

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36024fyv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.3 Pin Arrangement (FP-48F, FP-48B, TNP-48)

Figure 2.5 General Register Data Formats (2)

3.2.4 Interrupt Flag Register 1 (IRR1)

IRR1 is a status flag register for direct transition interrupts, and $\overline{IRQ3}$ and $\overline{IRQ0}$ interrupt requests.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	IRRDT	0	R/W	Direct Transfer Interrupt Request Flag
				[Setting condition]
				When a direct transfer is made by executing a SLEEP instruction while DTON in SYSCR2 is set to 1.
				[Clearing condition]
				When IRRDT is cleared by writing 0
6	_	0	_	Reserved
				This bit is always read as 0.
5, 4	_	All 1		Reserved
				These bits are always read as 1.
3	IRRI3	0	R/W	IRQ3 Interrupt Request Flag
				[Setting condition]
				When IRQ3 pin is designated for interrupt input and the designated signal edge is detected.
				[Clearing condition]
				When IRRI3 is cleared by writing 0
2, 1	_	All 0		Reserved
				These bits are always read as 0.
0	IRRI0	0	R/W	IRQ0 Interrupt Request Flag
				[Setting condition]
				When IRQ0 pin is designated for interrupt input and the designated signal edge is detected.
				[Clearing condition]
				When IRRI0 is cleared by writing 0

6.1.2 System Control Register 2 (SYSCR2)

SYSCR2 controls the power-down modes, as well as SYSCR1.

D:4	Bit Nama	Initial	D AA/	Description
BIt	Bit Name	value	R/W	Description
7	SMSEL	0	R/W	Sleep Mode Selection
				This bit selects the mode to transit after the execution of a SLEEP instruction, as well as bit SSBY of SYSCR1.
				For details, see table 6.2.
6	_	0	_	Reserved
				This bit is always read as 0.
5	DTON	0	R/W	Direct Transfer on Flag
				This bit selects the mode to transit after the execution of a SLEEP instruction, as well as bit SSBY of SYSCR1.
				For details, see table 6.2.
4	MA2	0	R/W	Active Mode Clock Select 2 to 0
3	MA1	0	R/W	These bits select the operating clock frequency in active
2	MA0	0	R/W	and sleep modes. The operating clock frequency changes to the set frequency after the SLEEP instruction is executed.
				0XX: $\phi_{ m osc}$
				100: φ _{osc} /8
				101: φ _{osc} /16
				110: φ _{osc} /32
				111: φ _{osc} /64
1, 0	_	All 0	_	Reserved
				These bits are always read as 0.

Legend: X : Don't care.

9.1.1 Port Mode Register 1 (PMR1)

PMR1 switches the functions of pins in port 1, port 2, and port 7.

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ3	0	R/W	P17/IRQ3/TRGV Pin Function Switch
				This bit selects whether pin P17/IRQ3/TRGV is used as P17 or as IRQ3/TRGV.
				0: General I/O port
				1: IRQ3/TRGV input pin
6, 5	_	All 0		Reserved
				These bits are always read as 0.
4	IRQ0	0	R/W	P14/IRQ0 Pin Function Switch
				This bit selects whether pin P14/ $\overline{IRQ0}$ is used as P14 or as $\overline{IRQ0}$.
				0: General I/O port
				1: IRQ0 input pin
3	TXD2	0	R/W	P72/TXD_2 Pin Function Switch
				This bit selects whether pin P72/TXD_2 is used as P72 or as TXD_2.
				0: General I/O port
				1: TXD_2 output pin
2	_	0	R/W	Reserved
				This bit must always be cleared to 0 (setting to 1 is disabled).
1	TXD	0	R/W	P22/TXD Pin Function Switch
				This bit selects whether pin P22/TXD is used as P22 or as TXD.
				0: General I/O port
				1: TXD output pin
0	_	0	_	Reserved
				This bit is always read as 0.

• P50/WKP0 pin

Register	PMR5	PCR5	
Bit Name	WKP0	PCR50	Pin Function
Setting Value	0	0	P50 input pin
		1	P50 output pin
	1	Х	WKP0 input pin

Legend X: Don't care.

9.4 Port 7

Port 7 is a general I/O port also functioning as a timer V I/O pin. Each pin of the port 7 is shown in figure 9.4. The register setting of TCSRV in timer V has priority for functions of pin P76/TMOV. The pins, P75/TMCIV and P74/TMRIV, are also functioning as timer V input ports that are connected to the timer V regardless of the register setting of port 7.

Port 7 has the following registers.

- Port control register 7 (PCR7)
- Port data register 7 (PDR7)

TCRV0			TCRV1	
Bit 2	Bit 1	Bit 0	Bit 0	
CKS2	CKS1	CKS0	ICKS0	Description
0	0	0	_	Clock input prohibited
		1	0	Internal clock: counts on $\phi/4$, falling edge
			1	Internal clock: counts on $\phi/8$, falling edge
	1	0	0	Internal clock: counts on $\phi/16$, falling edge
			1	Internal clock: counts on $\phi/32$, falling edge
		1	0	Internal clock: counts on $\phi/64$, falling edge
			1	Internal clock: counts on ϕ /128, falling edge
1	0	0	_	Clock input prohibited
		1	_	External clock: counts on rising edge
	1	0	_	External clock: counts on falling edge
		1		External clock: counts on rising and falling edge

Table 10.2 Clock Signals to Input to TCNTV and Counting Conditions

		Initial		
Bit	Bit Name	Value	R/W	Description
1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits select an output method for the TMOV pin by the compare match of TCORA and TCNTV.
				00: No change
				01: 0 output
				10: 1 output
				11: Output toggles

OS3 and OS2 select the output level for compare match B. OS1 and OS0 select the output level for compare match A. The two output levels can be controlled independently. After a reset, the timer output is 0 until the first compare match.

ø				
TCNTV	N	X	N+1	
TCORA or TCORB	Ν			
Compare match				
CMFA or		<u> </u>		

Figure 10.7 Clear Timing by Compare Match

Section 11 Timer W

The timer W has a 16-bit timer having output compare and input capture functions. The timer W can count external events and output pulses with an arbitrary duty cycle by compare match between the timer counter and four general registers. Thus, it can be applied to various systems.

11.1 Features

- Selection of five counter clock sources: four internal clocks (ϕ , $\phi/2$, $\phi/4$, and $\phi/8$) and an external clock (external events can be counted)
- Capability to process up to four pulse outputs or four pulse inputs
- Four general registers:
 - Independently assignable output compare or input capture functions
 - Usable as two pairs of registers; one register of each pair operates as a buffer for the output compare or input capture register
- Four selectable operating modes :
 - Waveform output by compare match
 - Selection of 0 output, 1 output, or toggle output
 - Input capture function
 - Rising edge, falling edge, or both edges
 - Counter clearing function
 - Counters can be cleared by compare match
 - PWM mode
 - Up to three-phase PWM output can be provided with desired duty ratio.
- Any initial timer output value can be set
- Five interrupt sources

Four compare match/input capture interrupts and an overflow interrupt.

Table 11.1 summarizes the timer W functions, and figure 11.1 shows a block diagram of the timer W.

11.4 Operation

The timer W has the following operating modes.

- Normal Operation
- PWM Operation

11.4.1 Normal Operation

TCNT performs free-running or periodic counting operations. After a reset, TCNT is set as a freerunning counter. When the CTS bit in TMRW is set to 1, TCNT starts incrementing the count. When the count overflows from H'FFFF to H'0000, the OVF flag in TSRW is set to 1. If the OVIE in TIERW is set to 1, an interrupt request is generated. Figure 11.2 shows free-running counting.

Figure 11.2 Free-Running Counter Operation

		Initial		
Bit	Bit Name	Value	R/W	Description
2	WDON	0	R/W	Watchdog Timer On
				TCWD starts counting up when WDON is set to 1 and halts when WDON is cleared to 0.
				[Setting condition]
				When 1 is written to the WDON bit while writing 0 to the B2WI bit when the TCSRWE bit=1
				[Clearing condition]
				Reset by RES pin
				 When 0 is written to the WDON bit while writing 0 to the B2WI when the TCSRWE bit=1
1	B0WI	1	R/W	Bit 0 Write Inhibit
				This bit can be written to the WRST bit only when the write value of the B0WI bit is 0. This bit is always read as 1.
0	WRST	0	R/W	Watchdog Timer Reset
				[Setting condition]
				When TCWD overflows and an internal reset signal is generated
				[Clearing condition]
				Reset by RES pin
				 When 0 is written to the WRST bit while writing 0 to the B0WI bit when the TCSRWE bit=1

12.2.2 Timer Counter WD (TCWD)

TCWD is an 8-bit readable/writable up-counter. When TCWD overflows from H'FF to H'00, the internal reset signal is generated and the WRST bit in TCSRWD is set to 1. TCWD is initialized to H'00.

Table 13.6 shows the states of the SSR status flags and receive data handling when a receive error is detected. If a receive error is detected, the RDRF flag retains its state before receiving data. Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the OER, FER, PER, and RDRF bits to 0 before resuming reception. Figure 13.8 shows a sample flow chart for serial data reception.

SSR Status Flag							
RDRF*	OER	FER	PER	Receive Data	Receive Error Type		
1	1	0	0	Lost	Overrun error		
0	0	1	0	Transferred to RDR	Framing error		
0	0	0	1	Transferred to RDR	Parity error		
1	1	1	0	Lost	Overrun error + framing error		
1	1	0	1	Lost	Overrun error + parity error		
0	0	1	1	Transferred to RDR	Framing error + parity error		
1	1	1	1	Lost	Overrun error + framing error + parity error		

Table 13.6 SSR Status Flags and Receive Data Handling

Note: * The RDRF flag retains the state it had before data reception.

13.6.2 Multiprocessor Serial Data Reception

Figure 13.17 shows a sample flowchart for multiprocessor serial data reception. If the MPIE bit in SCR3 is set to 1, data is skipped until data with a 1 multiprocessor bit is sent. On receiving data with a 1 multiprocessor bit, the receive data is transferred to RDR. An RXI interrupt request is generated at this time. All other SCI3 operations are the same as those in asynchronous mode. Figure 13.18 shows an example of SCI3 operation for multiprocessor format reception.

Register Name	Abbre- viation	Bit No	Address	Module Name	Data Bus Width	Access State
General register B	GRB	16	H'FF8A	Timer W	16* ²	2
General register C	GRC	16	H'FF8C	Timer W	16* ²	2
General register D	GRD	16	H'FF8E	Timer W	16* ²	2
Flash memory control register 1	FLMCR1	8	H'FF90	ROM	8	2
Flash memory control register 2	FLMCR2	8	H'FF91	ROM	8	2
Erase block register 1	EBR1	8	H'FF93	ROM	8	2
Flash memory enable register	FENR	8	H'FF9B	ROM	8	2
Timer control register V0	TCRV0	8	H'FFA0	Timer V	8	3
Timer control/status register V	TCSRV	8	H'FFA1	Timer V	8	3
Timer constant register A	TCORA	8	H'FFA2	Timer V	8	3
Timer constant register B	TCORB	8	H'FFA3	Timer V	8	3
Timer counter V	TCNTV	8	H'FFA4	Timer V	8	3
Timer control register V1	TCRV1	8	H'FFA5	Timer V	8	3
Serial mode register	SMR	8	H'FFA8	SCI3	8	3
Bit rate register	BRR	8	H'FFA9	SCI3	8	3
Serial control register 3	SCR3	8	H'FFAA	SCI3	8	3
Transmit data register	TDR	8	H'FFAB	SCI3	8	3
Serial status register	SSR	8	H'FFAC	SCI3	8	3
Receive data register	RDR	8	H'FFAD	SCI3	8	3
A/D data register A	ADDRA	16	H'FFB0	A/D converter	8	3
A/D data register B	ADDRB	16	H'FFB2	A/D converter	8	3
A/D data register C	ADDRC	16	H'FFB4	A/D converter	8	3
A/D data register D	ADDRD	16	H'FFB6	A/D converter	8	3
A/D control/status register	ADCSR	8	H'FFB8	A/D converter	8	3
A/D control register	ADCR	8	H'FFB9	A/D converter	8	3
Timer control/status register WD	TCSRWD	8	H'FFC0	WDT* ³	8	2
Timer counter WD	TCWD	8	H'FFC1	WDT* ³	8	2

18.3.3 AC Characteristics

Table 18.11 AC Characteristics

 $V_{cc} = 2.7$ V to 5.5 V, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to +75°C, unless otherwise specified.

		Applicable			Values	i		Reference
Item	Symbol	Pins	Test Condition	Min	Тур	Max	Unit	Figure
System clock oscillation	f _{osc}	OSC1, OSC2	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	2.0	—	20.0	MHz	*1
frequency				2.0	_	10.0	MHz	
System clock (ø)	t _{cyc}			1		64	t _{osc}	*2
cycle time				_	—	12.8	μs	
Instruction cycle time				2	_	_	t _{cyc}	
Oscillation stabilization time (crystal resonator)	t _{rc}	OSC1, OSC2		_	_	10.0	ms	
Oscillation stabilization time (ceramic resonator)	t _{rc}	OSC1, OSC2		_	_	5.0	ms	
External clock	t _{CPH}	OSC1	V_{cc} = 4.0 V to 5.5 V	20.0	_	_	ns	Figure 18.1
high width				40.0	—	—	ns	-
External clock	t _{CPL}	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	20.0	_	—	ns	_
low width				40.0	—	—	ns	_
External clock	t _{CPr}	OSC1	V_{cc} = 4.0 V to 5.5 V	—	—	10.0	ns	
rise time				—	—	15.0	ns	-
External clock	t _{CPf}	OSC1	V_{cc} = 4.0 V to 5.5 V	_	_	10.0	ns	-
fall time				_	_	15.0	ns	
RES pin low width	t _{REL}	RES	At power-on and in modes other than those below	t _{rc}	—	_	ms	Figure 18.2
			In active mode and sleep mode operation	200		_	ns	-

Appendix A Instruction Set

A.1 Instruction List

Operand Notation

Symbol	Description
Rd	General (destination*) register
Rs	General (source*) register
Rn	General register*
ERd	General destination register (address register or 32-bit register)
ERs	General source register (address register or 32-bit register)
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
PC	Program counter
SP	Stack pointer
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
disp	Displacement
\rightarrow	Transfer from the operand on the left to the operand on the right, or transition from the state on the left to the state on the right
+	Addition of the operands on both sides
-	Subtraction of the operand on the right from the operand on the left
×	Multiplication of the operands on both sides
÷	Division of the operand on the left by the operand on the right
^	Logical AND of the operands on both sides
\vee	Logical OR of the operands on both sides
\oplus	Logical exclusive OR of the operands on both sides
7	NOT (logical complement)

			Addressing Mode and Instruction Length (bytes)						le ai i (by	nd /tes)									No. of States ^{*1}	
Mnemonic		perand Size	ð	-	ERn	(d, ERn)	-ERn/@ERn+	aa	(d, PC)	@aa		Operation	Condition Code						ormal	dvanced	
	Γ	0	ŧ	2	Ø	ø	ø	ø	ø	Ø			1	н	N	z	V	С	Ż	Ā	
BLD	BLD #xx:3, @ERd	В			4							(#xx:3 of @ERd) \rightarrow C	-	-		-	-	€	e	ò	
	BLD #xx:3, @aa:8	В						4				(#xx:3 of @aa:8) \rightarrow C	-	—	—	—	—	€	6		
BILD	BILD #xx:3, Rd	В		2								\neg (#xx:3 of Rd8) \rightarrow C	-	—	—	—	—	↕	2	2	
	BILD #xx:3, @ERd	В			4							$\neg \text{ (#xx:3 of @ERd)} \rightarrow \text{C}$	-	—	—	—	—	\$	e	3	
	BILD #xx:3, @aa:8	В						4				¬ (#xx:3 of @aa:8) → C	—	—	—	—	—	\$	e	3	
BST	BST #xx:3, Rd	В		2								$C \rightarrow$ (#xx:3 of Rd8)	-	—		—	—	-	2	2	
	BST #xx:3, @ERd	в			4							$C \rightarrow (\#xx:3 \text{ of } @ERd24)$	-	—	—	—	—	—	8	3	
BIST	BST #xx:3, @aa:8	в						4				$C \rightarrow (\#xx:3 \text{ of } @aa:8)$	—	—	—	—	—	—	8	3	
	BIST #xx:3, Rd	В		2								$\neg C \rightarrow (\#xx:3 \text{ of } Rd8)$	—	—	—	—	—	—	2		
	BIST #xx:3, @ERd	В			4							$\neg C \rightarrow (\#xx:3 \text{ of } @ERd24)$	—	—	—	—	—	—	8	3	
	BIST #xx:3, @aa:8	В						4				$\neg C \rightarrow (\#xx:3 \text{ of } @aa:8)$	—	—	—	—	—	—	8	3	
BAND	BAND #xx:3, Rd	в		2								C∧(#xx:3 of Rd8) → C	—	—	—	—	—	\$	2	2	
	BAND #xx:3, @ERd	в			4							$C_{\wedge}(\#xx:3 \text{ of } @ERd24) \rightarrow C$	_	_	—	_	—	€	E	3	
BIAND	BAND #xx:3, @aa:8	в						4				$C_{\wedge}(\#xx:3 \text{ of } @aa:8) \rightarrow C$	_	_	—	—	—	- 1 6		3	
	BIAND #xx:3, Rd	в		2								$C_{\wedge} \neg$ (#xx:3 of Rd8) \rightarrow C	_	—		—	—	\$	2	2	
	BIAND #xx:3, @ERd	в			4							$C_{\wedge} \neg$ (#xx:3 of @ERd24) \rightarrow C	—	—	_	—	—	\$	E	3	
	BIAND #xx:3, @aa:8	в						4				$C_{\wedge} \neg$ (#xx:3 of @aa:8) \rightarrow C	_	_	_	—	—	\$	E	3	
BOR	BOR #xx:3, Rd	в		2								C/(#xx:3 of Rd8) → C	_	_	_	_	—	\$	2	2	
	BOR #xx:3, @ERd	в			4							C/(#xx:3 of @ERd24) \rightarrow C	_	_	_	_	—	\$	E	3	
	BOR #xx:3, @aa:8	в						4				C⁄(#xx:3 of @aa:8) → C	_	_	_	_	—	\$	E	3	
BIOR	BIOR #xx:3, Rd	в		2								C/ ¬ (#xx:3 of Rd8) → C	_	_	_	_	—	\$	2	2	
	BIOR #xx:3, @ERd	в			4							C/¬ (#xx:3 of @ERd24) → C	_	_	_	_	—	\$	E	3	
	BIOR #xx:3, @aa:8	в						4				C/\neg (#xx:3 of @aa:8) \rightarrow C	_	_			_	1	e	6	
BXOR	BXOR #xx:3, Rd	в		2								C⊕(#xx:3 of Rd8) \rightarrow C	_	_		_	—	1	2		
	BXOR #xx:3, @ERd	В			4							C⊕(#xx:3 of @ERd24) \rightarrow C	_	_	_	_	_	\$	6		
	BXOR #xx:3, @aa:8	В						4				C⊕(#xx:3 of @aa:8) → C	_	_	_	_	_	\$	E	3	
BIXOR	BIXOR #xx:3, Rd	В		2								C⊕ ¬ (#xx:3 of Rd8) \rightarrow C	_	_	_	_	_	1	<u>2</u>		
	BIXOR #xx:3, @ERd	В			4							C⊕ ¬ (#xx:3 of @ERd24) → C	_	_	_	_	_	1	e	5	
	BIXOR #xx:3, @aa:8	В						4				C⊕ ¬ (#xx:3 of @aa:8) → C	-	_	_	-	-	\$	e	3	

6. Branching instructions

			Addressing Mode and Instruction Length (bytes)												No. of States ^{*1}						
Mnemonic		rand Size			Rn	l, ERn)	ERn/@ERn+		, PC)	aa		Operation		-	Con		mal	anced			
		Ope	XX#	R	8 0	@(c	8	@ a	@(q	0	1		Branch Condition	I	I H N Z V C		с	Nor	Adv		
Bcc	BRA d:8 (BT d:8)	—							2			If condition	Always	—	-	-	-	-	—	4	ŀ
	BRA d:16 (BT d:16)	—							4			is true then		—	-	-	-	-	—	6	;
	BRN d:8 (BF d:8)	—							2			$PC \leftarrow PC+d$	Never	—	-	-	-	-	—	4	ŀ
	BRN d:16 (BF d:16)	—							4			else next;		—	-	-	-	-	—	6	;
	BHI d:8	—							2			1	C/Z = 0	—	—	-	—	-	—	4	ŀ
	BHI d:16	—							4			1		—	—	-	—	-	—	6	;
	BLS d:8	—							2			1	C/Z = 1	—	—	-	—	-	—	4	ŀ
	BLS d:16	—							4			1		—	—	-	—	-	—	6	;
	BCC d:8 (BHS d:8)	—							2			1	C = 0	—	—	-	-	-	—	4	ŀ
	BCC d:16 (BHS d:16)	—							4			1		—	—	-	-	-	—	6	5
	BCS d:8 (BLO d:8)	—							2			1	C = 1	—	—	-	—	-	—	4	ŀ
	BCS d:16 (BLO d:16)	—							4			-		—	—	—	-	-	—	6	;
	BNE d:8	—							2				Z = 0	—	—	-	—	-	—	4	ŀ
	BNE d:16	—							4					—	—	—	—	-	—	6	;
	BEQ d:8	—							2				Z = 1	—	—	—	—	-	—	4	ŀ
	BEQ d:16	—							4					—	—	-	-	-	—	6	5
	BVC d:8	—							2				V = 0	—	-	-	-	-	—	4	ŀ
	BVC d:16	—							4					—	-	-	-	-	—	6	;
	BVS d:8	—							2]	V = 1	—	—	-	—	-	—	4	ŀ
	BVS d:16	—							4			1		—	—	-	—	-	—	6	;
	BPL d:8	—							2]	N = 0	—	—	-	—	-	—	4	ŀ
	BPL d:16	—							4]		—	—	-	—	-	—	6	;
	BMI d:8	—							2]	N = 1	—	-	-	—	-	—	4	ŀ
	BMI d:16	—							4					—	-	-	-	-	—	6	;
	BGE d:8	—							2]	N⊕V = 0	—	-	-	-	-	—	4	ŀ
	BGE d:16	—							4			1		—	—	-	-	-	—	6	;
	BLT d:8	—							2]	N⊕V = 1	_	—	—	—	-	—	4	ł
	BLT d:16	—							4]		—	—	—	—	-	—	6	;
	BGT d:8	—							2			1	Z∕(N⊕V) = 0	—	—	—	-	-	—	4	ŀ
	BGT d:16	—							4			1		—	-	-	-	-	—	6	;
	BLE d:8	—							2			1	Z∕(N⊕V) = 1	—	-	-	-	-	-	4	ŀ
	BLE d:16	—							4			1		—	_	—	-	-	—	6	;

Product Ty	/pe		Product Code	Model Marking	Package Code			
H8/36010	Masked ROM	Standard	HD64336010FP	HD64336010(***)FP	LQFP-64 (FP-64E)			
	version	product	HD64336010FX	HD64336010(***)FX	LQFP-48 (FP-48F)			
			HD64336010FY	HD64336010(***)FY	LQFP-48 (FP-48B)			
			HD64336010FT	HD64336010(***)FT	QFN-48(TNP-48)			
		Product	HD64336010GFP	HD64336010G(***)FP	LQFP-64 (FP-64E)			
		with POR & LVDC	HD64336010GFX	HD64336010G(***)FX	LQFP-48 (FP-48F)			
		a 2000	HD64336010GFY	HD64336010G(***)FY	LQFP-48 (FP-48B)			
			HD64336010GFT	HD64336010G(***)FT	QFN-48(TNP-48)			

Legend

POR & LVDC: Power-on reset and low-voltage detection circuits

(***): ROM code

