

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36024gfxv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

16

H8/36024Group, H8/36014Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series

H8/36024F H8/36022F H8/36014F H8/36012F H8/36024 H8/36023 H8/36022 H8/36014 H8/36013 H8/36012 H8/36011

H8/36010 Renesas Electronics

www.renesas.com

Rev.4.00 2005.09

HD64F36024, HD64F36024G,

HD64F36022, HD64F36022G,

HD64F36014, HD64F36014G, HD64F36012G,

HD64336024, HD64336024G,

HD64336023, HD64336023G,

HD64336022, HD64336022G,

HD64336014, HD64336014G, HD64336013G,

HD64336012, HD64336012G,

HD64336011, HD64336011G,

HD64336010, HD64336010G

Instruction	Size	Function		
Bcc*	—		specified address if a sp litions are listed below.	pecified condition is true. The
		Mnemonic	Description	Condition
		BRA(BT)	Always (true)	Always
		BRN(BF)	Never (false)	Never
		BHI	High	$C \lor Z = 0$
		BLS	Low or same	C ∨ Z = 1
		BCC(BHS)	Carry clear (high or same)	C = 0
		BCS(BLO)	Carry set (low)	C = 1
		BNE	Not equal	Z = 0
		BEQ	Equal	Z = 1
		BVC	Overflow clear	V = 0
		BVS	Overflow set	V = 1
		BPL	Plus	N = 0
		BMI	Minus	N = 1
		BGE	Greater or equal	$N \oplus V = 0$
		BLT	Less than	$N \oplus V = 1$
		BGT	Greater than	$Z \lor (N \oplus V) = 0$
		BLE	Less or equal	$Z \lor (N \oplus V) = 1$
JMP		Branches unco	nditionally to a specified	address.
BSR	—	Branches to a s	subroutine at a specified	d address.
JSR		Branches to a s	subroutine at a specified	d address.
RTS	_	Returns from a	subroutine	

RENESAS

Table 2.7 Branch Instructions

Note: * Bcc is the general name for conditional branch instructions.

3.2.2 Interrupt Edge Select Register 2 (IEGR2)

IEGR2 selects the direction of an edge that generates interrupt requests of the pins $\overline{\text{ADTRG}}$ and $\overline{\text{WKP5}}$ to $\overline{\text{WKP0}}$.

Bit	Bit Name	Initial Value	R/W	Description
7, 6		All 1		Reserved
				These bits are always read as 1.
5	WPEG5	0	R/W	WKP5 Edge Select
				0: Falling edge of $\overline{WKP5}$ (\overline{ADTRG}) pin input is detected
				1: Rising edge of $\overline{WKP5}$ (\overline{ADTRG}) pin input is detected
4	WPEG4	0	R/W	WKP4 Edge Select
				0: Falling edge of $\overline{WKP4}$ pin input is detected
				1: Rising edge of $\overline{WKP4}$ pin input is detected
3	WPEG3	0	R/W	WKP3 Edge Select
				0: Falling edge of $\overline{WKP3}$ pin input is detected
				1: Rising edge of WKP3 pin input is detected
2	WPEG2	0	R/W	WKP2 Edge Select
				0: Falling edge of $\overline{WKP2}$ pin input is detected
				1: Rising edge of WKP2 pin input is detected
1	WPEG1	0	R/W	WKP1Edge Select
				0: Falling edge of $\overline{WKP1}$ pin input is detected
				1: Rising edge of $\overline{WKP1}$ pin input is detected
0	WPEG0	0	R/W	WKP0 Edge Select
				0: Falling edge of $\overline{WKP0}$ pin input is detected
				1: Rising edge of WKP0 pin input is detected

Section 4 Address Break

The address break simplifies on-board program debugging. It requests an address break interrupt when the set break condition is satisfied. The interrupt request is not affected by the I bit of CCR. Break conditions that can be set include instruction execution at a specific address and a combination of access and data at a specific address. With the address break function, the execution start point of a program containing a bug is detected and execution is branched to the correcting program. Figure 4.1 shows a block diagram of the address break.

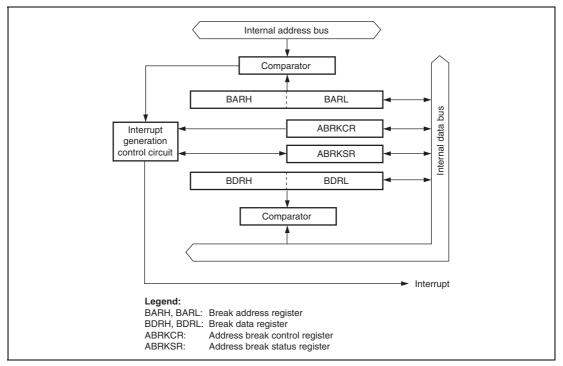


Figure 4.1 Block Diagram of Address Break

4.1 **Register Descriptions**

Address break has the following registers.

- Address break control register (ABRKCR)
- Address break status register (ABRKSR)
- Break address register (BARH, BARL)

7.2.3 Erase Block Register 1 (EBR1)

EBR1 specifies the flash memory erase area block. EBR1 is initialized to H'00 when the SWE bit in FLMCR1 is 0. Do not set more than one bit at a time, as this will cause all the bits in EBR1 to be automatically cleared to 0.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	All 0	_	Reserved
				These bits are always read as 0.
4	EB4	0	R/W	When this bit is set to 1, 28 kbytes of H'1000 to H'7FFF will be erased.
3	EB3	0	R/W	When this bit is set to 1, 1 kbyte of H'0C00 to H'0FFF will be erased.
2	EB2	0	R/W	When this bit is set to 1, 1 kbyte of H'0800 to H'0BFF will be erased.
1	EB1	0	R/W	When this bit is set to 1, 1 kbyte of H'0400 to H'07FF will be erased.
0	EB0	0	R/W	When this bit is set to 1, 1 kbyte of H'0000 to H'03FF will be erased.

7.2.4 Flash Memory Enable Register (FENR)

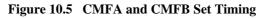
Bit 7 (FLSHE) in FENR enables or disables the CPU access to the flash memory control registers, FLMCR1, FLMCR2, and EBR1.

Bit	Bit Name	Initial Value	R/W	Description
7	FLSHE	0	R/W	Flash Memory Control Register Enable
				Flash memory control registers can be accessed when this bit is set to 1. Flash memory control registers cannot be accessed when this bit is set to 0.
6 to 0		All 0	_	Reserved
				These bits are always read as 0.

9.3.3 Port Data Register 5 (PDR5)

Bit	Bit Name	Initial Value	R/W	Description			
7	P57	0	R/W	Stores output data for port 5 pins.			
6	P56	0	R/W	If PDR5 is read while PCR5 bits are set to 1, the value			
5	P55	0	R/W stored in PDR5 are read. If PDR5 is read while PCR5				
4	P54	0	R/W	are cleared to 0, the pin states are read regardless of the value stored in PDR5.			
3	P53	0	R/W				
2	P52	0	R/W				
1	P51	0	R/W				
0	P50	0	R/W				

PDR5 is a general I/O port data register of port 5.


9.3.4 Port Pull-Up Control Register 5 (PUCR5)

PUCR5 controls the pull-up MOS in bit units of the pins set as the input ports.

Bit	Bit Name	Initial Value	R/W	Description
7, 6	—	All 0	_	Reserved
				These bits are always read as 0.
5	PUCR55	0	R/W	Only bits for which PCR5 is cleared are valid. The pull-up
4	PUCR54	0	R/W	MOS of the corresponding pins enter the on-state when these bits are set to 1, while they enter the off-state when
3	PUCR53	0	R/W	these bits are cleared to 0.
2	PUCR52	0	R/W	
1	PUCR51	0	R/W	
0	PUCR50	0	R/W	

ø				
TCNTV	Ν	_X	N+1	
TCORA or TCORB	Ν			
Compare match signal				
CMFA or				

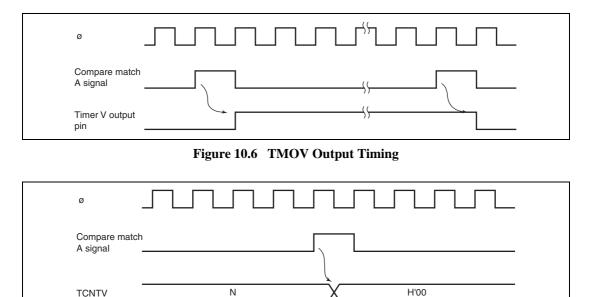


Figure 10.7 Clear Timing by Compare Match

12.2.3 Timer Mode Register WD (TMWD)

TMWD selects the input clock.

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	_	All 1		Reserved
				These bits are always read as 1.
3	CKS3	1	R/W	Clock Select 3 to 0
2	CKS2	1	R/W	Select the clock to be input to TCWD.
1	CKS1	1	R/W	1000: Internal clock: counts on $\phi/64$
0	CKS0	1	R/W	1001: Internal clock: counts on $\phi/128$
				1010: Internal clock: counts on $\phi/256$
				1011: Internal clock: counts on $\phi/512$
				1100: Internal clock: counts on $\phi/1024$
				1101: Internal clock: counts on $\phi/2048$
				1110: Internal clock: counts on $\phi/4096$
				1111: Internal clock: counts on ϕ 8192
				0XXX: Internal oscillator
				For the internal oscillator overflow periods, see section 18, Electrical Characteristics.

Legend X: Don't care.

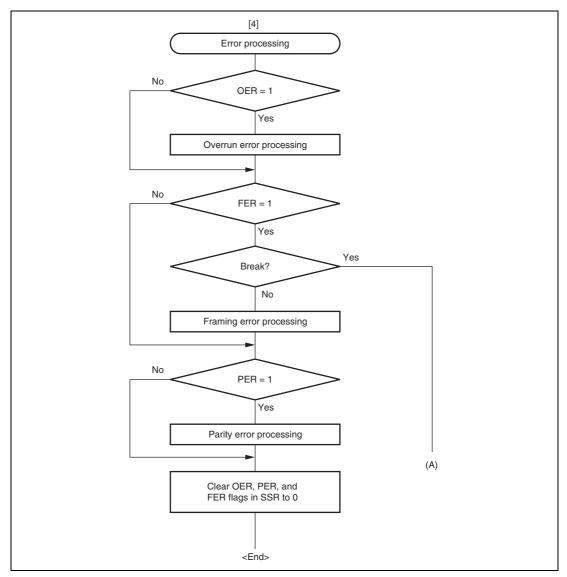


Figure 13.8 Sample Serial Reception Data Flowchart (Asynchronous Mode)(2)

		CKS = 0			CKS = 1		
Item	Symbol	Min	Тур	Max	Min	Тур	Max
A/D conversion start delay	t _D	6		9	4	—	5
Input sampling time	t _{spl}	_	31			15	_
A/D conversion time	t _{conv}	131		134	69	_	70

Table 14.3 A/D Conversion Time (Single Mode)

Note: All values represent the number of states.

14.4.4 External Trigger Input Timing

A/D conversion can also be started by an external trigger input. When the TRGE bit is set to 1 in ADCR, external trigger input is enabled at the $\overline{\text{ADTRG}}$ pin. A falling edge at the $\overline{\text{ADTRG}}$ input pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both single and scan modes, are the same as when the bit ADST has been set to 1 by software. Figure 14.3 shows the timing.

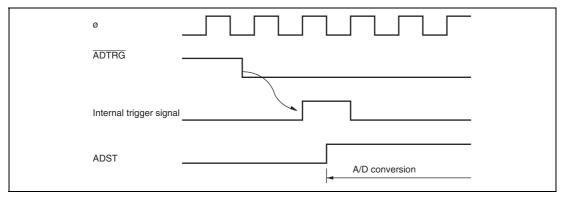


Figure 14.3 External Trigger Input Timing

14.5 A/D Conversion Accuracy Definitions

This LSI's A/D conversion accuracy definitions are given below.

Resolution

The number of A/D converter digital output codes

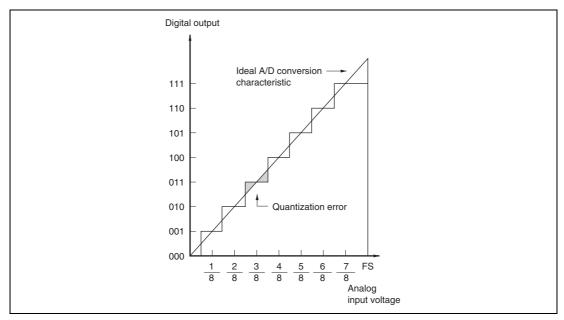
• Quantization error

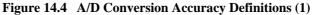
The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 14.4).

Offset error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from the minimum voltage value 00000000000 to 0000000001 (see figure 14.5).

• Full-scale error


The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from 1111111110 to 111111111 (see figure 14.5).


• Nonlinearity error

The error with respect to the ideal A/D conversion characteristics between zero voltage and full-scale voltage. Does not include offset error, full-scale error, or quantization error.

• Absolute accuracy

The deviation between the digital value and the analog input value. Includes offset error, full-scale error, quantization error, and nonlinearity error.

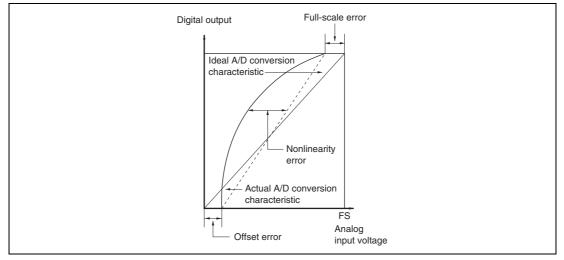


Figure 14.5 A/D Conversion Accuracy Definitions (2)

(2) LVDI (Interrupt by Low Voltage Detect) Circuit

Figure 15.4 shows the timing of LVDI functions. The LVDI enters the module-standby state after a power-on reset is canceled. To operate the LVDI, set the LVDE bit in LVDCR to 1, wait for 50 μ s (t_{LVDON}) until the reference voltage and the low-voltage-detection power supply have stabilized by a software timer, etc., then set the LVDDE and LVDUE bits in LVDCR to 1. After that, the output settings of ports must be made. To cancel the low-voltage detection circuit, first the LVDDE and LVDUE bits should all be cleared to 0 and then the LVDDE bit should be cleared to 0. The LVDE bit must not be cleared to 0 at the same timing as the LVDDE and LVDUE bits because incorrect operation may occur.

When the power-supply voltage falls below Vint (D) (typ. = 3.7 V) voltage, the LVDI clears the $\overline{\text{LVDINT}}$ signal to 0 and the LVDDF bit in LVDSR is set to 1. If the LVDDE bit is 1 at this time, an IRQ0 interrupt request is simultaneously generated. In this case, the necessary data must be saved in the external EEPROM, etc, and a transition must be made to standby mode or subsleep mode. Until this processing is completed, the power supply voltage must be higher than the lower limit of the guaranteed operating voltage.

When the power-supply voltage does not fall below Vreset1 (typ. = 2.3 V) voltage but rises above Vint (U) (typ. = 4.0 V) voltage, the LVDI sets the \overline{LVDINT} signal to 1. If the LVDUE bit is 1 at this time, the LVDUF bit in LVDSR is set to 1 and an IRQ0 interrupt request is simultaneously generated.

If the power supply voltage (Vcc) falls below Vreset1 (typ. = 2.3 V) voltage, the LVDR function is performed.

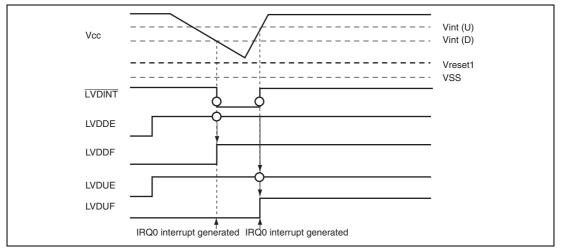


Figure 15.4 Operational Timing of LVDI Circuit

18.3.2 DC Characteristics

Table 18.10 DC Characteristics (1)

 $V_{cc} = 2.7$ V to 5.5 V, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to +75°C, unless otherwise specified.

					Value	s		
Item	Symbol	Applicable Pins	Test Condition	Min	Тур	Max	Unit	Notes
Input high voltage	V _{IH}	RES, NMI WKP0 to WKP5, IRQ0, IRQ3, ADTRG,TMRIV,	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{cc} \times 0.8$	_	V _{cc} + 0.3	V	
		TMCIV, FTCI, FTIOA to FTIOD, SCK3, SCK3_2, SCK3_3* ¹ , TRGV		V _{cc} ×0.9	_	V _{cc} + 0.3	_	
		RXD, RXD_2, RXD_3* ¹ , P12 to P10, P17 to P14, P22 to P20,	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{cc} \times 0.7$		V _{cc} + 0.3	V	_
		P57 to P50, P76 to P70, P84 to P80		V _{cc} ×0.8	—	V _{cc} + 0.3	_	
		PB3 to PB0	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{cc} imes 0.7$	_	$AV_{cc} + 0.3$	V	-
				$V_{cc} imes 0.8$		$AV_{cc} + 0.3$	_	
		OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{cc} - 0.5$	—	V_{cc} + 0.3	V	_
				$V_{\rm cc} - 0.3$	_	V _{cc} + 0.3	_	
Input low voltage	V _{IL}	RES, NMI WKP0 to WKP5, IRQ0, IRQ3, ADTRG,TMRIV,	$V_{\rm cc}$ = 4.0 V to 5.5 V	-0.3	—	$V_{cc} \times 0.2$	V	
		TMCIV, FTCI, FTIOA to FTIOD, SCK3, SCK3_2, SCK3_3* ¹ , TRGV		-0.3	_	V _{cc} ×0.1	-	
		RXD, RXD_2, RXD_3* ¹ , P12 to P10, P17 to P14, P22 to P20,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	-0.3	_	$V_{cc} \times 0.3$	V	_
		P57 to P50, P76 to P70, P84 to P80 PB3 to PB0		-0.3		$V_{cc} \times 0.2$		_
		OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	-0.3	_	0.5	V	
				-0.3	_	0.3		

RENESAS

					Value	s		
Item	Symbol	Applicable Pins	Test Condition	Min	Тур	Мах	Unit	Notes
Pull-up MOS	−I _p	P12 to P10, P17 to P14,	$V_{cc} = 5.0 \text{ V},$ $V_{IN} = 0.0 \text{ V}$	50.0		300.0	μΑ	
current		P55 to P50	$V_{cc} = 3.0 \text{ V},$ $V_{IN} = 0.0 \text{ V}$	_	60.0	—		Reference value
Input capaci- tance	C _{in}	All input pins except power supply pins	f = 1 MHz, V _{IN} = 0.0 V, T _a = 25°C	—	_	15.0	pF	
Active mode current	I _{OPE1}	V _{cc}	Active mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	15.0	30.0	mA	*2
consump- tion			Active mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	8.0	_		* ² Reference value
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	1.8	3.0	mA	* ²
			Active mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	—	1.2	_		* ² Reference value
Sleep mode current	I _{SLEEP1}	V _{cc}	Sleep mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	11.5	22.5	mA	*2
consump- tion			Sleep mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	6.5	_		* ² Reference value
	I _{SLEEP2}	V _{cc}	Sleep mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	1.7	2.7	mA	*2
			Sleep mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	1.1	_		* ² Reference value
Standby mode current consump- tion	I _{stby}	V _{cc}		_	_	5.0	μΑ	*2

RENESAS

			Addressing Mode and Instruction Length (bytes)													No Stat	. of es ^{*1}			
Mnemonic		Operand Size	#xx	Rn	@ERn	@(d, ERn)	@-ERn/@ERn+	@aa	@(d, PC)	@ @ aa	1	Operation	1	Con H	Normal	Advanced				
MOV	MOV.W Rs, @-ERd	w					2					ERd32–2 \rightarrow ERd32 Rs16 \rightarrow @ERd	-	-	\$	\$	0	-	(6
	MOV.W Rs, @aa:16	w						4				Rs16 \rightarrow @aa:16	_	_	\$	\$	0	-	6	6
	MOV.W Rs, @aa:24	w						6				Rs16 \rightarrow @aa:24	_	-	\$	\$	0	-	8	8
	MOV.L #xx:32, Rd	L	6									#xx:32 → Rd32	_	-	\$	\$	0	-	(6
	MOV.L ERs, ERd	L		2								ERs32 \rightarrow ERd32	_	_	\$	\$	0	-	1	2
	MOV.L @ERs, ERd	L			4							@ERs \rightarrow ERd32	_	-	\$	\$	0	-	8	8
	MOV.L @(d:16, ERs), ERd	L				6						@(d:16, ERs) → ERd32	_	-	\$	\$	0	-	1	0
	MOV.L @(d:24, ERs), ERd	L				10						@(d:24, ERs) → ERd32	_	-	\$	\$	0	-	1	4
	MOV.L @ERs+, ERd	L					4					@ERs → ERd32 ERs32+4 → ERs32	-	-	\$	\$	0	-	1	0
	MOV.L @aa:16, ERd	L						6				@aa:16 \rightarrow ERd32	_	-	\$	\$	0	-	1	0
	MOV.L @aa:24, ERd	L						8				@aa:24 \rightarrow ERd32	_	-	\$	\$	0	-	1	2
	MOV.L ERs, @ERd	L			4							$ERs32 \rightarrow @ERd$	_	—	\$	\$	0	—	8	В
	MOV.L ERs, @(d:16, ERd)	L				6						ERs32 \rightarrow @(d:16, ERd)	—	-	\$	\$	0	-	1	0
	MOV.L ERs, @(d:24, ERd)	L				10						ERs32 \rightarrow @(d:24, ERd)	—	-	\$	\$	0	—	1	4
	MOV.L ERs, @-ERd	L					4					$\begin{array}{l} ERd32-4 \to ERd32 \\ ERs32 \to @ ERd \end{array}$	-	-	\$	\$	0	-	1	0
	MOV.L ERs, @aa:16	L						6				ERs32 \rightarrow @aa:16	—	-	\$	\$	0	-	1	0
	MOV.L ERs, @aa:24	L						8				ERs32 \rightarrow @aa:24	—	-	\$	\$	0	-	1	2
POP	POP.W Rn	W									2	$\begin{array}{l} @ SP \to Rn16 \\ \\ SP+2 \to SP \end{array}$	-	-	\$	\$	0	-	(6
	POP.L ERn	L									4	$\begin{array}{l} @ SP \to ERn32 \\ SP+4 \to SP \end{array}$	-	-	\$	\$	0	-	10	
PUSH	PUSH.W Rn	W									2	$SP-2 \rightarrow SP$ Rn16 $\rightarrow @SP$	_	-	\$	\$	0	-	- 6	
	PUSH.L ERn	L									4	$\begin{array}{l} SP\text{-}4 \to SP \\ ERn32 \to @SP \end{array}$	-	-	\$	\$	0	-	- 10	
MOVFPE	MOVFPE @aa:16, Rd	В						4				Cannot be used in this LSI	Cannot be used in this LSI							
MOVTPE	MOVTPE Rs, @aa:16	В						4				Cannot be used in this LSI	Cannot be used in this LSI							

					Addressing Mode and Instruction Length (bytes)													No. of States ^{*1}		
	Mnemonic	Operand Size	Operation	×		@ERn	@(d, ERn)	@-ERn/@ERn+	@aa	@(d, PC)	@aa		Condition Code		Normal	Advanced				
		ő		XX#	Rn	0	0	ġ	0	0	0	Ι	Т	н	Ν	z	v	с	Ŷ	Ad
NEG	NEG.B Rd	В	$0-Rd8 \rightarrow Rd8$		2								—	\updownarrow	\updownarrow	\uparrow	\updownarrow	\updownarrow	2	2
	NEG.W Rd	W	$0-Rd16 \rightarrow Rd16$		2								—	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	2	2
	NEG.L ERd	L	$0-ERd32 \rightarrow ERd32$		2								-	\$	\$	\$	\updownarrow	\updownarrow	2	2
EXTU	EXTU.W Rd	W	$0 \rightarrow (\text{} \text{ of Rd16})$		2								-	—	0	€	0	—	2	2
	EXTU.L ERd	L	$0 \rightarrow (< bits 31 to 16 > of ERd32)$		2								-	—	0	\$	0	—	2	2
EXTS	EXTS.W Rd	W	(<bit 7=""> of Rd16) \rightarrow (<bits 15="" 8="" to=""> of Rd16)</bits></bit>		2								—	—	\$	\$	0	—	2	2
	EXTS.L ERd	L	(<bit 15=""> of ERd32) \rightarrow (<bits 16="" 31="" to=""> of ERd32)</bits></bit>		2										\$	\$	0		2	2

Appendix

Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
Bcc	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					
	BRA d:16(BT d:16)	2					2
	BRN d:16(BF d:16)	2					2
	BHI d:16	2					2
	BLS d:16	2					2
	BCC d:16(BHS d:16)	2					2
	BCS d:16(BLO d:16)	2					2
	BNE d:16	2					2
	BEQ d:16	2					2
	BVC d:16	2					2
	BVS d:16	2					2
	BPL d:16	2					2
	BMI d:16	2					2
	BGE d:16	2					2
	BLT d:16	2					2
	BGT d:16	2					2
	BLE d:16	2					2
BCLR	BCLR #xx:3, Rd	1					
	BCLR #xx:3, @ERd	2			2		
	BCLR #xx:3, @aa:8	2			2		
	BCLR Rn, Rd	1					
	BCLR Rn, @ERd	2			2		
	BCLR Rn, @aa:8	2			2		
BIAND	BIAND #xx:3, Rd	1					
	BIAND #xx:3, @ERd	2			1		
	BIAND #xx:3, @aa:8	2			1		
BILD	BILD #xx:3, Rd	1					
	BILD #xx:3, @ERd	2			1		
	BILD #xx:3, @aa:8	2			1		