ Logically \; XORs \; the \; CCR \; with \; immediate \; data. \end{array}$
NOP	_	$PC + 2 \rightarrow PC$ Only increments the program counter.
Note: * R	efers to the	operand size.

Table 2.8 **System Control Instructions**

B: Byte

W: Word

Figure 3.2 Stack Status after Exception Handling

3.4.4 Interrupt Response Time

Table 3.2 shows the number of wait states after an interrupt request flag is set until the first instruction of the interrupt handling-routine is executed.

Table 3.2Interrupt Wait States

Item	States	Total
Waiting time for completion of executing instruction*	1 to 23	15 to 37
Saving of PC and CCR to stack	4	
Vector fetch	2	
Instruction fetch	4	
Internal processing	4	

Note: * Not including EEPMOV instruction.

6.1.2 System Control Register 2 (SYSCR2)

SYSCR2 controls the power-down modes, as well as SYSCR1.

D:4	Bit Nama	Initial	D AA/	Description
BIt	Bit Name	value	R/W	Description
7	SMSEL	0	R/W	Sleep Mode Selection
				This bit selects the mode to transit after the execution of a SLEEP instruction, as well as bit SSBY of SYSCR1.
				For details, see table 6.2.
6	_	0	_	Reserved
				This bit is always read as 0.
5	DTON	0	R/W	Direct Transfer on Flag
				This bit selects the mode to transit after the execution of a SLEEP instruction, as well as bit SSBY of SYSCR1.
				For details, see table 6.2.
4	MA2	0	R/W	Active Mode Clock Select 2 to 0
3	MA1	0	R/W	These bits select the operating clock frequency in active
2	MA0	0	R/W	and sleep modes. The operating clock frequency changes to the set frequency after the SLEEP instruction is executed.
				OXX: $\phi_{ m osc}$
				100: φ _{osc} /8
				101: φ _{osc} /16
				110: φ _{osc} /32
				111: φ _{osc} /64
1, 0	_	All 0	_	Reserved
				These bits are always read as 0.

Legend: X : Don't care.

Program Data	Verify Data	Reprogram Data	Comments
0	0	1	Programming completed
0	1	0	Reprogram bit
1	0	1	_
1	1	1	Remains in erased state

Table 7.4 Reprogram Data Computation Table

Table 7.5 Additional-Program Data Computation Table

Reprogram Data	Verify Data	Additional-Program Data	Comments
0	0	0	Additional-program bit
0	1	1	No additional programming
1	0	1	No additional programming
1	1	1	No additional programming

Table 7.6Programming Time

n (Number of Writes)	Programming Time	In Additional Programming	Comments
1 to 6	30	10	
7 to 1,000	200	_	
N			

Note: Time shown in μ s.

7.4.2 Erase/Erase-Verify

When erasing flash memory, the erase/erase-verify flowchart shown in figure 7.4 should be followed.

- 1. Prewriting (setting erase block data to all 0s) is not necessary.
- 2. Erasing is performed in block units. Make only a single-bit specification in the erase block register (EBR1). To erase multiple blocks, each block must be erased in turn.
- 3. The time during which the E bit is set to 1 is the flash memory erase time.
- 4. The watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc. An overflow cycle of approximately 19.8 ms is allowed.

- 5. For a dummy write to a verify address, write 1-byte data H'FF to an address whose lower two bits are B'00. Verify data can be read in longwords from the address to which a dummy write was performed.
- 6. If the read data is not erased successfully, set erase mode again, and repeat the erase/erase-verify sequence as before. The maximum number of repetitions of the erase/erase-verify sequence is 100.

7.4.3 Interrupt Handling when Programming/Erasing Flash Memory

All interrupts, including the $\overline{\text{NMI}}$ interrupt, are disabled while flash memory is being programmed or erased, or while the boot program is executing, for the following three reasons:

- 1. Interrupt during programming/erasing may cause a violation of the programming or erasing algorithm, with the result that normal operation cannot be assured.
- 2. If interrupt exception handling starts before the vector address is written or during programming/erasing, a correct vector cannot be fetched and the CPU malfunctions.
- 3. If an interrupt occurs during boot program execution, normal boot mode sequence cannot be carried out.

Bit	Bit Name	Initial Value	R/W	Description
1	IOA1	0	R/W	I/O Control A1 and A0
0	IOA0	0	R/W	When $IOA2 = 0$,
				00: No output at compare match
				01: 0 output to the FTIOA pin at GRA compare match
				10: 1 output to the FTIOA pin at GRA compare match
				11: Output toggles to the FTIOA pin at GRA compare match
				When IOA2 = 1,
				00: Input capture at rising edge of the FTIOA pin
				01: Input capture at falling edge of the FTIOA pin
				1X: Input capture at rising and falling edges of the FTIOA pin

Legend X: Don't care.

11.3.6 Timer I/O Control Register 1 (TIOR1)

TIOR1 selects the functions of GRC and GRD, and specifies the functions of the FTIOC and FTIOD pins.

Bit	Bit Name	Initial Value	R/W	Description
7	_	1	_	Reserved
				This bit is always read as 1.
6	IOD2	0	R/W	I/O Control D2
				Selects the GRD function.
				0: GRD functions as an output compare register
				1: GRD functions as an input capture register

Figure 13.8 Sample Serial Reception Data Flowchart (Asynchronous Mode)(1)

Figure 13.8 Sample Serial Reception Data Flowchart (Asynchronous Mode)(2)

		Initial					
Bit	Bit Name	Value	R/W	Description			
2	CH2	0	R/W	Channel Select 0 to 2			
1	CH1	0	R/W	Select analog input chann	els.		
0	CH0	0	R/W	When SCAN = 0	When SCAN = 1		
				X00: AN0	X00: AN0		
				X01: AN1	X01: AN0 to AN1		
				X10: AN2	X10: AN0 to AN2		
				X11: AN3	X11: AN0 to AN3		

Legend X: Don't care.

14.3.3 A/D Control Register (ADCR)

ADCR enables A/D conversion started by an external trigger signal.

Bit	Bit Name	Initial Value	R/W	Description
7	TRGE	0	R/W	Trigger Enable
				A/D conversion is started at the falling edge and the rising edge of the external trigger signal ($\overline{\text{ADTRG}}$) when this bit is set to 1.
				The selection between the falling edge and rising edge of the external trigger pin (ADTRG) conforms to the WPEG5 bit in the interrupt edge select register 2 (IEGR2)
6 to 1	_	All 1	_	Reserved
				These bits are always read as 1.
0	_	0	R/W	Reserved
				Do not set this bit to 1, though the bit is readable/writable.

15.3 Operation

15.3.1 Power-On Reset Circuit

Figure 15.2 shows the timing of the operation of the power-on reset circuit. As the power-supply voltage rises, the capacitor which is externally connected to the $\overline{\text{RES}}$ pin is gradually charged via the on-chip pull-up resistor (typ. 150 k Ω). Since the state of the $\overline{\text{RES}}$ pin is transmitted within the chip, the prescaler S and the entire chip are in their reset states. When the level on the $\overline{\text{RES}}$ pin reaches the specified value, the prescaler S is released from its reset state and it starts counting. The OVF signal is generated to release the internal reset signal after the prescaler S has counted 131,072 clock (ϕ) cycles. The noise cancellation circuit of approximately 100 ns is incorporated to prevent the incorrect operation of the chip by noise on the $\overline{\text{RES}}$ pin.

To achieve stable operation of this LSI, the power supply needs to rise to its full level and settles within the specified time. The maximum time required for the power supply to rise and settle after power has been supplied (t_{PWON}) is determined by the oscillation frequency (f_{osc}) and capacitance which is connected to $\overline{\text{RES}}$ pin ($C_{\overline{\text{RES}}}$). If t_{PWON} means the time required to reach 90 % of power supply voltage, the power supply circuit should be designed to satisfy the following formula.

 $t_{_{PWON}} \text{ (ms)} \le 90 \times C_{\overline{\text{RES}}} \text{ (}\mu\text{F)} + 162/f_{_{OSC}} \text{ (MHz)}$

(t_{_{PWON}} \leq 3000 ms, $C_{\overline{RES}} \geq 0.22~\mu F,$ and f_{_{OSC}} = 10 in 2-MHz to 10-MHz operation)

Note that the power supply voltage (Vcc) must fall below Vpor = 100 mV and rise after charge on the $\overline{\text{RES}}$ pin is removed. To remove charge on the $\overline{\text{RES}}$ pin, it is recommended that the diode should be placed near Vcc. If the power supply voltage (Vcc) rises from the point above Vpor, a power-on reset may not occur.

Figure 15.2 Operational Timing of Power-On Reset Circuit

Register Name	Abbre- viation	Bit No	Address	Module Name	Data Bus Width	Access State
Interrupt edge select register 2	IEGR2	8	H'FFF3	Interrupts	8	2
Interrupt enable register 1	IENR1	8	H'FFF4	Interrupts	8	2
Interrupt flag register 1	IRR1	8	H'FFF6	Interrupts	8	2
Wake-up interrupt flag register	IWPR	8	H'FFF8	Interrupts	8	2
Module standby control register 1	MSTCR1	8	H'FFF9	Power- down	8	2
Module standby control register 2	MSTCR2	8	H'FFFA	Power- down	8	2

Notes: 1. LVDC: Low-voltage detection circuits (optional)

2. Only word access can be used.

3. WDT: Watchdog timer

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
GRC	GRC15	GRC14	GRC13	GRC12	GRC11	GRC10	GRC9	GRC8	Timer W
	GRC7	GRC6	GRC5	GRC4	GRC3	GRC2	GRC1	GRC0	
GRD	GRD15	GRD14	GRD13	GRD12	GRD11	GRD10	GRD9	GRD8	
	GRD7	GRD6	GRD5	GRD4	GRD3	GRD2	GRD1	GRD0	
FLMCR1	—	SWE	ESU	PSU	EV	PV	E	Р	ROM
FLMCR2	FLER	_	_	_	_	_	_	_	
EBR1	_	_	_	EB4	EB3	EB2	EB1	EB0	
FENR	FLSHE	_	_	_	_	_	_	_	
TCRV0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	Timer V
TCSRV	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	
TCORA	TCORA7	TCORA6	TCORA5	TCORA4	TCORA3	TCORA2	TCORA1	TCORA0	
TCORB	TCORB7	TCORB6	TCORB5	TCORB4	TCORB3	TCORB2	TCORB1	TCORB0	
TCNTV	TCNTV7	TCNTV6	TCNTV5	TCNTV4	TCNTV3	TCNTV2	TCNTV1	TCNTV0	
TCRV1	—	_	_	TVEG1	TVEG0	TRGE	_	ICKS0	
SMR	СОМ	CHR	PE	PM	STOP	MP	CKS1	CKS0	SCI3
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0	
SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	
SSR	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT	
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	
ADDRA	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D converter
	AD1	AD0	_	_	_	_	_	_	
ADDRB	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	_	_	_	_	
ADDRC	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	_	_	_	_	
ADDRD	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	_	_	_	_	
ADCSR	ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0	
ADCR	TRGE	_	_	_	_	—	_	_	
TCSRWD	B6WI	TCWE	B4WI	TCSRWE	B2WI	WDON	B0WI	WRST	WDT*
TCWD	TCWD7	TCWD6	TCWD5	TCWD4	TCWD3	TCWD2	TCWD1	TCWD0	
TMWD					CKS3	CKS2	CKS1	CKS0	

17.3 Register States in Each Operating Mode

Register Name	Reset	Active	Sleep	Subsleep	Standby	Module
SMR_3	Initialized	_	_	Initialized	Initialized	SCI3_3
BRR_3	Initialized	_	_	Initialized	Initialized	-
SCR3_3	Initialized			Initialized	Initialized	-
TDR_3	Initialized		_	Initialized	Initialized	-
SSR_3	Initialized	_	_	Initialized	Initialized	-
RDR_3	Initialized	_	_	Initialized	Initialized	-
SMCR	Initialized	_	_	Initialized	Initialized	-
LVDCR	Initialized	_	_	_	_	LVDC (optional)
LVDSR	Initialized	_		_	—	-
SMR_2	Initialized	_	_	Initialized	Initialized	SCI3_2
BRR_2	Initialized		_	Initialized	Initialized	-
SCR3_2	Initialized			Initialized	Initialized	-
TDR_2	Initialized	_	_	Initialized	Initialized	-
SSR_2	Initialized		_	Initialized	Initialized	-
RDR_2	Initialized		_	Initialized	Initialized	-
TMRW	Initialized	_	_	_	_	Timer W
TCRW	Initialized	_		_	_	-
TIERW	Initialized	_		_	_	-
TSRW	Initialized	_	_	_	_	-
TIOR0	Initialized	_	_	_	_	-
TIOR1	Initialized	_		_	_	-
TCNT	Initialized	_	_	_	_	-
GRA	Initialized	_	_	_	_	-
GRB	Initialized	_	_	_	_	-
GRC	Initialized	_	_	_	_	-
GRD	Initialized	_	_	_	_	-
FLMCR1	Initialized	_	_	Initialized	Initialized	ROM
FLMCR2	Initialized			_	_	-
EBR1	Initialized	_	_	Initialized	Initialized	-
FENR	Initialized	_	_	_	_	

					Values			
Item	Symbol	Applicable Pins	Test Condition	Min	Тур	Мах	Unit	Notes
Pull-up MOS	$-I_{p}$	P12 to P10, P17 to P14,	$V_{cc} = 5.0 \text{ V},$ $V_{IN} = 0.0 \text{ V}$	50.0	—	300.0	μA	
current		P55 to P50	$V_{cc} = 3.0 \text{ V},$ $V_{IN} = 0.0 \text{ V}$	—	60.0	_		Reference value
Input capaci- tance	C _{in}	All input pins except power supply pins	f = 1 MHz, $V_{IN} = 0.0 V,$ $T_a = 25^{\circ}C$	—	_	15.0	pF	
Active mode current	I _{OPE1} V _{CC}		Active mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	15.0	30.0	mA * ²	
consump- tion			Active mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	8.0	_		* ² Reference value
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	1.8	3.0	mA	*2
			Active mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	1.2			* ² Reference value
Sleep mode current consump- tion	I _{SLEEP1}	V _{cc}	Sleep mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	11.5	22.5	mA	*2
			Sleep mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	6.5	_		* ² Reference value
	I _{SLEEP2}	V _{cc}	Sleep mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	1.7	2.7	mA	*2
			Sleep mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	—	1.1	_		* ² Reference value
Standby mode current consump- tion	I _{stby}	V _{cc}				5.0	μΑ	*2

RENESAS

Appendix A Instruction Set

A.1 Instruction List

Operand Notation

Symbol	Description
Rd	General (destination*) register
Rs	General (source*) register
Rn	General register*
ERd	General destination register (address register or 32-bit register)
ERs	General source register (address register or 32-bit register)
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
PC	Program counter
SP	Stack pointer
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
disp	Displacement
\rightarrow	Transfer from the operand on the left to the operand on the right, or transition from the state on the left to the state on the right
+	Addition of the operands on both sides
-	Subtraction of the operand on the right from the operand on the left
×	Multiplication of the operands on both sides
÷	Division of the operand on the left by the operand on the right
^	Logical AND of the operands on both sides
\vee	Logical OR of the operands on both sides
\oplus	Logical exclusive OR of the operands on both sides
7	NOT (logical complement)

Figure B.9 Port 5 Block Diagram (P57, P56) (H8/36014)

Figure B.21 Port 8 Block Diagram (P84 to P81)

