

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	PWM, WDT
Number of I/O	30
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36022fyv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Input Capture Operating Example	151
Figure 11.8	Buffer Operation Example (Input Capture)	152
Figure 11.9	PWM Mode Example (1)	153
Figure 11.10	PWM Mode Example (2)	
Figure 11.11	Buffer Operation Example (Output Compare)	155
Figure 11.12	PWM Mode Example	
	(TOB, TOC, and TOD = 0: initial output values are set to 0)	156
Figure 11.13	PWM Mode Example	
	(TOB, TOC, and TOD = 1: initial output values are set to 1)	157
Figure 11.14	Count Timing for Internal Clock Source	158
Figure 11.15	Count Timing for External Clock Source	158
Figure 11.16	Output Compare Output Timing	159
Figure 11.17	Input Capture Input Signal Timing	
Figure 11.18	Timing of Counter Clearing by Compare Match	
Figure 11.19	Buffer Operation Timing (Compare Match)	161
Figure 11.20	Buffer Operation Timing (Input Capture)	161
Figure 11.21	Timing of IMFA to IMFD Flag Setting at Compare Match	162
Figure 11.22	Timing of IMFA to IMFD Flag Setting at Input Capture	
Figure 11.23	Timing of Status Flag Clearing by CPU	163
Figure 11.24	Contention between TCNT Write and Clear	164
Figure 11.25	Internal Clock Switching and TCNT Operation	164
Figure 11.26	When Compare Match and Bit Manipulation Instruction to TCRW Occur a	t the
	1 1	t the
	Same Timing	165
Section 12	Same Timing	165
Section 12	Same Timing Watchdog Timer Block Diagram of Watchdog Timer	165 167
Section 12 Figure 12.1 Figure 12.2	Same Timing	
Section 12 Figure 12.1 Figure 12.2	Same Timing	165 167 171
Section 12 Figure 12.1 Figure 12.2 Section 13	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3)	165 167 171
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1	Same Timing	
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2	Same Timing	165 167 171 176 192
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3	Same Timing	165 167 171 176 192
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits)	
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart	165 165 171 176 192 192 193
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart Example of SCI3 Transmission in Asynchronous Mode	165 167 171 176 192 192 192
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing	
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart Example of SCI3 Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit) Sample Serial Transmission Data Flowchart (Asynchronous Mode)	165 165 167 171 176 192 192 193 193 194 195
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6 Figure 13.7	Same Timing Watchdog Timer Block Diagram of Watchdog Timer Watchdog Timer Operation Example Serial Communication Interface 3 (SCI3) Block Diagram of SCI3 Data Format in Asynchronous Communication Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits) Sample SCI3 Initialization Flowchart Example of SCI3 Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit) Sample Serial Transmission Data Flowchart (Asynchronous Mode) Example of SCI3 Reception in Asynchronous Mode	165
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6 Figure 13.7	Same Timing	
Section 12 Figure 12.1 Figure 12.2 Section 13 Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6 Figure 13.7	Same Timing	165

RENESAS

Figure 1.3 Pin Arrangement (FP-48F, FP-48B, TNP-48)

2.3.2 Memory Data Formats

Figure 2.6 shows the data formats in memory. The H8/300H CPU can access word data and longword data in memory, however word or longword data must begin at an even address. If an attempt is made to access word or longword data at an odd address, an address error does not occur, however the least significant bit of the address is regarded as 0, so access begins the preceding address. This also applies to instruction fetches.

When ER7 (SP) is used as an address register to access the stack, the operand size should be word or longword.

Data Type	Address	Data Format
	7	7 0
1-bit data	Address L 7	7 6 5 4 3 2 1 0
Byte data	Address L M	SB, LSB
Word data	Address 2M	SB
	Address 2M+1	
Longword data	Address 2N	SB'
	Address 2N+1 Address 2N+2	
	Address 2N+3	LSB

Figure 2.6 Memory Data Formats

Figure 2.8 Branch Address Specification in Memory Indirect Mode

2.5.2 Effective Address Calculation

Table 2.12 indicates how effective addresses are calculated in each addressing mode. In this LSI the upper 8 bits of the effective address are ignored in order to generate a 16-bit effective address.

2.7 CPU States

There are four CPU states: the reset state, program execution state, program halt state, and exception-handling state. The program execution state includes active mode. In the program halt state there are a sleep mode, and standby mode. These states are shown in figure 2.11. Figure 2.12 shows the state transitions. For details on program execution state and program halt state, refer to section 6, Power-Down Modes. For details on exception processing, refer to section 3, Exception Handling.

Figure 2.11 CPU Operation States

6.1.1 System Control Register 1 (SYSCR1)

SYSCR1 controls the power-down modes, as well as SYSCR2.

Bit	Bit Name	Initial Value	R/W	Description
7	SSBY	0	R/W	Software Standby
				This bit selects the mode to transit after the execution of the SLEEP instruction.
				0: a transition is made to sleep mode
				1: a transition is made to standby mode.
				For details, see table 6.2.
6	STS2	0	R/W	Standby Timer Select 2 to 0
5	STS1	0	R/W	These bits designate the time the CPU and peripheral
4	STS0	0	R/W	modules wait for stable clock operation after exiting from standby mode, to active mode or sleep mode due to an interrupt. The designation should be made according to the clock frequency so that the waiting time is at least 6.5 ms. The relationship between the specified value and the number of wait states is shown in table 6.1. When an external clock is to be used, the minimum value (STS2 = STS1 = STS0 =1) is recommended.
3 to 0	_	All 0	—	Reserved
				These bits are always read as 0.

Table 6.1 Operating Frequency and Waiting Time

E	Bit Nam	e		Operating Frequency							
STS2	STS1	STS0	Waiting Time	20 MHz	16 MHz	10 MHz	8 MHz	4 MHz	2 MHz	1 MHz	0.5 MHz
0	0	0	8,192 states	0.4	0.5	0.8	1.0	2.0	4.1	8.1	16.4
		1	16,384 states	0.8	1.0	1.6	2.0	4.1	8.2	16.4	32.8
	1	0	32,768 states	1.6	2.0	3.3	4.1	8.2	16.4	32.8	65.5
		1	65,536 states	3.3	4.1	6.6	8.2	16.4	32.8	65.5	131.1
1	0	0	131,072 states	6.6	8.2	13.1	16.4	32.8	65.5	131.1	262.1
		1	1,024 states	0.05	0.06	0.10	0.13	0.26	0.51	1.02	2.05
	1	0	128 states	0.00	0.00	0.01	0.02	0.03	0.06	0.13	0.26
		1	16 states	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.03

Note: Time unit is ms.

Section 8 RAM

This LSI has 2 kbytes of on-chip high-speed static RAM. The RAM is connected to the CPU by a 16-bit data bus, enabling two-state access by the CPU to both byte data and word data.

Product Classification		RAM Size	RAM Address
Flash memory version	H8/36024F, H8/36014F	2 kbytes	H'F780 to H'FF7F*
	H8/36022F, H8/36012F	2 kbytes	H'F780 to H'FF7F*
Masked ROM version	H8/36024, H8/36014	1 kbyte	H'FB80 to H'FF7F
	H8/36023, H8/36013	1 kbyte	H'FB80 to H'FF7F
	H8/36022, H8/36012	512 bytes	H'FD80 to H'FF7F
	H8/36011	512 bytes	H'FD80 to H'FF7F
	H8/36010	512 bytes	H'FD80 to H'FF7F

Note: * When the E7 or E8 is used, area H'F780 to H'FB7F must not be accessed.

9.5 Port 8

Port 8 is a general I/O port also functioning as a timer W I/O pin. Each pin of the port 8 is shown in figure 9.5. The register setting of the timer W has priority for functions of the pins P84/FTIOD, P83/FTIOC, P82/FTIOB, and P81/FTIOA. The P80/FTCI pin also functions as a timer W input port that is connected to the timer W regardless of the register setting of port 8.

Figure 9.5 Port 8 Pin Configuration

Port 8 has the following registers.

- Port control register 8 (PCR8)
- Port data register 8 (PDR8)

9.5.1 Port Control Register 8 (PCR8)

PCR8 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 8.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	_	_		Reserved
4	PCR84	0	W	When each of the port 8 pins P84 to P80 functions as an
3	PCR83	0	W	general I/O port, setting a PCR8 bit to 1 makes the
2	PCR82	0	W	0 makes the pin an input port.
1	PCR81	0	W	
0	PCR80	0	W	

10.3.5 Timer Control Register V1 (TCRV1)

TCRV1 selects the edge at the TRGV pin, enables TRGV input, and selects the clock input to TCNTV.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	_	All 1	_	Reserved
				These bits are always read as 1.
4	TVEG1	0	R/W	TRGV Input Edge Select
3	TVEG0	0	R/W	These bits select the TRGV input edge.
				00: TRGV trigger input is prohibited
				01: Rising edge is selected
				10: Falling edge is selected
				11: Rising and falling edges are both selected
2	TRGE	0	R/W	TCNT starts counting up by the input of the edge which is selected by TVEG1 and TVEG0.
				 Disables starting counting-up TCNTV by the input of the TRGV pin and halting counting-up TCNTV when TCNTV is cleared by a compare match.
				 Enables starting counting-up TCNTV by the input of the TRGV pin and halting counting-up TCNTV when TCNTV is cleared by a compare match.
1	_	1	_	Reserved
				This bit is always read as 1.
0	ICKS0	0	R/W	Internal Clock Select 0
				This bit selects clock signals to input to TCNTV in combination with CKS2 to CKS0 in TCRV0.
				Refer to table 10.2.

Figure 10.12 Contention between TCORA Write and Compare Match

Figure 10.13 Internal Clock Switching and TCNTV Operation

11.5.3 Input Capture Timing

Input capture on the rising edge, falling edge, or both edges can be selected through settings in TIOR0 and TIOR1. Figure 11.17 shows the timing when the falling edge is selected. The pulse width of the input capture signal must be at least two system clock (ϕ) cycles; shorter pulses will not be detected correctly.

Figure 11.17 Input Capture Input Signal Timing

11.5.4 Timing of Counter Clearing by Compare Match

Figure 11.18 shows the timing when the counter is cleared by compare match A. When the GRA value is N, the counter counts from 0 to N, and its cycle is N + 1.

Figure 11.18 Timing of Counter Clearing by Compare Match

RENESAS

		Initial		
Bit	Bit Name	Value	R/W	Description
2	WDON	0	R/W	Watchdog Timer On
				TCWD starts counting up when WDON is set to 1 and halts when WDON is cleared to 0.
				[Setting condition]
				When 1 is written to the WDON bit while writing 0 to the B2WI bit when the TCSRWE bit=1
				[Clearing condition]
				Reset by RES pin
				 When 0 is written to the WDON bit while writing 0 to the B2WI when the TCSRWE bit=1
1	B0WI	1	R/W	Bit 0 Write Inhibit
				This bit can be written to the WRST bit only when the write value of the B0WI bit is 0. This bit is always read as 1.
0	WRST	0	R/W	Watchdog Timer Reset
				[Setting condition]
				When TCWD overflows and an internal reset signal is generated
				[Clearing condition]
				Reset by RES pin
				 When 0 is written to the WRST bit while writing 0 to the B0WI bit when the TCSRWE bit=1

12.2.2 Timer Counter WD (TCWD)

TCWD is an 8-bit readable/writable up-counter. When TCWD overflows from H'FF to H'00, the internal reset signal is generated and the WRST bit in TCSRWD is set to 1. TCWD is initialized to H'00.

13.8 Usage Notes

13.8.1 Break Detection and Processing

When framing error detection is performed, a break can be detected by reading the RXD pin value directly. In a break, the input from the RXD pin becomes all 0s, setting the FER flag, and possibly the PER flag. Note that as the SCI3 continues the receive operation after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again.

13.8.2 Mark State and Break Sending

When TE is 0, the TXD pin is used as an I/O port whose direction (input or output) and level are determined by PCR and PDR. This can be used to set the TXD pin to mark state (high level) or send a break during serial data transmission. To maintain the communication line at mark state until TE is set to 1, set both PCR and PDR to 1. As TE is cleared to 0 at this point, the TXD pin becomes an I/O port, and 1 is output from the TXD pin. To send a break during serial transmission, first set PCR to 1 and clear PDR to 0, and then clear TE to 0. When TE is cleared to 0, the transmitter is initialized regardless of the current transmission state, the TXD pin becomes an I/O port, and 0 is output from the TXD pin.

13.8.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)

Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, even if the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0.

			Test		Values		
ltem		Symbol	Condition	Min	Тур	Max	Unit
Erase	Wait time after SWE bit setting*1	x		1	_	_	μs
	Wait time after ESU bit setting* ¹	У		100	_	_	μs
	Wait time after E bit setting* ¹ * ⁶	Z		10	_	100	ms
	Wait time after E bit clear*1	α		10	_	_	μs
	Wait time after ESU bit clear* ¹	β		10	_	_	μs
	Wait time after EV bit setting*1	γ		20	_	_	μs
	Wait time after dummy write*1	ε		2	_	_	μs
	Wait time after EV bit clear*1	η		4	_	_	μs
	Wait time after SWE bit clear* ¹	θ		100	_	_	μs
	Maximum erase count*1*6*7	Ν		_	_	120	Times

Notes: 1. Make the time settings in accordance with the program/erase algorithms.

- 2. The programming time for 128 bytes. (Indicates the total time for which the P bit in flash memory control register 1 (FLMCR1) is set. The program-verify time is not included.)
- 3. The time required to erase one block. (Indicates the time for which the E bit in flash memory control register 1 (FLMCR1) is set. The erase-verify time is not included.)
- 4. Programming time maximum value (t_{_P} (max.)) = wait time after P bit setting (z) \times maximum programming count (N)
- 5. Set the maximum programming count (N) according to the actual set values of z1, z2, and z3, so that it does not exceed the programming time maximum value (t_p (max.)). The wait time after P bit setting (z1, z2) should be changed as follows according to the value of the programming count (n).

Programming count (n)

 $1 \leq n \leq 6 \qquad \qquad z1 = 30 \ \mu s$

$$7 \le n \le 1000$$
 $z2 = 200 \ \mu s$

- 6. Erase time maximum value (t_e (max.)) = wait time after E bit setting (z) \times maximum erase count (N)
- 7. Set the maximum erase count (N) according to the actual set value of (z), so that it does not exceed the erase time maximum value (t_{e} (max.)).

Table 18.10 DC Characteristics (2)

 V_{cc} = 2.7 V to 5.5 V, V_{ss} = 0.0 V, T_{a} = –20°C to +75°C, unless otherwise specified.

		Applicable			Value	s	
Item	Symbol	Pins	Test Condition	Min	Тур	Max	Unit
Allowable output low current (per pin)	I _{ol}	Output pins except port 8	V _{cc} = 4.0 V to 5.5 V	_	_	2.0	mA
		Port 8	-	_	_	20.0	mA
		Output pins except port 8		_	_	0.5	mA
		Port 8		_	_	10.0	mA
Allowable output low current (total)	ΣI_{OL}	Output pins except port 8	V _{cc} = 4.0 V to 5.5 V	_	_	40.0	mA
		Port 8	_	_	_	80.0	mA
		Output pins except port 8		_	_	20.0	mA
		Port 8	_	_	_	40.0	mA
Allowable output high current (per pin)	I –I _{OH} I	All output pins	V _{cc} = 4.0 V to 5.5 V	_	_	2.0	mA
				_	_	0.2	mA
Allowable output high current (total)	I –∑I _{он} I	All output pins	$V_{cc} = 4.0 V$ to 5.5 V	_	—	30.0	mA
				_	_	8.0	mA

		Applicable Test			Values			Reference
Item	Symbol	Pins	Condition	Min Typ		Max	Unit	Figure
Conversion time (single mode)			AV _{cc} = 4.0 V to 5.5 V	134	_	_	$t_{_{\mathrm{cyc}}}$	
Nonlinearity error			_	_	—	±3.5	LSB	_
Offset error			_	_	—	±3.5	LSB	_
Full-scale error			_	_	_	±3.5	LSB	_
Quantization error			_	_	—	±0.5	LSB	_
Absolute accuracy			_	_	_	±4.0	LSB	-

Notes: 1. Set $AV_{cc} = V_{cc}$ when the A/D converter is not used.

2. Al_{STOP1} is the current in active and sleep modes while the A/D converter is idle.

3. Al_{STOP2} is the current at reset and in standby and subsleep modes while the A/D converter is idle.

18.3.5 Watchdog Timer Characteristics

Table 18.14 Watchdog Timer Characteristics

 $V_{cc} = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C, unless otherwise specified.

		Applicable	Test		Value			
ltem	Symbol	Pins	Condition	Min	Тур	Max	Unit	Notes
On-chip oscillator overflow time	t _{ovf}			0.2	0.4	_	S	*

Note: * Shows the time to count from 0 to 255, at which point an internal reset is generated, when the internal oscillator is selected.

6. Branching instructions

Mnemonic			Addressing Mode and Instruction Length (bytes)														No. Stat	of es ^{*1}			
		rand Size			Rn	l, ERn)	ERn/@ERn+		l, PC)	aa		Oper	ation	Condition Code					mal	anced	
			XX#	Rn	8 0	@(c	8	@ 9	@ 0	0 0	1		Branch Condition	I	н	N	z	v	с	Nor	Adv
Bcc	BRA d:8 (BT d:8)	—							2			If condition	Always	—	-	-	-	-	—	4	ŀ
	BRA d:16 (BT d:16)	—							4			is true then		—	-	-	-	-	—	6	;
	BRN d:8 (BF d:8)	—							2			$PC \leftarrow PC+d$	Never	—	-	-	-	-	—	4	ŀ
	BRN d:16 (BF d:16)	—							4			else next;		—	-	-	-	-	—	6	;
	BHI d:8	—							2]	C/Z = 0	—	—	-	—	-	—	4	ŀ
	BHI d:16	—							4			1		—	—	-	—	-	—	6	;
	BLS d:8	—							2			1	C/Z = 1	—	—	—	—	-	—	4	ŀ
	BLS d:16	—							4			1		—	—	-	—	-	—	6	;
	BCC d:8 (BHS d:8)	—							2			1	C = 0	—	—	-	-	-	—	4	ŀ
	BCC d:16 (BHS d:16)	—							4			1		—	—	-	-	-	—	6	5
	BCS d:8 (BLO d:8)	—							2			1	C = 1	—	—	-	—	-	—	4	ŀ
	BCS d:16 (BLO d:16)	—							4			1		—	—	—	-	-	—	6	;
	BNE d:8	—							2			1	Z = 0	—	—	-	—	-	—	4	ŀ
	BNE d:16	—							4			1		—	—	—	—	-	—	6	;
	BEQ d:8	—							2			1	Z = 1	—	—	—	—	-	—	4	ŀ
	BEQ d:16	—							4			1		—	—	-	-	-	—	6	;
	BVC d:8	—							2]	V = 0	—	-	-	-	-	—	4	ŀ
	BVC d:16	—							4			1		—	-	-	-	-	—	6	;
	BVS d:8	—							2]	V = 1	—	—	-	—	-	—	4	ŀ
	BVS d:16	—							4			1		—	—	-	—	-	—	6	;
	BPL d:8	—							2]	N = 0	—	—	-	—	-	—	4	ŀ
	BPL d:16	—							4]		—	—	-	—	-	—	6	;
	BMI d:8	—							2]	N = 1	—	-	-	—	-	—	4	ŀ
	BMI d:16	—							4]		—	-	-	-	-	—	6	;
	BGE d:8	—							2]	N⊕V = 0	—	-	-	-	-	—	4	ŀ
	BGE d:16	—							4			1		—	—	-	-	-	—	6	;
	BLT d:8	—							2]	N⊕V = 1	_	—	—	—	-	—	4	ł
	BLT d:16	—							4]		—	—	—	—	-	—	6	;
	BGT d:8	—							2			1	$Z/(N \oplus V) = 0$	—	—	—	-	-	—	4	ŀ
	BGT d:16	—							4			1		—	-	-	-	-	—	6	;
	BLE d:8	—							2			1	Z∕(N⊕V) = 1	—	-	-	-	-	-	4	ŀ
	BLE d:16	—							4			1		—	_	—	-	-	—	6	;

Table A.3	Number of Cyc	les in Each Instruction
-----------	---------------	-------------------------

Execution Status		Access Location							
(Instruction Cycle)		On-Chip Memory	On-Chip Peripheral Module						
Instruction fetch	S	2	_						
Branch address read	SJ	-							
Stack operation	S _K	-							
Byte data access	S	-	2 or 3*						
Word data access	S_{M}	-	2 or 3*						
Internal operation	S _N		1						
	1 * 1								

Note: * Depends on which on-chip peripheral module is accessed. See section 17.1, Register Addresses (Address Order).

Rev. 4.00 Sep. 23, 2005 Page 345 of 354 REJ09B0025-0400

RENESAS

Appendix

Item Pa		Revision (See Manual for Details)									
Table 18.10 DC Characteristics (1)	270					Values					
		Item	Symbol	Applicable Pins	Test Condition	Min					
		Input high voltage	$V_{_{\rm IH}}$	PB3 to PB0	$V_{cc} = 4.0 \text{ V} \text{ to } 5.5 \text{ V}$	V _{cc} ×0.7					
						$V_{cc} \times 0.8$					
		Input low voltage	V _{IL}	RXD, RXD_2, RXD_3* ¹ , P12 to P10, P17 to P14,	$\rm V_{cc}$ = 4.0 V to 5.5 V	-0.3					
				:							
				PB3 to PB0							
Table 10 10 DO	070										
Characteristics (1)	273	Mode		RES Pin	Internal State						
		Active mode 1		V _{cc}	Operates						
		Active mo	ode 2		Operates (¢OSC/64)						
		Sleep mode 1		V _{cc}	Only timers operate						
		Sleep mo	de 2		Only timers opera (¢OSC/64)	ate					
Appendix D Package Dimensions	343	Swapped	with nev	v one.							
Figure D.1 FP-64E Package Dimensions											
Figure D.2 FP-48F Package Dimensions	344	Swapped	with nev	v one.							
Figure D.3 FP-48B Package Dimensions	345	Swapped	with nev	v one.							
Figure D.4 TNP-48 Package Dimensions	346	Swapped	with nev	v one.							