

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	PWM, WDT
Number of I/O	30
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36022fxv

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

18.5	Output Load Condition	
Арре	endix A Instruction Set	
A.1	Instruction List	
A.2	Operation Code Map	
A.3	Number of Execution States	
A.4	Combinations of Instructions and Addressing Modes	
App	endix B I/O Port Block Diagrams	
B.1	I/O Port Block Diagrams	
	Port States in Each Operating State	
Appo	endix C Product Code Lineup	
Appo	endix D Package Dimensions	
Mair	n Revisions and Additions in this Edition	
Inde	х	

(1) Register Direct—Rn

The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

(2) Register Indirect—@ERn

The register field of the instruction code specifies an address register (ERn), the lower 24 bits of which contain the address of the operand on memory.

(3) Register Indirect with Displacement—@(d:16, ERn) or @(d:24, ERn)

A 16-bit or 24-bit displacement contained in the instruction is added to an address register (ERn) specified by the register field of the instruction, and the lower 24 bits of the sum the address of a memory operand. A 16-bit displacement is sign-extended when added.

(4) Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn

• Register indirect with post-increment—@ERn+

The register field of the instruction code specifies an address register (ERn) the lower 24 bits of which contains the address of a memory operand. After the operand is accessed, 1, 2, or 4 is added to the address register contents (32 bits) and the sum is stored in the address register. The value added is 1 for byte access, 2 for word access, or 4 for longword access. For the word or longword access, the register value should be even.

• Register indirect with pre-decrement—@-ERn

The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field in the instruction code, and the lower 24 bits of the result is the address of a memory operand. The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for word access, or 4 for longword access. For the word or longword access, the register value should be even.

(5) Absolute Address—@aa:8, @aa:16, @aa:24

The instruction code contains the absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24)

For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 16-bit absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can access the entire address space.

7.2.3 Erase Block Register 1 (EBR1)

EBR1 specifies the flash memory erase area block. EBR1 is initialized to H'00 when the SWE bit in FLMCR1 is 0. Do not set more than one bit at a time, as this will cause all the bits in EBR1 to be automatically cleared to 0.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	All 0	_	Reserved
				These bits are always read as 0.
4	EB4	0	R/W	When this bit is set to 1, 28 kbytes of H'1000 to H'7FFF will be erased.
3	EB3	0	R/W	When this bit is set to 1, 1 kbyte of H'0C00 to H'0FFF will be erased.
2	EB2	0	R/W	When this bit is set to 1, 1 kbyte of H'0800 to H'0BFF will be erased.
1	EB1	0	R/W	When this bit is set to 1, 1 kbyte of H'0400 to H'07FF will be erased.
0	EB0	0	R/W	When this bit is set to 1, 1 kbyte of H'0000 to H'03FF will be erased.

7.2.4 Flash Memory Enable Register (FENR)

Bit 7 (FLSHE) in FENR enables or disables the CPU access to the flash memory control registers, FLMCR1, FLMCR2, and EBR1.

Bit	Bit Name	Initial Value	R/W	Description
7	FLSHE	0	R/W	Flash Memory Control Register Enable
				Flash memory control registers can be accessed when this bit is set to 1. Flash memory control registers cannot be accessed when this bit is set to 0.
6 to 0		All 0	_	Reserved
				These bits are always read as 0.

- 4. After matching the bit rates, the chip transmits one H'00 byte to the host to indicate the completion of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the chip. If reception could not be performed normally, initiate boot mode again by a reset. Depending on the host's transfer bit rate and system clock frequency of this LSI, there will be a discrepancy between the bit rates of the host and the chip. To operate the SCI properly, set the host's transfer bit rate and system clock frequency of this LSI within the ranges listed in table 7.3.
- 5. In boot mode, a part of the on-chip RAM area is used by the boot program. The area H'F780 to H'FEEF is the area to which the programming control program is transferred from the host. The boot program area cannot be used until the execution state in boot mode switches to the programming control program.
- 6. Before branching to the programming control program, the chip terminates transfer operations by SCI3 (by clearing the RE and TE bits in SCR3 to 0), however the adjusted bit rate value remains set in BRR. Therefore, the programming control program can still use it for transfer of write data or verify data with the host. The TxD pin is high (PCR22 = 1, P22 = 1). The contents of the CPU general registers are undefined immediately after branching to the programming control program. These registers must be initialized at the beginning of the programming control program, as the stack pointer (SP), in particular, is used implicitly in subroutine calls, etc.
- 7. Boot mode can be cleared by a reset. End the reset after driving the reset pin low, waiting at least 20 states, and then setting the $\overline{\text{NMI}}$ pin. Boot mode is also cleared when a WDT overflow occurs.
- 8. Do not change the TEST pin and $\overline{\text{NMI}}$ pin input levels in boot mode.

9.3.5 Pin Functions

The correspondence between the register specification and the port functions is shown below.

• P57/TXD_3* pin

Register	SMCR*	PCR5	
Bit Name	TXD_3	PCR57	Pin Function
Setting Value	0	0	P57 input pin
		1	P57 output pin
	1	Х	TXD_3 output pin*

Legend X: Don't care.

Note: * Not available in the H8/36014.

• P56/RXD_3* pin

Register SCR3_3* PCR5

Bit Name	RE	PCR56	Pin Function
Setting Value	0	0	P56 input pin
		1	P56 output pin
	1	Х	RXD_3 input pin*

Legend X: Don't care.

Note: * Not available in the H8/36014.

• P55/WKP5/ADTRG pin

Register	PMR5	PCR5	
Bit Name	WKP5	PCR55	Pin Function
Setting Value	0	0	P55 input pin
		1	P55 output pin
	1	Х	WKP5/ADTRG input pin

Legend X: Don't care.

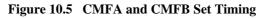
• P83/FTIOC pin

Register	TIOR1			PCR8	
Bit Name	IOC2	IOC1	IOC0	PCR83	Pin Function
Setting Value	0	0	0	0	P83 input/FTIOC input pin
				1	P83 output/FTIOC input pin
	0	0	1	Х	FTIOC output pin
	0	1	Х	Х	FTIOC output pin
	1	Х	Х	0	P83 input/FTIOC input pin
				1	P83 output/FTIOC input pin

Legend X: Don't care.

• P82/FTIOB pin

Register	ster TIOR0 PCR8		PCR8		
Bit Name	IOB2	IOB1	IOB0	PCR82	Pin Function
Setting Value	0	0	0	0	P82 input/FTIOB input pin
				1	P82 output/FTIOB input pin
	0	0	1	Х	FTIOB output pin
	0	1	Х	Х	FTIOB output pin
	1	Х	Х	0	P82 input/FTIOB input pin
				1	P82 output/FTIOB input pin


Legend X: Don't care.

• P81/FTIOA pin

Register	TIOR0			PCR8	
Bit Name	IOA2	IOA1	IOA0	PCR81	Pin Function
Setting Value	0	0	0	0	P81 input/FTIOA input pin
				1	P81 output/FTIOA input pin
	0	0	1	Х	FTIOA output pin
	0	1	Х	Х	FTIOA output pin
	1	Х	Х	0	P81 input/FTIOA input pin
				1	P81 output/FTIOA input pin

Legend X: Don't care.

ø				
TCNTV	Ν	_X	N+1	
TCORA or TCORB	Ν			
Compare match signal				
CMFA or				

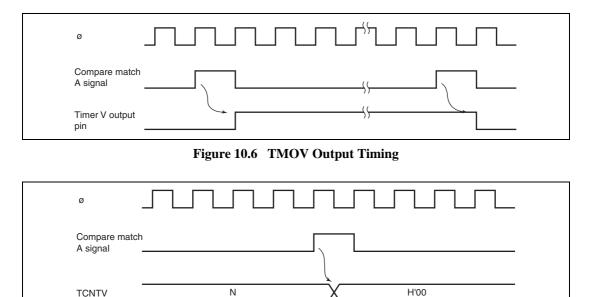


Figure 10.7 Clear Timing by Compare Match

12.3 Operation

The watchdog timer is provided with an 8-bit counter. If 1 is written to WDON while writing 0 to B2WI when the TCSRWE bit in TCSRWD is set to 1, TCWD begins counting up. (To operate the watchdog timer, two write accesses to TCSRWD are required.) When a clock pulse is input after the TCWD count value has reached H'FF, the watchdog timer overflows and an internal reset signal is generated. The internal reset signal is output for a period of 256 ϕ_{osc} clock cycles. TCWD is a writable counter, and when a value is set in TCWD, the count-up starts from that value. An overflow period in the range of 1 to 256 input clock cycles can therefore be set, according to the TCWD set value.

Figure 12.2 shows an example of watchdog timer operation.

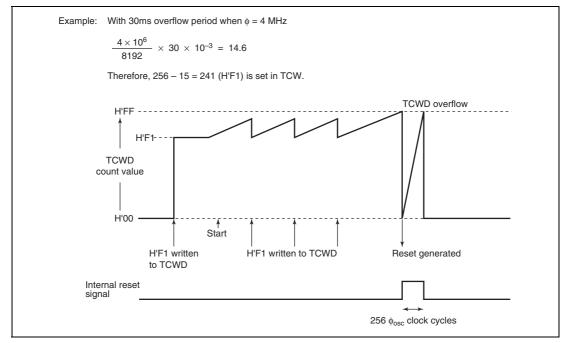
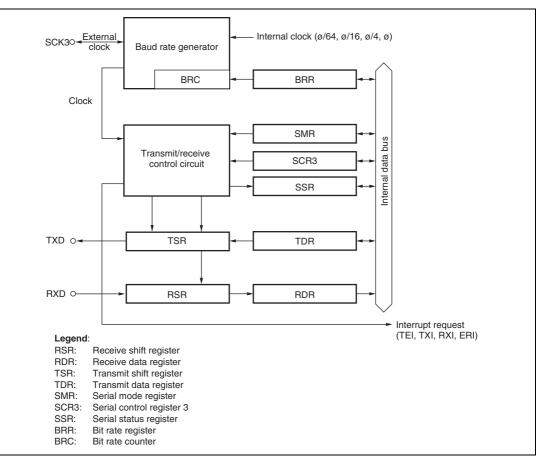
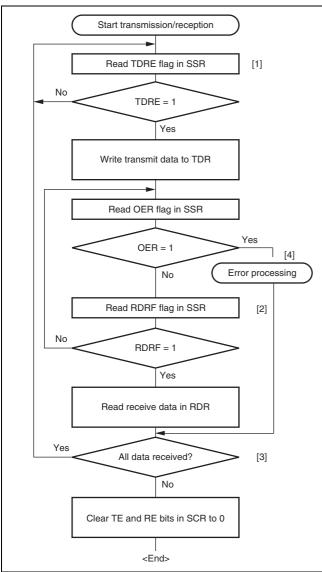


Figure 12.2 Watchdog Timer Operation Example




Figure 13.1 Block Diagram of SCI3

13.3.5 Serial Mode Register (SMR)

SMR is used to set the SCI3's serial transfer format and select the baud rate generator clock source.

Bit	Bit Name	Initial Value	R/W	Description
7	COM	0	R/W	Communication Mode
				0: Asynchronous mode
				1: Clocked synchronous mode
6	CHR	0	R/W	Character Length (enabled only in asynchronous mode)
				0: Selects 8 bits as the data length.
				1: Selects 7 bits as the data length.
5	PE	0	R/W	Parity Enable (enabled only in asynchronous mode)
				When this bit is set to 1, the parity bit is added to transmit data before transmission, and the parity bit is checked in reception.
4	РМ	0	R/W	Parity Mode (enabled only when the PE bit is 1 in asynchronous mode)
				0: Selects even parity.
				1: Selects odd parity.
3	STOP	0	R/W	Stop Bit Length (enabled only in asynchronous mode)
				Selects the stop bit length in transmission.
				0: 1 stop bit
				1: 2 stop bits
				For reception, only the first stop bit is checked, regardless of the value in the bit. If the second stop bit is 0, it is treated as the start bit of the next transmit character.
2	MP	0	R/W	Multiprocessor Mode
				When this bit is set to 1, the multiprocessor communication function is enabled. The PE bit and PM bit settings are invalid in multiprocessor mode. In clocked synchronous mode, clear this bit to 0.

- Read SSR and check that the TDRE flag is set to 1, then write transmit data to TDR.
 When data is written to TDR, the TDRE flag is automatically cleared to 0.
- Read SSR and check that the RDRF flag is set to 1, then read the receive data in RDR.
 When data is read from RDR, the RDRF flag is automatically cleared to 0.
- [3] To continue serial transmission/ reception, before the MSB (bit 7) of the current frame is received, finish reading the RDRF flag, reading RDR. Also, before the MSB (bit 7) of the current frame is transmitted, read 1 from the TDRE flag to confirm that writing is possible. Then write data to TDR.

When data is written to TDR, the TDRE flag is automatically cleared to 0. When data is read from RDR, the RDRF flag is automatically cleared to 0.

[4] If an overrun error occurs, read the OER flag in SSR, and after performing the appropriate error processing, clear the OER flag to 0. Transmission/reception cannot be resumed if the OER flag is set to 1. For overrun error processing, see figure 13.13.

Figure 13.14 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations (Clocked Synchronous Mode)

Section 14 A/D Converter

This LSI includes a successive approximation type 10-bit A/D converter that allows up to four analog input channels to be selected. The block diagram of the A/D converter is shown in figure 14.1.

14.1 Features

- 10-bit resolution
- Four input channels
- Conversion time: at least 3.5 µs per channel (at 20 MHz operation)
- Two operating modes
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers
 - Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Two conversion start methods
 - Software
 - External trigger signal
- Interrupt request
 - An A/D conversion end interrupt request (ADI) can be generated

16.2 When Not Using Internal Power Supply Step-Down Circuit

When the internal power supply step-down circuit is not used, connect the external power supply to the V_{cL} pin and V_{cc} pin, as shown in figure 16.2. The external power supply is then input directly to the internal power supply. The permissible range for the power supply voltage is 3.0 V to 3.6 V. Operation cannot be guaranteed if a voltage outside this range (less than 3.0 V or more than 3.6 V) is input.

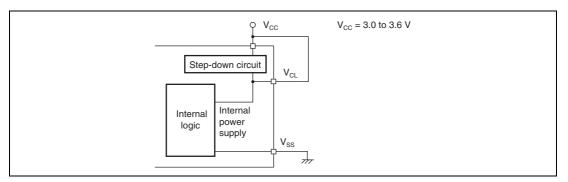


Figure 16.2 Power Supply Connection when Internal Step-Down Circuit is Not Used

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
ABRKCR	RTINTE	CSEL1	CSEL0	ACMP2	ACMP1	ACMP0	DCMP1	DCMP0	Address
ABRKSR	ABIF	ABIE	_	_	_	_	_	_	break
BARH	BARH7	BARH6	BARH5	BARH4	BARH3	BARH2	BARH1	BARH0	-
BARL	BARL7	BARL6	BARL5	BARL4	BARL3	BARL2	BARL1	BARL0	-
BDRH	BDRH7	BDRH6	BDRH5	BDRH4	BDRH3	BDRH2	BDRH1	BDRH0	-
BDRL	BDRL7	BDRL6	BDRL5	BDRL4	BDRL3	BDRL2	BDRL1	BDRL0	-
PUCR1	PUCR17	PUCR16	PUCR15	PUCR14	—	PUCR12	PUCR11	PUCR10	I/O port
PUCR5	_	_	PUCR55	PUCR54	PUCR53	PUCR52	PUCR51	PUCR50	-
PDR1	P17	P16	P15	P14	_	P12	P11	P10	•
PDR2	_	_	—	—	—	P22	P21	P20	-
PDR5	P57	P56	P55	P54	P53	P52	P51	P50	-
PDR7	_	P76	P75	P74	P73	P72	P71	P70	-
PDR8	_	_	_	P84	P83	P82	P81	P80	-
PDRB	_	_	_	_	PB3	PB2	PB1	PB0	-
PMR1	IRQ3	_	_	IRQ0	TXD2	_	TXD	_	-
PMR5	POF57	POF56	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0	-
PCR1	PCR17	PCR16	PCR15	PCR14	_	PCR12	PCR11	PCR10	-
PCR2	_	_	_	_	_	PCR22	PCR21	PCR20	•
PCR5	PCR57	PCR56	PCR55	PCR54	PCR53	PCR52	PCR51	PCR50	-
PCR7	_	PCR76	PCR75	PCR74	PCR73	PCR72	PCR71	PCR70	-
PCR8	_	_	_	PCR84	PCR83	PCR82	PCR81	PCR80	-
SYSCR1	SSBY	STS2	STS1	STS0	—	—	—	_	Power-down
SYSCR2	SMSEL	_	DTON	MA2	MA1	MA0	—	_	-
IEGR1	_	_	_	_	IEG3	_	_	IEG0	Interrupts
IEGR2	_	_	WPEG5	WPEG4	WPEG3	WPEG2	WPEG1	WPEG0	•
IENR1	IENDT	_	IENWP		IEN3	_	_	IEN0	
IRR1	IRRDT	_	_	_	IRRI3	_	_	IRRI0	-
IWPR	_	_	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0	
MSTCR1	_	_	MSTS3	MSTAD	MSTWD	MSTTW	MSTTV	_	Power-down
MSTCR2	MSTS3_2	_	_	_	_	_	_	_	-

RENESAS

Note: * WDT: Watchdog timer

18.2.6 Flash Memory Characteristics

Table 18.7 Flash Memory Characteristics

 V_{cc} = 3.0 V to 5.5 V, V_{ss} = 0.0 V, T_a = -20°C to +75°C, unless otherwise specified.

Item			Test				
		Symbol	Condition	Min	Тур	Max	Unit
Programming t	time (per 128 bytes)* ¹ * ² * ⁴	t _P		_	7	200	ms
Erase time (pe	r block) * ¹ * ³ * ⁶	t _e		_	100	1200	ms
Reprogrammin	ng count	N_{wec}		1000	10000	—	Times
Programming	Wait time after SWE bit setting*1	x		1	_	_	μs
	Wait time after PSU bit setting*1	у		50	_	_	μs
	Wait time after P bit setting	z1	$1 \le n \le 6$	28	30	32	μs
	*1*4	z2	$7 \le n \le 1000$	198	200	202	μs
		z3	Additional- programming	8	10	12	μs
	Wait time after P bit clear*1	α		5	—	_	μs
	Wait time after PSU bit clear*1	β		5	—	—	μs
	Wait time after PV bit setting*1	γ		4	—	—	μs
	Wait time after dummy write* ¹	ε		2	_	_	μs
	Wait time after PV bit clear*1	η		2	—	—	μs
	Wait time after SWE bit clear*1	θ		100	_	_	μs
	Maximum programming count*1*4*5	Ν		_		1000	Times

					Value	s		
Item	Symbol	Applicable Pins	Test Condition	Min	Тур	Мах	Unit	Notes
Pull-up MOS	−I _p	P12 to P10, P17 to P14,	$V_{cc} = 5.0 \text{ V},$ $V_{IN} = 0.0 \text{ V}$	50.0		300.0	μΑ	
current		P55 to P50	$V_{cc} = 3.0 V,$ $V_{IN} = 0.0 V$	_	60.0	—		Reference value
Input capaci- tance	C _{in}	All input pins except power supply pins	f = 1 MHz, $V_{IN} = 0.0 V,$ $T_a = 25^{\circ}C$	—	_	15.0	pF	
Active mode current consump- tion	I _{OPE1}	V _{cc}	Active mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	15.0	30.0	mA	*2
			Active mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	8.0	_		* ² Reference value
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	1.8	3.0	mA	*2
			Active mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	—	1.2	_		* ² Reference value
Sleep mode current	I _{SLEEP1}	V _{cc}	Sleep mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	11.5	22.5	mA	*2
consump- tion			Sleep mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	6.5	_		* ² Reference value
	I _{SLEEP2}	V _{cc}	Sleep mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	1.7	2.7	mA	*2
			Sleep mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	1.1	_		* ² Reference value
Standby mode current consump- tion	I _{stby}	V _{cc}		_		5.0	μΑ	*2

RENESAS

Mnemonic			Addressing Mode and Instruction Length (bytes)													No Stat	. of es ^{*1}			
		Operand Size	#xx	Rn	@ERn	@(d, ERn)	@-ERn/@ERn+	@aa	@(d, PC)	@ @ aa	1	Operation	1	Con H	ditio	n Co	v	с	Normal	Advanced
MOV	MOV.W Rs, @-ERd	w					2					ERd32–2 \rightarrow ERd32 Rs16 \rightarrow @ERd	-	-	\$	\$	0	-	(6
	MOV.W Rs, @aa:16	w						4				Rs16 \rightarrow @aa:16	_	_	\$	\$	0	-	6	6
	MOV.W Rs, @aa:24	w						6				Rs16 \rightarrow @aa:24	_	-	\$	\$	0	-	8	8
	MOV.L #xx:32, Rd	L	6									#xx:32 → Rd32	_	-	\$	\$	0	-	(6
	MOV.L ERs, ERd	L		2								ERs32 \rightarrow ERd32	_	_	\$	\$	0	-	1	2
	MOV.L @ERs, ERd	L			4							@ERs \rightarrow ERd32	_	-	\$	\$	0	-	- 8 - 10 - 14	
	MOV.L @(d:16, ERs), ERd	L				6						@(d:16, ERs) → ERd32	_	-	\$	\$	0	-		
	MOV.L @(d:24, ERs), ERd	L				10						@(d:24, ERs) → ERd32	_	-	\$	\$	0	-		
	MOV.L @ERs+, ERd	L					4					@ERs → ERd32 ERs32+4 → ERs32	-	-	\$ \$ 0 − 10		0			
	MOV.L @aa:16, ERd	L						6				@aa:16 \rightarrow ERd32	_	-	\$	\$	2 0 — 10			
	MOV.L @aa:24, ERd	L						8				@aa:24 \rightarrow ERd32	32 — — ↓ ↓ 0 -		-	- 12				
	MOV.L ERs, @ERd	L			4							$ERs32 \rightarrow @ERd$	Rd — — 🇘 🇘 O		- 8					
	MOV.L ERs, @(d:16, ERd)	L				6						ERs32 \rightarrow @(d:16, ERd)	l) ↓ ↓ 0 _		1	0				
	MOV.L ERs, @(d:24, ERd)	L				10						ERs32 \rightarrow @(d:24, ERd)	Rd32 — — ↓ ↓ 0 —		1	4				
	MOV.L ERs, @-ERd	L					4					$\begin{array}{l} ERd32-4 \to ERd32 \\ ERs32 \to @ ERd \end{array}$			-	1	0			
	MOV.L ERs, @aa:16	L						6				ERs32 → @aa:16 ·		-	\$	\$	0	-	1	0
	MOV.L ERs, @aa:24	L						8				ERs32 \rightarrow @aa:24	—	-	\$	\$	0	-	1	2
POP	POP.W Rn	W									2			-	\$	\$	0	-	(6
	POP.L ERn	L									4	$\begin{array}{l} @ SP \to ERn32 \\ SP+4 \to SP \end{array}$	-	-	\$	\$	0	-	1	0
PUSH	PUSH.W Rn	W									2	$\begin{array}{l} SP-2 \rightarrow SP \\ Rn16 \rightarrow @ SP \end{array}$	_	-	\$	\$	0	-	(6
	PUSH.L ERn	L									4	$\begin{array}{l} SP\text{-}4 \to SP \\ ERn32 \to @SP \end{array}$	-	-	\$	\$	0	-	1	0
MOVFPE	MOVFPE @aa:16, Rd	В						4				Cannot be used in this LSI		anno is LS		use	ed ir	 1		
MOVTPE	MOVTPE Rs, @aa:16	В						4				Cannot be used in this LSI	Cannot be used in this LSI							

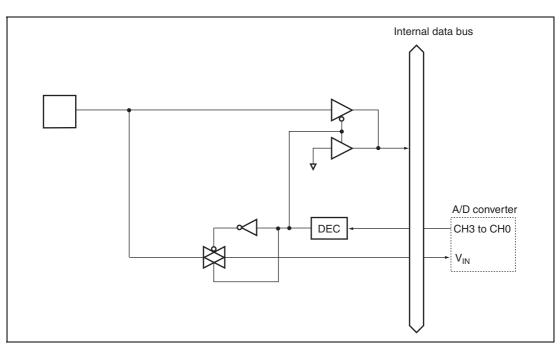


Figure B.23 Port B Block Diagram (PB3 to PB0)

B.2 Port States in Each Operating State

Port	Reset	Active	Sleep	Subsleep	Standby
P17 to P14, P12 to P10	High impedance	Functioning	Retained	Retained	High impedance*
P22 to P20	High impedance	Functioning	Retained	Retained	High impedance
P57 to P50	High impedance	Functioning	Retained	Retained	High impedance*
P76 to P70	High impedance	Functioning	Retained	Retained	High impedance
P84 to P80	High impedance	Functioning	Retained	Retained	High impedance
PB3 to PB0	High impedance	High impedance	High impedance	Retained	High impedance

Note: * High level output when the pull-up MOS is in on state.

H8/36024Group, H8/36014Group Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0025-0400