

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36024gfyv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	13.4.2	SCI3 Initialization	193
	13.4.3	Data Transmission	194
	13.4.4	Serial Data Reception	196
13.5	Operat	ion in Clocked Synchronous Mode	200
	13.5.1	Clock	200
	13.5.2	SCI3 Initialization	201
	13.5.3	Serial Data Transmission	201
	13.5.4	Serial Data Reception (Clocked Synchronous Mode)	203
	13.5.5	Simultaneous Serial Data Transmission and Reception	205
13.6	Multip	rocessor Communication Function	207
	13.6.1	Multiprocessor Serial Data Transmission	208
	13.6.2	Multiprocessor Serial Data Reception	210
13.7	Interru	pts	214
13.8	Usage	Notes	215
	13.8.1	Break Detection and Processing	215
	13.8.2	Mark State and Break Sending	215
	13.8.3	Receive Error Flags and Transmit Operations	
		(Clocked Synchronous Mode Only)	215
	13.8.4	Receive Data Sampling Timing and Reception Margin in Asynchronous	
	13.8.4	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode	216
		Mode	
Secti			
Secti 14.1	ion 14	Mode	217
	ion 14 Feature	Mode A/D Converter	217 217
14.1	ion 14 Feature Input/C	Mode A/D Converter	217 217 219
14.1 14.2	ion 14 Feature Input/C Registe 14.3.1	Mode A/D Converter es Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD)	217 217 219 220 220
14.1 14.2	ion 14 Feature Input/C Registe 14.3.1	Mode A/D Converter ss. Dutput Pins er Description	217 217 219 220 220
14.1 14.2	ion 14 Feature Input/C Registe 14.3.1 14.3.2	Mode A/D Converter es Dutput Pins er Description A/D Data Registers A to D (ADDRA to ADDRD)	217 217 219 220 220 221
14.1 14.2	ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3	Mode A/D Converter cs Dutput Pins cr Description A/D Data Registers A to D (ADDRA to ADDRD) A/D Control/Status Register (ADCSR)	217 217 219 220 220 221 221
14.1 14.2 14.3	ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3	Mode A/D Converter	217 217 219 220 220 221 222 222 223
14.1 14.2 14.3	ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat 14.4.1	Mode A/D Converter Ss Dutput Pins er Description	217 217 219 220 220 221 222 223 223
14.1 14.2 14.3	ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat: 14.4.1 14.4.2	Mode A/D Converter	217 217 219 220 220 221 222 223 223 223
14.1 14.2 14.3	ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat: 14.4.1 14.4.2 14.4.3 14.4.3	Mode A/D Converter	217 217 220 220 220 221 222 223 223 223 224 225
14.1 14.2 14.3	ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat: 14.4.1 14.4.2 14.4.3 14.4.3	Mode A/D Converter	217 217 220 220 220 221 222 223 223 223 224 225
14.1 14.2 14.3	ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat 14.4.1 14.4.2 14.4.3 14.4.3 14.4.4 A/D Co	Mode A/D Converter	217 217 219 220 220 221 222 223 223 223 223 223 224 225 226
14.1 14.2 14.3 14.4	ion 14 Feature Input/C Registe 14.3.1 14.3.2 14.3.3 Operat 14.4.1 14.4.2 14.4.3 14.4.3 14.4.4 A/D Co Usage	Mode A/D Converter	217 217 219 220 220 221 222 223 223 223 224 224 226 228

2.1 Address Space and Memory Map

The address space of this LSI is 64 kbytes, which includes the program area and the data area. Figures 2.1 show the memory maps.

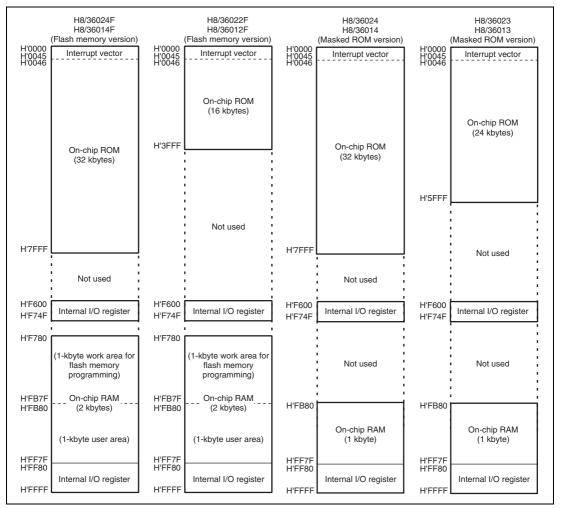


Figure 2.1 Memory Map (1)

RENESAS

(2) Bit Manipulation in a Register Containing a Write-Only Bit

Example 3: BCLR instruction executed designating port 5 control register PCR5

P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal input at P56. P55 to P50 are output pins that output low-level signals. An example of setting the P50 pin as an input pin by the BCLR instruction is shown below. It is assumed that a high-level signal will be input to this input pin.

• Prior to executing BCLR

	P57	P56	P55	P54	P53	P52	P51	P50
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1	1
PDR5	1	0	0	0	0	0	0	0

BCLR instruction executed

BCLR #0, @PCR5

The BCLR instruction is executed for PCR5.

• After executing BCLR

	P57	P56	P55	P54	P53	P52	P51	P50
Input/output	Output	Output	Output	Output	Output	Output	Output	Input
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR5	1	1	1	1	1	1	1	0
PDR5	1	0	0	0	0	0	0	0

- Description on operation
- 1. When the BCLR instruction is executed, first the CPU reads PCR5. Since PCR5 is a write-only register, the CPU reads a value of H'FF, even though the PCR5 value is actually H'3F.
- 2. Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE.

3. Finally, H'FE is written to PCR5 and BCLR instruction execution ends. As a result of this operation, bit 0 in PCR5 becomes 0, making P50 an input port. However, bits 7 and 6 in PCR5 change to 1, so that P57 and P56 change from input pins to output pins. To prevent this problem, store a copy of the PCR5 data in a work area in memory and manipulate data of the bit in the work area, then write this data to PCR5.

5.1.3 External Clock Input Method

Connect an external clock signal to pin OSC_1 , and leave pin OSC_2 open. Figure 5.6 shows a typical connection. The duty cycle of the external clock signal must be 45 to 55%.

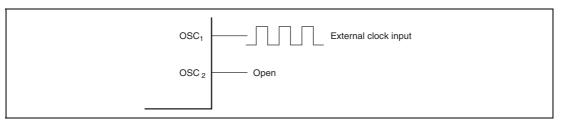


Figure 5.6 Example of External Clock Input

5.2 Prescalers

5.2.1 Prescaler S

Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. It is incremented once per clock period. Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from the reset state. In standby mode and subsleep mode, the system clock pulse generator stops. Prescaler S also stops and is initialized to H'0000. The CPU cannot read or write prescaler S.

The output from prescaler S is shared by the on-chip peripheral modules. The divider ratio can be set separately for each on-chip peripheral function. In active mode and sleep mode, the clock input to prescaler S is determined by the division factor designated by MA2 to MA0 in SYSCR2.

5.3 Usage Notes

5.3.1 Note on Resonators

Resonator characteristics are closely related to board design and should be carefully evaluated by the user, referring to the examples shown in this section. Resonator circuit constants will differ depending on the resonator element, stray capacitance in its interconnecting circuit, and other factors. Suitable constants should be determined in consultation with the resonator element manufacturer. Design the circuit so that the resonator element never receives voltages exceeding its maximum rating.

- 4. After matching the bit rates, the chip transmits one H'00 byte to the host to indicate the completion of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the chip. If reception could not be performed normally, initiate boot mode again by a reset. Depending on the host's transfer bit rate and system clock frequency of this LSI, there will be a discrepancy between the bit rates of the host and the chip. To operate the SCI properly, set the host's transfer bit rate and system clock frequency of this LSI within the ranges listed in table 7.3.
- 5. In boot mode, a part of the on-chip RAM area is used by the boot program. The area H'F780 to H'FEEF is the area to which the programming control program is transferred from the host. The boot program area cannot be used until the execution state in boot mode switches to the programming control program.
- 6. Before branching to the programming control program, the chip terminates transfer operations by SCI3 (by clearing the RE and TE bits in SCR3 to 0), however the adjusted bit rate value remains set in BRR. Therefore, the programming control program can still use it for transfer of write data or verify data with the host. The TxD pin is high (PCR22 = 1, P22 = 1). The contents of the CPU general registers are undefined immediately after branching to the programming control program. These registers must be initialized at the beginning of the programming control program, as the stack pointer (SP), in particular, is used implicitly in subroutine calls, etc.
- 7. Boot mode can be cleared by a reset. End the reset after driving the reset pin low, waiting at least 20 states, and then setting the $\overline{\text{NMI}}$ pin. Boot mode is also cleared when a WDT overflow occurs.
- 8. Do not change the TEST pin and $\overline{\text{NMI}}$ pin input levels in boot mode.

Section 11 Timer W

The timer W has a 16-bit timer having output compare and input capture functions. The timer W can count external events and output pulses with an arbitrary duty cycle by compare match between the timer counter and four general registers. Thus, it can be applied to various systems.

11.1 Features

- Selection of five counter clock sources: four internal clocks (ϕ , $\phi/2$, $\phi/4$, and $\phi/8$) and an external clock (external events can be counted)
- Capability to process up to four pulse outputs or four pulse inputs
- Four general registers:
 - Independently assignable output compare or input capture functions
 - Usable as two pairs of registers; one register of each pair operates as a buffer for the output compare or input capture register
- Four selectable operating modes :
 - Waveform output by compare match
 - Selection of 0 output, 1 output, or toggle output
 - Input capture function
 - Rising edge, falling edge, or both edges
 - Counter clearing function
 - Counters can be cleared by compare match
 - PWM mode
 - Up to three-phase PWM output can be provided with desired duty ratio.
- Any initial timer output value can be set
- Five interrupt sources

Four compare match/input capture interrupts and an overflow interrupt.

Table 11.1 summarizes the timer W functions, and figure 11.1 shows a block diagram of the timer W.

The TCNT value can be captured into a general register (GRA, GRB, GRC, or GRD) when a signal level changes at an input-capture pin (FTIOA, FTIOB, FTIOC, or FTIOD). Capture can take place on the rising edge, falling edge, or both edges. By using the input-capture function, the pulse width and periods can be measured. Figure 11.7 shows an example of input capture when both edges of FTIOA and the falling edge of FTIOB are selected as capture edges. TCNT operates as a free-running counter.

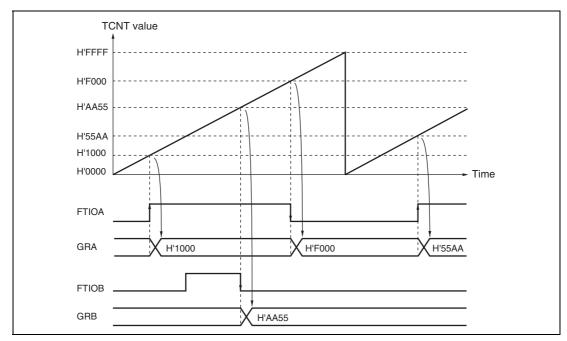


Figure 11.7 Input Capture Operating Example

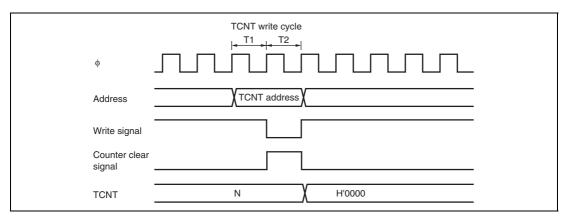


Figure 11.24 Contention between TCNT Write and Clear

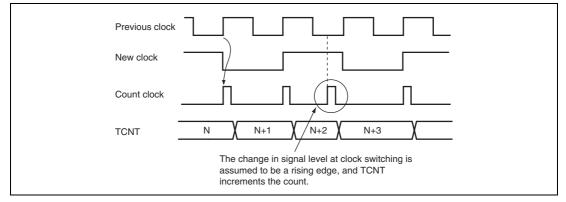


Figure 11.25 Internal Clock Switching and TCNT Operation

Bit	Bit Name	Initial Value	R/W	Description
3	MPIE	0	R/W	Multiprocessor Interrupt Enable (enabled only when the MP bit in SMR is 1 in asynchronous mode)
				When this bit is set to 1, receive data in which the multiprocessor bit is 0 is skipped, and setting of the RDRF, FER, and OER status flags in SSR is disabled. On receiving data in which the multiprocessor bit is 1, this bit is automatically cleared and normal reception is resumed. For details, refer to section 13.6, Multiprocessor Communication Function.
2	TEIE	0	R/W	Transmit End Interrupt Enable
				When this bit is set to 1, TEI interrupt request is enabled.
1	CKE1	0	R/W	Clock Enable 0 and 1
0	CKE0	0	R/W	Selects the clock source.
				Asynchronous mode
				00: On-chip baud rate generator
				01: On-chip baud rate generator
				Outputs a clock of the same frequency as the bit rate from the SCK3 pin.
				10: External clock
				Inputs a clock with a frequency 16 times the bit rate from the SCK3 pin.
				11:Reserved
				Clocked synchronous mode
				00: On-chip clock (SCK3 pin functions as clock output)
				01:Reserved
				10: External clock (SCK3 pin functions as clock input)
				11:Reserved

13.4 Operation in Asynchronous Mode

Figure 13.2 shows the general format for asynchronous serial communication. One character (or frame) consists of a start bit (low level), followed by data (in LSB-first order), a parity bit (high or low level), and finally stop bits (high level). Inside the SCI3, the transmitter and receiver are independent units, enabling full-duplex. Both the transmitter and the receiver also have a double-buffered structure, so data can be read or written during transmission or reception, enabling continuous data transfer.

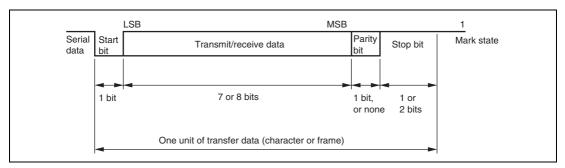


Figure 13.2 Data Format in Asynchronous Communication

13.4.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external clock input at the SCK3 pin can be selected as the SCI3's serial clock, according to the setting of the COM bit in SMR and the CKE0 and CKE1 bits in SCR3. When an external clock is input at the SCK3 pin, the clock frequency should be 16 times the bit rate used.

When the SCI3 is operated on an internal clock, the clock can be output from the SCK3 pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is in the middle of the transmit data, as shown in figure 13.3.

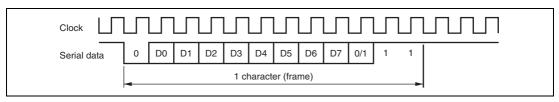


Figure 13.3 Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits)

15.2.1 Low-Voltage-Detection Control Register (LVDCR)

LVDCR is used to enable or disable the low-voltage detection circuit, set the detection levels for the LVDR function, enable or disable the LVDR function, and enable or disable generation of an interrupt when the power-supply voltage rises above or falls below the respective levels.

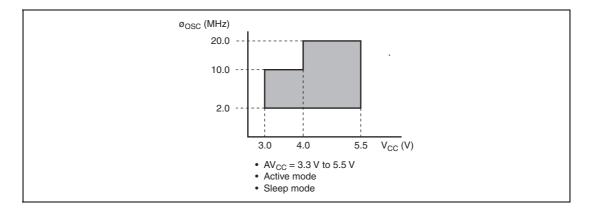
Table 15.1 shows the relationship between the LVDCR settings and select functions. LVDCR should be set according to table 15.1.

Bit	Bit Name	Initial Value	R/W	Description
7	LVDE	0*	R/W	LVD Enable
				0: The low-voltage detection circuit is not used (In standby mode)
				1: The low-voltage detection circuit is used
6 to 4	_	All 1		Reserved
				These bits are always read as 1, and cannot be modified.
3	LVDSEL	0*	R/W	LVDR Detection Level Select
				0: Reset detection voltage is 2.3 V (typ.)
				1: Reset detection voltage is 3.6 V (typ.)
				When the falling or rising voltage detection interrupt is used, reset detection voltage of 2.3 V (typ.) should be used. When only a reset detection interrupt is used, reset detection voltage of 3.6 V (typ.) should be used.
2	LVDRE	0*	R/W	LVDR Enable
				0: Disables the LVDR function
				1: Enables the LVDR function
1	LVDDE	0	R/W	Voltage-Fall-Interrupt Enable
				0: Interrupt on the power-supply voltage falling below the selected detection level disabled
				1: Interrupt on the power-supply voltage falling below the selected detection level enabled
0	LVDUE	0	R/W	Voltage-Rise-Interrupt Enable
				0: Interrupt on the power-supply voltage rising above the selected detection level disabled
				1: Interrupt on the power-supply voltage rising above the selected detection level enabled
Note:	* Not initia	lized by LV	/DR but i	

Section 18 Electrical Characteristics

18.1 Absolute Maximum Ratings

Table 18.1 Absolute Maximum Ratings


Item		Symbol	Value	Unit	Note
Power supply voltage		V _{cc}	–0.3 to +7.0	V	*
Analog power supply	voltage	AV_{cc}	-0.3 to +7.0	V	_
Input voltage	Ports other than Port B	V _{IN}	–0.3 to V $_{\rm cc}$ +0.3	V	_
	Port B	_	–0.3 to AV $_{\rm cc}$ +0.3	V	_
Operating temperatu	re	$T_{_{opr}}$	-20 to +75	°C	_
Storage temperature		T_{stg}	–55 to +125	°C	

Note: * Permanent damage may result if maximum ratings are exceeded. Normal operation should be under the conditions specified in Electrical Characteristics. Exceeding these values can result in incorrect operation and reduced reliability.

18.2 Electrical Characteristics (F-ZTATTM Version)

18.2.1 Power Supply Voltage and Operating Ranges

(1) Power Supply Voltage and Oscillation Frequency Range

RENESAS

		Applicable			Value	S		Reference
Item	Symbol	Pins	Test Condition	Min	Тур	Max	Unit	Figure
RES pin low width	t _{REL}	RES	At power-on and in modes other than those below	t _{rc}	—	_	ms	Figure 18.2
			In active mode and sleep mode operation	200	_	_	ns	_
Input pin high width	t _{iH}	NMI, IRQ0, IRQ3, WKP0 to WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTCI, FTIOA to FTIOD		2			t _{cyc}	Figure 18.3
Input pin low width	t _{ı.}	NMI, IRQ0, IRQ3, WKP0 to WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTIOA to FTIOD		2	_		t _{cyc}	_

Notes: 1. When an external clock is input, the minimum system clock oscillator frequency is 1.0 MHz.

2. Determined by MA2 to MA0 in system control register 2 (SYSCR2).

18.2.6 Flash Memory Characteristics

Table 18.7 Flash Memory Characteristics

 V_{cc} = 3.0 V to 5.5 V, V_{ss} = 0.0 V, T_a = -20°C to +75°C, unless otherwise specified.

Item			Test				
		Symbol	Condition	Min	Тур	Max	Unit
Programming t	time (per 128 bytes)* ¹ * ² * ⁴	t _P		_	7	200	ms
Erase time (pe	r block) * ¹ * ³ * ⁶	t _e		_	100	1200	ms
Reprogrammin	ng count	N_{wec}		1000	10000	—	Times
Programming	Wait time after SWE bit setting*1	x		1	_	_	μs
	Wait time after PSU bit setting*1	у		50	_	_	μs
	Wait time after P bit setting	z1	$1 \le n \le 6$	28	30	32	μs
	*1*4	z2	$7 \le n \le 1000$	198	200	202	μs
		z3	Additional- programming	8	10	12	μs
	Wait time after P bit clear*1	α		5	—	_	μs
	Wait time after PSU bit clear*1	β		5	—	—	μs
	Wait time after PV bit setting*1	γ		4	—	—	μs
	Wait time after dummy write* ¹	ε		2	_	_	μs
	Wait time after PV bit clear*1	η		2	—	—	μs
	Wait time after SWE bit clear*1	θ		100	_	_	μs
	Maximum programming count*1*4*5	Ν		_	_	1000	Times

18.3.7 Power-On Reset Circuit Characteristics (Optional)

Table 18.16 Power-On Reset Circuit Characteristics

 $V_{ss} = 0.0 \text{ V}, T_a = -20 \text{ to } +75^{\circ}\text{C}$, unless otherwise indicated.

		Test				
Item	Symbol	Condition	Min	Тур	Max	Unit
Pull-up resistance of RES pin	R _{RES}		100	0 150	—	kΩ
Power-on reset start voltage*	V_{por}		—	_	100	mV
Note: * The power-supply	por	t fall below Voc	r = 100	mV and	thon i	rico

Note: * The power-supply voltage (Vcc) must fall below Vpor = 100 mV and then rise after charge of the RES pin is removed completely. In order to remove charge of the RES pin, it is recommended that the diode be placed in the Vcc side. If the power-supply voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occur.

18.4 Operation Timing

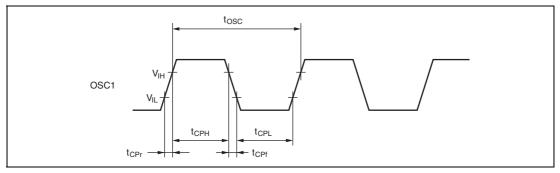


Figure 18.1 System Clock Input Timing

Appendix B I/O Port Block Diagrams

B.1 I/O Port Block Diagrams

 $\overline{\text{RES}}$ goes low in a reset, and $\overline{\text{SBY}}$ goes low in a reset and in standby mode.

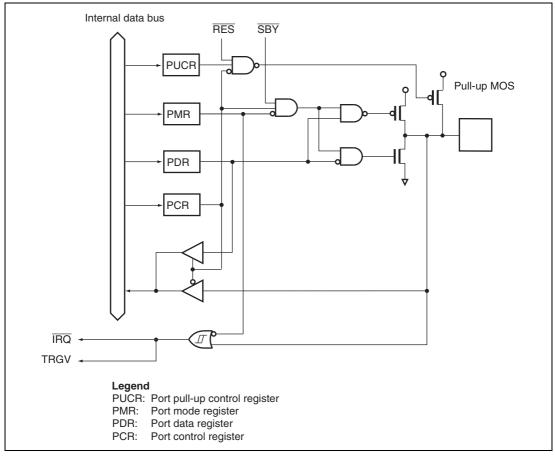


Figure B.1 Port 1 Block Diagram (P17)

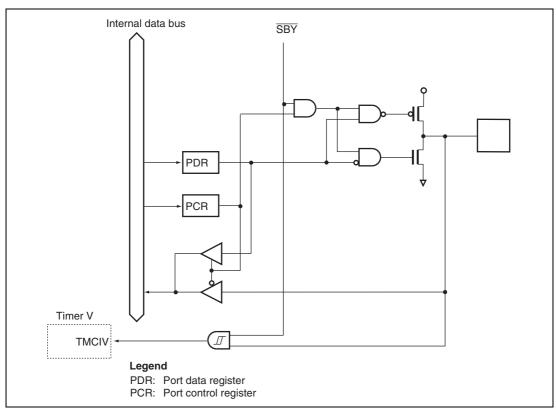


Figure B.15 Port 7 Block Diagram (P75)

Appendix D Package Dimensions

The package dimensions that are shows in the Renesas Semiconductor Packages Data Book have priority.

