

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	PWM, WDT
Number of I/O	30
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN
Supplier Device Package	48-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36022ftv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

16

H8/36024Group, H8/36014Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series

H8/36024F H8/36022F H8/36014F H8/36012F H8/36024 H8/36023 H8/36022 H8/36014 H8/36013 H8/36012 H8/36011

H8/36010 Renesas Electronics

www.renesas.com

Rev.4.00 2005.09

HD64F36024, HD64F36024G,

HD64F36022, HD64F36022G,

HD64F36014, HD64F36014G, HD64F36012G,

HD64336024, HD64336024G,

HD64336023, HD64336023G,

HD64336022, HD64336022G,

HD64336014, HD64336014G, HD64336013G,

HD64336012, HD64336012G,

HD64336011, HD64336011G,

HD64336010, HD64336010G

Rev. 4.00 Sep. 23, 2005 Page ii of xxvi

2.3 Data Formats

The H8/300H CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, ..., 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit BCD data.

2.3.1 General Register Data Formats

Data Type General Register Data Format 7 0 **RnH** 6 5 4 3 2 1 0 Don't care 7 1-bit data Don't care RnL 7 6 5 4 3 2 1-bit data 7 4 3 0 4-bit BCD data RnH Upper Lower Don't care 4 3 0 4-bit BCD data RnL Don't care Upper Lower Byte data RnH Don't care MSB LSB Byte data RnL Don't care MSB LSB

Figure 2.5 shows the data formats in general registers.

Figure 2.5 General Register Data Formats (1)

The access ranges of absolute addresses for the group of this LSI are those shown in table 2.11, because the upper 8 bits are ignored.

Absolute Address	Access Range
8 bits (@aa:8)	H'FF00 to H'FFFF
16 bits (@aa:16)	H'0000 to H'FFFF
24 bits (@aa:24)	H'0000 to H'FFFF

Table 2.11 Absolute Address Access Ranges

(6) Immediate—#xx:8, #xx:16, or #xx:32

The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a vector address.

(7) Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode is used in the BSR instruction. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to +32768 bytes (-16383 to +16384 words) from the branch instruction. The resulting value should be an even number.

(8) Memory Indirect—@@aa:8

This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit absolute address specifying a memory operand. This memory operand contains a branch address. The memory operand is accessed by longword access. The first byte of the memory operand is ignored, generating a 24-bit branch address. Figure 2.8 shows how to specify branch address for in memory indirect mode. The upper bits of the absolute address are all assumed to be 0, so the address range is 0 to 255 (H'0000 to H'00FF).

Note that the first part of the address range is also the exception vector area.

3.2.2 Interrupt Edge Select Register 2 (IEGR2)

IEGR2 selects the direction of an edge that generates interrupt requests of the pins $\overline{\text{ADTRG}}$ and $\overline{\text{WKP5}}$ to $\overline{\text{WKP0}}$.

D :/	Dit Norma	Initial	DAM	Description
Bit	Bit Name	value	R/W	Description
7, 6	_	All 1	—	Reserved
				These bits are always read as 1.
5	WPEG5	0	R/W	WKP5 Edge Select
				0: Falling edge of $\overline{WKP5}$ (\overline{ADTRG}) pin input is detected
				1: Rising edge of $\overline{WKP5}$ (\overline{ADTRG}) pin input is detected
4	WPEG4	0	R/W	WKP4 Edge Select
				0: Falling edge of $\overline{WKP4}$ pin input is detected
				1: Rising edge of $\overline{WKP4}$ pin input is detected
3	WPEG3	0	R/W	WKP3 Edge Select
				0: Falling edge of $\overline{WKP3}$ pin input is detected
				1: Rising edge of $\overline{WKP3}$ pin input is detected
2	WPEG2	0	R/W	WKP2 Edge Select
				0: Falling edge of $\overline{WKP2}$ pin input is detected
				1: Rising edge of $\overline{WKP2}$ pin input is detected
1	WPEG1	0	R/W	WKP1Edge Select
				0: Falling edge of $\overline{WKP1}$ pin input is detected
				1: Rising edge of $\overline{WKP1}$ pin input is detected
0	WPEG0	0	R/W	WKP0 Edge Select
				0: Falling edge of $\overline{WKP0}$ pin input is detected
				1: Rising edge of WKP0 pin input is detected

When an address break is set in the data read cycle or data write cycle, the data bus used will depend on the combination of the byte/word access and address. Table 4.1 shows the access and data bus used. When an I/O register space with an 8-bit data bus width is accessed in word size, a byte access is generated twice. For details on data widths of each register, see section 17.1, Register Addresses (Address Order).

Table 4.1 Access and Data Bus Used

	Word A	Access	Byte Access			
	Even Address	Odd Address	Even Address	Odd Address		
ROM space	Upper 8 bits	Lower 8 bits	Upper 8 bits	Upper 8 bits		
RAM space	Upper 8 bits	Lower 8 bits	Upper 8 bits	Upper 8 bits		
I/O register with 8-bit data bus width	Upper 8 bits	Upper 8 bits	Upper 8 bits	Upper 8 bits		
I/O register with 16-bit data bus width	Upper 8 bits	Lower 8 bits	—	_		

4.1.2 Address Break Status Register (ABRKSR)

ABRKSR consists of the address break interrupt flag and the address break interrupt enable bit.

Bit	Bit Name	Initial Value	R/W	Description
7	ABIF	0	R/W	Address Break Interrupt Flag
				[Setting condition]
				When the condition set in ABRKCR is satisfied
				[Clearing condition]
				When 0 is written after ABIF=1 is read
6	ABIE	0	R/W	Address Break Interrupt Enable
				When this bit is 1, an address break interrupt request is enabled.
5 to 0	_	All 1	_	Reserved
				These bits are always read as 1.

9.3.5 Pin Functions

The correspondence between the register specification and the port functions is shown below.

• P57/TXD_3* pin

Register	SMCR*	PCR5	
Bit Name	TXD_3	PCR57	Pin Function
Setting Value	0	0	P57 input pin
		1	P57 output pin
	1	Х	TXD_3 output pin*

Legend X: Don't care.

Note: * Not available in the H8/36014.

• P56/RXD_3* pin

Register SCR3_3* PCR5

Bit Name	RE	PCR56	Pin Function
Setting Value	0	0	P56 input pin
		1	P56 output pin
	1	Х	RXD_3 input pin*

Legend X: Don't care.

Note: * Not available in the H8/36014.

• P55/WKP5/ADTRG pin

Register	PMR5	PCR5	
Bit Name	WKP5	PCR55	Pin Function
Setting Value	0	0	P55 input pin
		1	P55 output pin
	1	Х	WKP5/ADTRG input pin

Legend X: Don't care.

10.3.2 Time Constant Registers A and B (TCORA, TCORB)

TCORA and TCORB have the same function.

TCORA and TCORB are 8-bit read/write registers.

TCORA and TCNTV are compared at all times. When the TCORA and TCNTV contents match, CMFA is set to 1 in TCSRV. If CMIEA is also set to 1 in TCRV0, a CPU interrupt is requested. Note that they must not be compared during the T3 state of a TCORA write cycle.

Timer output from the TMOV pin can be controlled by the identifying signal (compare match A) and the settings of bits OS3 to OS0 in TCSRV.

TCORA and TCORB are initialized to H'FF.

Figure 11.1 Timer W Block Diagram

11.3.2 Timer Control Register W (TCRW)

TCRW selects the timer counter clock source, selects a clearing condition, and specifies the timer output levels.

Bit	Bit Name	Initial Value	R/W	Description		
7	CCLR	0	R/W	Counter Clear		
				The TCNT value is cleared by compare match A when this bit is 1. When it is 0, TCNT operates as a free- running counter.		
6	CKS2	0	R/W	Clock Select 2 to 0		
5	CKS1	0	R/W	Select the TCNT clock source.		
4	CKS0	0	R/W	000: Internal clock: counts on ϕ		
				001: Internal clock: counts on \phi/2		
				010: Internal clock: counts on $\phi/4$		
				011: Internal clock: counts on \phi/8		
				1XX: Counts on rising edges of the external event (FTCI)		
				When the internal clock source (ϕ) is selected, subclock sources are counted in subactive and subsleep modes.		
3	TOD	0	R/W	Timer Output Level Setting D		
				Sets the output value of the FTIOD pin until the first compare match D is generated.		
				0: Output value is 0*		
				1: Output value is 1*		
2	TOC	0	R/W	Timer Output Level Setting C		
				Sets the output value of the FTIOC pin until the first compare match C is generated.		
				0: Output value is 0*		
				1: Output value is 1*		
1	ТОВ	0	R/W	Timer Output Level Setting B		
				Sets the output value of the FTIOB pin until the first compare match B is generated.		
				0: Output value is 0*		
				1: Output value is 1*		

13.2 Input/Output Pins

Table 13.2 shows the SCI3 pin configuration.

Table 13.2 Pin Configuration

Pin Name	Abbreviation	I/O	Function
SCI3 clock	SCK3	I/O	SCI3 clock input/output
SCI3 receive data input	RXD	Input	SCI3 receive data input
SCI3 transmit data output	TXD	Output	SCI3 transmit data output

13.3 Register Descriptions

The SCI3 has the following registers for each channel.

- Receive Shift Register (RSR)
- Receive Data Register (RDR)
- Transmit Shift Register (TSR)
- Transmit Data Register (TDR)
- Serial Mode Register (SMR)
- Serial Control Register 3 (SCR3)
- Serial Status Register (SSR)
- Bit Rate Register (BRR)
- SCI3_3 Module Control Register (SMCR)

18.2.6 Flash Memory Characteristics

Table 18.7 Flash Memory Characteristics

 V_{cc} = 3.0 V to 5.5 V, V_{ss} = 0.0 V, T_a = -20°C to +75°C, unless otherwise specified.

Item			Test				
		Symbol	Condition	Min	Тур	Max	Unit
Programming	time (per 128 bytes)* ¹ * ² * ⁴	t _P		_	7	200	ms
Erase time (pe	r block) * ¹ * ³ * ⁶	t _e		—	100	1200	ms
Reprogrammir	ng count	N_{wec}		1000	10000	—	Times
Programming	Wait time after SWE bit setting*1	x		1	_	_	μs
	Wait time after PSU bit setting*1	у		50	_	_	μs
	Wait time after P bit setting	z1	$1 \le n \le 6$	28	30	32	μs
	* ¹ * ⁴	z2	$7 \le n \le 1000$	198	200	202	μs
		z3	Additional- programming	8	10	12	μs
	Wait time after P bit clear*1	α		5	_	—	μs
	Wait time after PSU bit clear*1	β		5	_	_	μs
	Wait time after PV bit setting*1	γ		4	_	_	μs
	Wait time after dummy write* ¹	ε		2	_	_	μs
	Wait time after PV bit clear*1	η		2	_	_	μs
	Wait time after SWE bit clear*1	θ		100	_	_	μs
	Maximum programming count*1*4*5	Ν			_	1000	Times

		Applicable			Value		Reference	
Item	Symbol	Pins	Test Condition	Min	Тур	Max	Unit	Figure
Input pin high width	t _{in}	NMI, IRQO, IRQ3, WKP0 to WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTCI, FTIOA to FTIOD		2	_	_	t _{cyc}	Figure 18.3
Input pin low width	t _{ıL}	NMI, IRQ0, IRQ3, WKP0 to WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTCI, FTIOA to FTIOD		2			t _{cyc}	-

Notes: 1. When an external clock is input, the minimum system clock oscillator frequency is 1.0 MHz.

2. Determined by the MA2 to MA0 bits in the system control register 2 (SYSCR2).

Symbo	Description									
(), <>	Contents of operand									
Note:	General registers include 8-bit registers (R0H to R7H and R0L to R7L) and 16-bit registers (R0 to R7 and E0 to E7).									

Condition Code Notation

Symbol	Description
\updownarrow	Changed according to execution result
*	Undetermined (no guaranteed value)
0	Cleared to 0
1	Set to 1
_	Not affected by execution of the instruction
Δ	Varies depending on conditions, described in notes

8. Block transfer instructions

Mnemonic				A Inst	ddro ruc	essi tion	ng Lei	Moc ngth	le a 1 (by	nd /tes)								No. of States [*]	
		erand Size	×		ERn	(d, ERn)	@-ERn/@ERn+	@aa	@(d, PC)	@ @aa	I	Operation	Operation Condition Code			rmal	lvanced			
		g	¥	Rn	0	0							1	н	N	z	v	с	ž	Ad
EEPMOV	EEPMOV. B										4	$\begin{array}{l} \text{if } R4L \neq 0 \text{ then} \\ \text{repeat} @R5 \rightarrow @R6 \\ &R5+1 \rightarrow R5 \\ &R6+1 \rightarrow R6 \\ &R4L-1 \rightarrow R4L \\ \text{until} \qquad R4L=0 \\ \text{else next} \end{array}$		_					8+ 4n ^{*2}	
	EEPMOV. W										4	$\begin{array}{l} \text{if } R4 \neq 0 \text{ then} \\ \text{repeat} @R5 \rightarrow @R6 \\ & R5+1 \rightarrow R5 \\ & R6+1 \rightarrow R6 \\ & R4-1 \rightarrow R4 \\ \text{until} \qquad R4=0 \\ \text{else next} \end{array}$		_		_	_		8+ 4n ^{*2}	

- Notes: 1. The number of states in cases where the instruction code and its operands are located in on-chip memory is shown here. For other cases see Appendix A.3, Number of Execution States.
 - 2. n is the value set in register R4L or R4.
 - (1) Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
 - (2) Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
 - (3) Retains its previous value when the result is zero; otherwise cleared to 0.
 - (4) Set to 1 when the adjustment produces a carry; otherwise retains its previous value.
 - (5) The number of states required for execution of an instruction that transfers data in synchronization with the E clock is variable.
 - (6) Set to 1 when the divisor is negative; otherwise cleared to 0.
 - (7) Set to 1 when the divisor is zero; otherwise cleared to 0.
 - (8) Set to 1 when the quotient is negative; otherwise cleared to 0.

Figure B.9 Port 5 Block Diagram (P57, P56) (H8/36014)

Figure B.16 Port 7 Block Diagram (P74)

Appendix D Package Dimensions

The package dimensions that are shows in the Renesas Semiconductor Packages Data Book have priority.

