

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30620fcpfp-u7c

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1. Overview	
-------------	--

Pin No.	Control Pin		Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control F
51		P5_6					ALE
52		P5_5					HOLD
53		P5_4					HLDA
54		_ P13_3					
55		P13_2					
56		 P13_1					
57		P13_0					
58		P5_3					BCLK
59		P5_2					RD
60		P5_1					WRH/BHE
61		 P5_0					WRL/WR
62		P12_7					
63		P12_6					
64		P12_5					
65		P4_7					CS3
66		P4_6					CS2
67							CS1
		P4_5					
68		P4_4					CS0
69		P4_3					A19
70		P4_2					A18
71		P4_1					A17
72		P4_0					A16
73 74		P3_7					A15 A14
74		P3_6 P3_5					A14 A13
75		P3_5 P3_4					A13 A12
70		P3_4 P3_3					A12 A11
78		P3_2					A10
79		P3_1					A10 A9
80		P12_4					<u>A</u> 9
81		P12_4					
82		P12_3					
83		P12_1					
84		P12_0					
85	VCC2	1.12_0					
86		P3_0	1				A8(/-/D7)
87	VSS		1				- x /
88		P2_7				AN2_7	A7(/D7/D6)
89		_ P2_6				 AN2_6	A6(/D6/D5)
90		_ P2_5				 AN2_5	A5(/D5/D4)
91		P2_4				AN2_4	A4(/D4/D3)
92		P2_3				AN2_3	A3(/D3/D2)
93		P2_2				AN2_2	A2(/D2/D1)
94		P2_1				AN2_1	A1(/D1/D0)
95		P2_0				AN2_0	A0(/D0/-)
96		P1_7	INT5				D15
97		_ P1_6	INT4				D14
98		P1_5	INT3				D13
99		P1_4					D13
100		P1_3					D12

 Table 1.11
 Pin Characteristics for 128-Pin Package (2)

RENESAS

Pin FP	No. GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
1	99		P9_6			SOUT4	ANEX1	
2	100		P9_5			CLK4	ANEX0	
3	1		P9_4		TB4IN		DA1	
4	2		P9_3		TB3IN		DA0	
5	3		P9_2		TB2IN	SOUT3		
6	4		 P9_1		TB1IN	SIN3		
7	5		P9_0		TBOIN	CLK3		
8	6	BYTE						
9	7	CNVSS						
10	8	XCIN	P8_7					
11	9	XCOUT	P8_6					
12	10	RESET						
13	11	XOUT						
14	12	VSS						
15	13	XIN						
16	14	VCC1						
17	15		P8_5	NMI				
18	16		 P8_4	INT2	ZP			1
19	17		P8_3	INT1				
20	18							
			P8_2	INT0				
21	19		P8_1		TA4IN/U			
22	20		P8_0		TA4OUT/U			
23	21		P7_7		TA3IN			
24	22		P7_6		TA3OUT			
25	23		P7_5		TA2IN/W			
26	24		P7_4		TA2OUT/W			
27	25		P7_3		TA1IN/V	CTS2/RTS2		
28	26		P7_2		TA1OUT/V	CLK2		
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2		
30	28		P7_0		TA0OUT	TXD2/SDA2		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6_4			CTS1/RTS1/CTS0/CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6_2			RXD0/SCL0		
37	35		P6_1			CLK0		
38	36		P6_0			CTS0/RTS0		
39	37		P5_7					RDY/CLKOUT
40	38		P5_6					ALE
41	39		 P5_5					HOLD
42	40		P5_4					HLAD
42	40		P5_4 P5_3		<u> </u>			BCLK
44	42		P5_2					RD
45	43		P5_1					WRH/BHE
46	44		P5_0					WRL/WR
47	45		P4_7					CS3
48	46		P4_6					CS2
49	47		 P4_5					CS1
49			·_~	1	1	1	1	1 - - -

 Table 1.13
 Pin Characteristics for 100-Pin Package (1)

RENESAS

1.6 Pin Description

	•	•		. ,,,
Signal Name	Pin Name	I/O Type	Power Supply ⁽³⁾	Description
Power supply input	VCC1,VCC2 VSS	I	_	Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is that VCC1 \ge VCC2. ^(1, 2)
Analog power supply input	AVCC AVSS	I	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS	Ι	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode.
External data bus width select input	BYTE	I	VCC1	Switches the data bus in external memory space. The data bus is 16 bits long when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it to either one. Connect this pin to VSS when an single-chip mode.
Bus control pins ⁽⁴⁾	D0 to D7	I/O	VCC2	Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.
	D8 to D15	I/O	VCC2	Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus.
	A0 to A19	0	VCC2	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A0 to A7) by timesharing when external 8-bit data bus are set as the multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A1 to A8) by timesharing when external 16-bit data bus are set as the multiplexed bus.
	CS0 to CS3	0	VCC2	Output $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ signals. $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are chip-select signals to specify an external space.
	WRL/WR WRH/BHE RD	0	VCC2	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR can be switched by program. • WRL, WRH and RD are selected The WRL signal becomes "L" by writing data to an even address in an external memory space. The WRH signal becomes "L" by writing data to an odd address in an external memory space. The RD pin signal becomes "L" by reading data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. The RD signal becomes "L" by reading data in an external memory space. The BHE and RD are selected Signal becomes "L" by reading data in an external memory space. The BHE signal becomes "L" by reading data in an external memory space.
	ALE	0	VCC2	ALE is a signal to latch the address.
	HOLD	I	VCC2	While the $\overline{\text{HOLD}}$ pin is held "L", the microcomputer is placed in a hold state.
	HLDA	0	VCC2	In a hold state, HLDA outputs a "L" signal.
	RDY	1	VCC2	While applying a "L" signal to the \overline{RDY} pin, the microcomputer is

Table 1.17Pin Description (100-pin and 128-pin Version) (1)

I : Input O : Output I/O : Input and output

Power Supply : Power supplies which relate to the external bus pins are separated as VCC2, thus they can be interfaced using the different voltage as VCC1.

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 and VCC2 pins. Also the apply condition is that VCC1 = VCC2.

- 3. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 4. Bus control pins in M16C/62PT cannot be used.

Signal Name	Pin Name	I/O	Power	Description
5		Туре	Supply ⁽¹⁾	'
Main clock	XIN	I	VCC1	I/O pins for the main clock generation circuit. Connect a ceramic
input				resonator or crystal oscillator between XIN and XOUT ⁽³⁾ . To use
Main clock	XOUT	0	VCC1	the external clock, input the clock from XIN and leave XOUT open.
output	XON		1/004	
Sub clock input			VCC1	I/O pins for a sub clock oscillation circuit. Connect a crystal oscillator between XCIN and XCOUT ⁽³⁾ . To use the external clock,
Sub clock output	XCOUT	0	VCC1	input the clock from XCIN and leave XCOUT open.
BCLK output ⁽²⁾	BCLK	0	VCC2	Outputs the BCLK signal.
Clock output	CLKOUT	0	VCC2	The clock of the same cycle as fC, f8, or f32 is outputted.
INT interrupt	INTO to INT2	- U	VCC1	Input pins for the INT interrupt.
input				input pins for the INT interrupt.
	NT3 to INT5	I	VCC2	
NMI interrupt input	NMI	Ι	VCC1	Input pin for the NMI interrupt. Pin states can be read by the P8_5 bit in the P8 register.
Key input interrupt input	KI0 to KI3	Ι	VCC1	Input pins for the key input interrupt.
Timer A	TA0OUT to	I/O	VCC1	These are timer A0 to timer A4 I/O pins. (however, output of
	TA4OUT			TA0OUT for the N-channel open drain output.)
	TA0IN to TA4IN	Ι	VCC1	These are timer A0 to timer A4 input pins.
	ZP		VCC1	Input pin for the Z-phase.
Timer B	TB0IN to TB5IN	Ι	VCC1	These are timer B0 to timer B5 input pins.
Three-phase motor control output	U, <u>Ū,</u> V, ⊽, W, ₩	0	VCC1	These are Three-phase motor control output pins.
Serial interface	CTS0 CTS2	l	VCC1	These are send control input pins.
	RTS0 to RTS2	0	VCC1	These are receive control output pins.
	CLK0 to CLK4	I/O	VCC1	These are transfer clock I/O pins.
	RXD0 to RXD2	Ι	VCC1	These are serial data input pins.
	SIN3, SIN4	I	VCC1	These are serial data input pins.
	TXD0 to TXD2	0	VCC1	These are serial data output pins. (however, output of TXD2 for the N-channel open drain output.)
	SOUT3, SOUT4	0	VCC1	These are serial data output pins.
	CLKS1	0	VCC1	This is output pin for transfer clock output from multiple pins function.
I ² C mode	SDA0 to SDA2	I/O	VCC1	These are serial data I/O pins. (however, output of SDA2 for the N- channel open drain output.)
	SCL0 to SCL2	I/O	VCC1	These are transfer clock I/O pins. (however, output of SCL2 for the N-channel open drain output.)

Table 1.18	Pin Description (100-pin and 128-pin Version) (2)
------------	---

I : Input O : Output I/O : Input and output

NOTES:

- 1. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 2. This pin function in M16C/62PT cannot be used.
- 3. Ask the oscillator maker the oscillation characteristic.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

M16C/62P Group (M16C/62P, M16C/62PT)

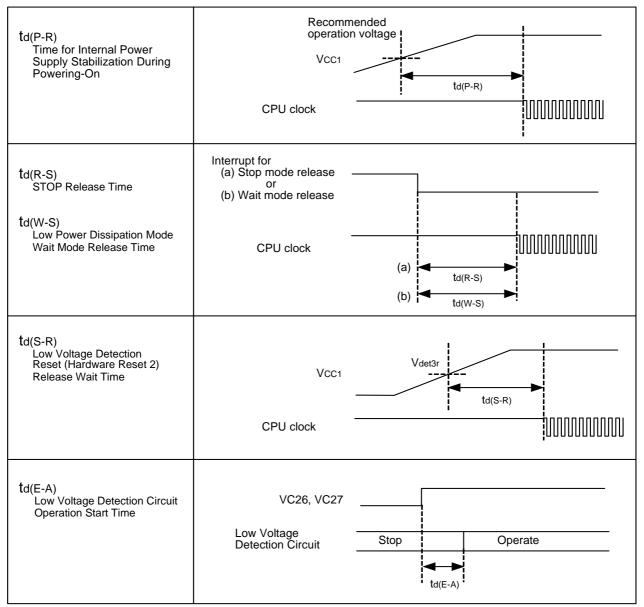


Figure 5.1 Power Supply Circuit Timing Diagram

Symbol	Symbol Parameter		Maaa	uring Condition		Standar	b	Unit
Symbol	Parameter Measuring Condition			Min.	Тур.	Max.	Unit	
Icc	Power Supply Current (Vcc1=Vcc2=4.0V to 5.5V)	In single-chip mode, the output	Mask ROM	f(BCLK)=24MHz No division, PLL operation		14	20	mA
	, , , , , , , , , , , , , , , , , , ,	pins are open and other pins are Vss		No division, On-chip oscillation		1		mA
			Flash Memory	f(BCLK)=24MHz, No division, PLL operation		18	27	mA
		-	,	No division, On-chip oscillation		1.8		mA
			Flash Memory Program	f(BCLK)=10MHz, VCC1=5.0V		15		mA
			Flash Memory Erase	f(BCLK)=10MHz, VCC1=5.0V		25		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μA
			Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μA
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μA
				On-chip oscillation, Wait mode		50		μA
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5		μA
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0		μA
				Stop mode Topr =25°C		0.8	3.0	μA
Idet4	Low Voltage Detection Diss	ipation Current (4)				0.7	4	μA
Idet3	Reset Area Detection Dissi	pation Current ⁽⁴⁾				1.2	8	μΑ

Table 5.12 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=24MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register

Idet3: VC26 bit in the VCR2 register

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.13 External Clock Input (XIN input) (1)

Symbol	Parameter	Stan	Unit	
Symbol	ynibol Falanielei		Max.	Offic
tc	External Clock Input Cycle Time	62.5		ns
ťw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

NOTES:

1. The condition is Vcc1=Vcc2=3.0 to 5.0V.

Table 5.14 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Star	Unit	
Symbol	Falametei	Min.	Max.	Unit
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data Input Access Time (when accessing multiplex bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data Input Setup Time	40		ns
tsu(RDY-BCLK)	RDY Input Setup Time	30		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	40		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 45[ns]$$
n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 45[ns]$$
 n is "2" for 2-wait setting, "3" for 3-wait setting.

VCC1=VCC2=5V

Switching Characteristics

.

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

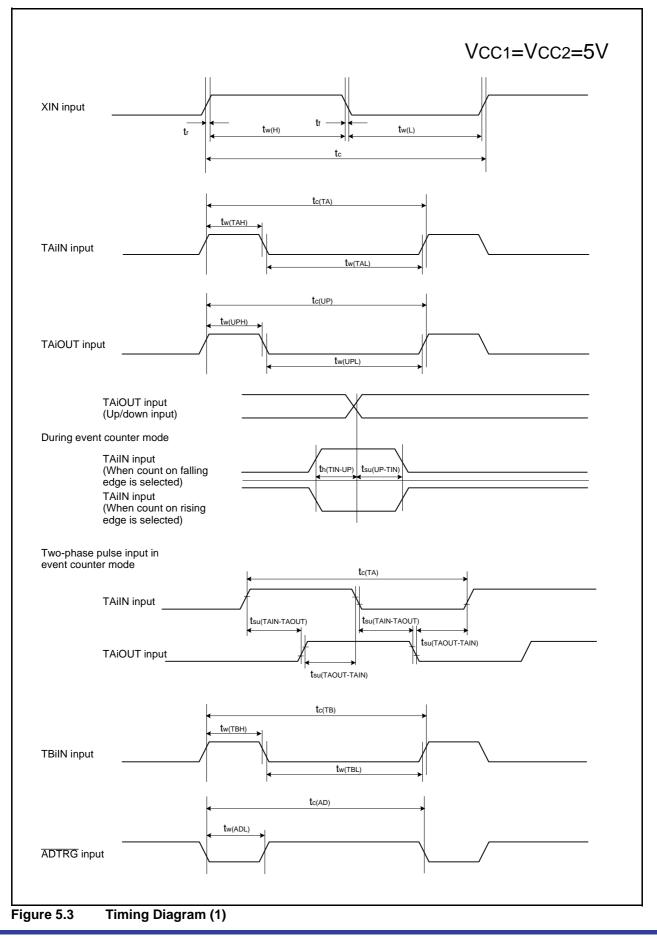
Table 5.29	Memory Expansion and Microprocessor Modes (for 2- to 3-wait setting, external area
	access and multiplex bus selection)

Symbol	Parameter		Stan	dard	Unit
Symbol	Parameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		(NOTE 1)		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
th(RD-CS)	Chip Select Output Hold Time (in relation to RD)		(NOTE 1)		ns
th(WR-CS)	Chip Select Output Hold Time (in relation to WR)		(NOTE 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time			25	ns
th(BCLK-RD)	RD Signal Output Hold Time		0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time	See	0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)	Figure 5.2		40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK)		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns
td(BCLK-ALE)	ALE Signal Output Delay Time (in relation to BCLK)			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (in relation to BCLK)		-4		ns
td(AD-ALE)	ALE Signal Output Delay Time (in relation to Address)		(NOTE 3)		ns
th(AD-ALE)	ALE Signal Output Hold Time (in relation to Address)		(NOTE 4)		ns
td(AD-RD)	RD Signal Output Delay From the End of Address		0		ns
td(AD-WR)	WR Signal Output Delay From the End of Address		0		ns
tdz(RD-AD)	Address Output Floating Start Time			8	ns

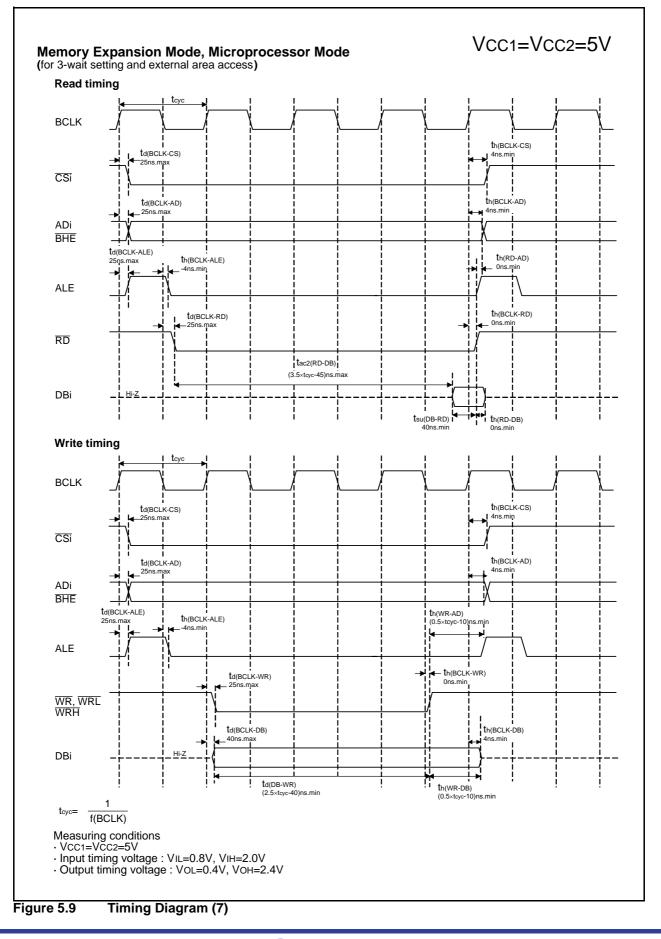
NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$


2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns] \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$


3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25[ns]$$

4. Calculated according to the BCLK frequency as follows:

RENESAS

VCC1=VCC2=3V

Symbol	Parameter			Measuring Condition	Standard			Unit	
· · · · ·		Falametei	Falameter		Min.	Тур.	Max.	Uni	
Vон	HIGH Output Voltage ⁽³⁾ P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7			IOH=-1mA	Vcc1-0.5		Vcc1	- v	
				IOH=-1mA ⁽²⁾	Vcc2-0.5		Vcc2		
Vон	HIGH Output Voltage XOUT HIGH Output Voltage XCOUT HIGH Output Voltage XCOUT HIGHPOWER LOWPOWER		IOH=-0.1mA	Vcc1-0.5		Vcc1	v		
			ІОН=-50μА	Vcc1-0.5		Vcc1	v		
			HIGHPOWER	With no load applied		2.5		V	
			LOWPOWER	With no load applied		1.6			
Vol	LOW Output Voltage ⁽³⁾ P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, F P11_0 to P11_7, P14_0, P14 P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P		P10_0 to P10_7,	IOL=1mA			0.5	v	
			7, P5_0 to P5_7,	IOL=1mA ⁽²⁾			0.5		
Vol	LOW Output Voltage XOUT HIGHPOWER LOWPOWER LOW Output Voltage XCOUT HIGHPOWER LOWPOWER		HIGHPOWER	IOL=0.1mA			0.5	v	
			LOWPOWER	IOL=50μA			0.5	V	
			With no load applied		0		V		
			With no load applied		0		V		
Vt+-Vt-	Hysteresis	HOLD, RDY, TA0IN to TA4I TB0IN to TB5IN, INTO to IN ADTRG, CTS0 to CTS2, CL TA0OUT to TA4OUT, KI0 to SCL0 to SCL2, SDA0 to SD	T5, NMI, .K <u>0 to</u> CLK4, o KI3, RXD0 to RXD2,		0.2		0.8	V	
Vt+-Vt-	Hysteresis	RESET			0.2	(0.7)	1.8	V	
Ін	HIGH Input Current ⁽³⁾	P0_0 to P0_7, P1_0 to P1_ P3_0 to P3_7, P4_0 to P4_ P6_0 to P6_7, P7_0 to P7_ P9_0 to P9_7, P10_0 to P10_ P12_0 to P12_7, P13_0 to F XIN, RESET, CNVSS, BYT	7, P5_0 to P5_7, 7, P8_0 to P8_7, 0_7, P11_0 to P11_7, P13_7, P14_0, P14_1,	VI=3V			4.0	μΑ	
lıL	LOW Input Current ⁽³⁾	P0_0 to P0_7, P1_0 to P1_ P3_0 to P3_7, P4_0 to P4_ P6_0 to P6_7, P7_0 to P7_ P9_0 to P9_7, P10_0 to P1 P12_0 to P12_7, P13_0 to F1 XIN, RESET, CNVSS, BYT	VI=0V			-4.0	μΑ		
Rpullup	Pull-Up Resistance (3)	P0_0 to P0_7, P1_0 to P1_ to P3_7, P4_0 to P4_7, P5_ P6_7, P7_2 to P7_7, P8_0 P9_0 to P9_7, P10_0 to P10 P11_0 to P11_7, P12_0 to P P14_0, P14_1	0 to P5_7, P6_0 to to P8_4, P8_6, P8_7, 0_7,	VI=0V	50	100	500	kΩ	
Rfxin	Feedback Res	sistance XIN				3.0		MΩ	
Rfxcin	Feedback Res	sistance XCIN			25		MΩ		
Vram	RAM Retentio	n Voltage	At stop mode	2.0			V		

Table 5.30 Electrical Characteristics (1) (1)

NOTES:

1. Referenced to Vcc1 = Vcc2 = 2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(XIN)=10MHz no wait unless otherwise specified.

2. Vcc1 for the port P6 to P11 and P14, and Vcc2 for the port P0 to P5 and P12 to P13

3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

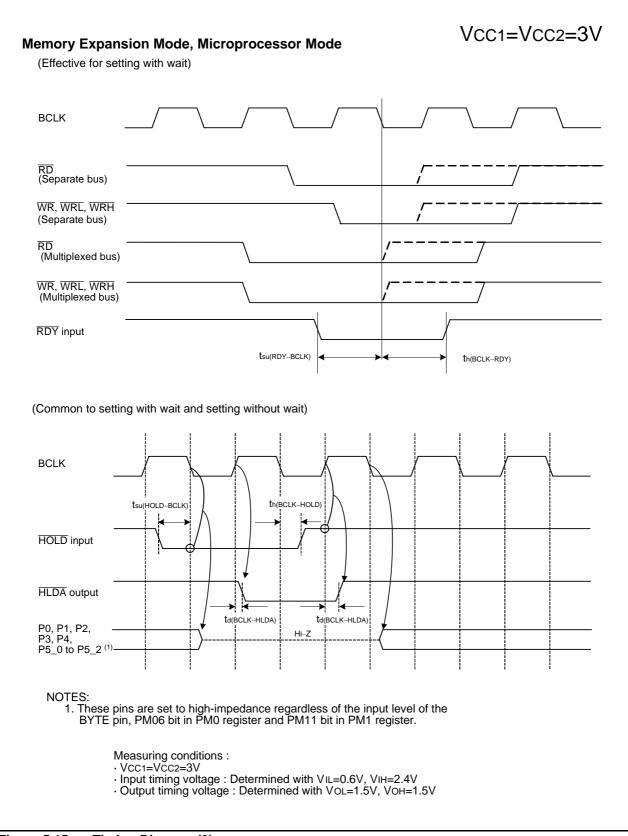
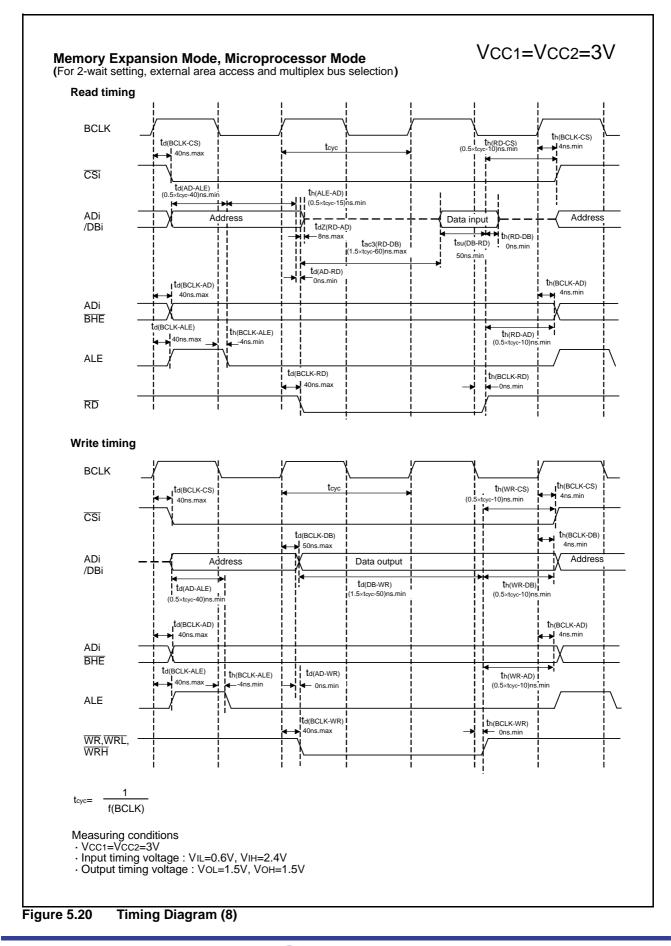
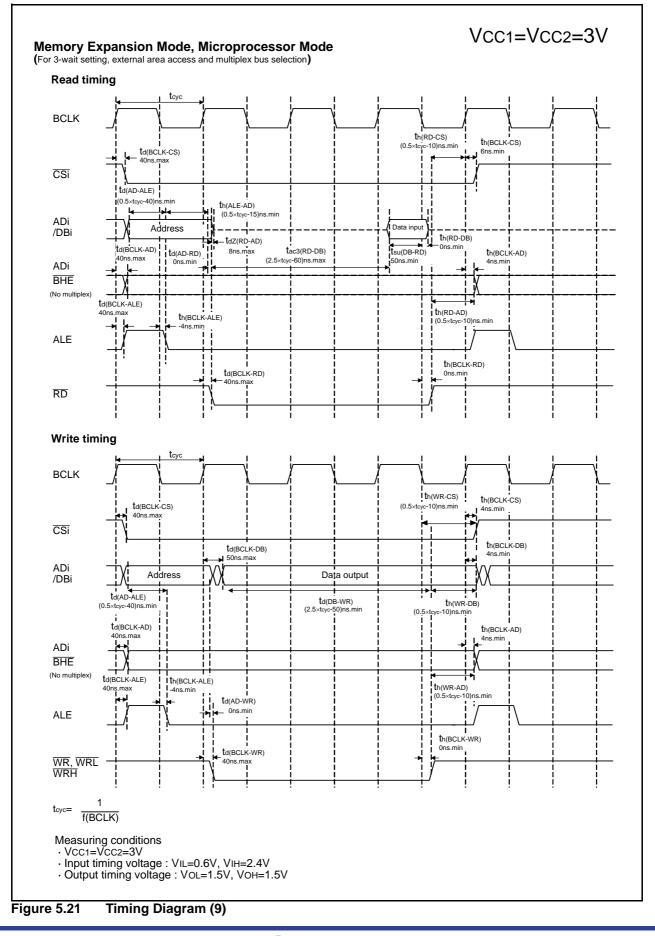




Figure 5.15 Timing Diagram (3)

O make a l	Devenuelor			L Ins it			
Symbol	Parameter			Min.	Тур.	Max.	Unit
VCC1, VCC2	Supply Voltage (Vcc1 = Vcc2)				5.0	5.5	V
AVcc	Analog Supply Voltage				VCC1		V
Vss	Supply Voltage				0		V
AVss	Analog Supply V	Voltage			0		V
Viн	HIGH Input Voltage (4)	P3_1 to P3_7, P4_0 to P4_7, P P12_0 to P12_7, P13_0 to P13		0.8Vcc2		Vcc2	V
		P0_0 to P0_7, P1_0 to P1_7, F (during single-chip mode)	P2_0 to P2_7, P3_0	0.8Vcc2		Vcc2	V
		P6_0 to P6_7, P7_2 to P7_7, F P10_0 to P10_7, P11_0 to P11 XIN, RESET, CNVSS, BYTE		0.8Vcc1		Vcc1	V
		P7_0, P7_1		0.8Vcc1		6.5	V
VIL	LOW Input Voltage (4)	P3_1 to P3_7, P4_0 to P4_7, P P12_0 to P12_7, P13_0 to P13		0		0.2Vcc2	V
	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)					0.2Vcc2	V
		P6_0 to P6_7, P7_0 to P7_7, F P10_ <u>0 to P10_7, P11_0 to P11</u> XIN, RESET, CNVSS, BYTE		0		0.2Vcc	V
IOH(peak)	HIGH Peak Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12			-10.0	mA	
IOH(avg)	HIGH Average Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12			-5.0	mA	
IOL(peak)	LOW Peak Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12			10.0	mA	
IOL(avg)	LOW Average Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12			5.0	mA	
f(XIN)	Main Clock Input Oscillation Frequency VCC1=4.0V to 5.5V			0		16	MHz
f(XCIN)	Sub-Clock Oscillation Frequency				32.768	50	kHz
f(Ring)	On-chip Oscillation Frequency			0.5	1	2	MHz
f(PLL)	PLL Clock Oscill	VCC1=4.0V to 5.5V	10		24	MHz	
f(BCLK)	CPU Operation Clock			0		24	MHz
tsu(PLL)	PLL Frequency Wait Time	Synthesizer Stabilization	VCC1=5.5V			20	ms

 Table 5.50
 Recommended Operating Conditions (1) ⁽¹⁾

NOTES:

1. Referenced to Vcc1 = Vcc2 = 4.7 to 5.5V at Topr = -40 to 85° C / -40 to 125° C unless otherwise specified.

T version = -40 to 85 °C, V version = -40 to 125 °C.

2. The Average Output Current is the mean value within 100ms.

3. The total IOL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10 P1, P14_0 and P14_1 must be 80mA max. The total IOL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40mA max.

As for 80-pin version, the total IOL(peak) for all ports and IOH(peak) must be 80mA. max. due to one Vcc and one Vss.

4. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

RENESAS

Unit

mΑ mΑ mΑ mΑ

mΑ

mΑ

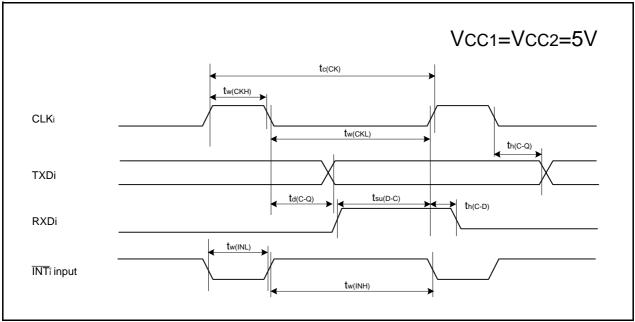
μA

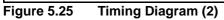
μΑ

μA

μΑ

μA


μΑ


μA μA μA

Cumple al	Parameter Measuring Condition				0,	d	I	
Symbol	Paramet	er	weas	uring Condition	Min.	Тур.	Max.	
Icc	Power Supply Current (Vcc1=Vcc2=4.0V to 5.5V)	In single-chip mode, the output	Mask ROM	f(BCLK)=24MHz No division, PLL operation		14	20	
		pins are open and other pins are Vss		No division, On-chip oscillation		1		
			Flash Memory	f(BCLK)=24MHz, No division, PLL operation		18	27	
				No division, On-chip oscillation		1.8		
			Flash Memory Program	f(BCLK)=10MHz, Vcc1=5.0V		15		
			Flash Memory Erase	f(BCLK)=10MHz, Vcc1=5.0V		25		
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		
			Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		
				On-chip oscillation, Wait mode		50		
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5		
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0		
				Stop mode Topr =25°C		2.0	6.0	
				Stop mode Topr =85°C			20	
				Stop mode Topr =125°C			TBD	ſ

Table 5.58 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.0 to 5.5V, Vss = 0V at Topr = -40 to 85°C / -40 to 125°C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85°C, V version =-40 to 125°C.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.

REVISION HISTORY M16C/62P Group (M16C/62P, M16C/62PT) Har				M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual		
Rev. Date				Description		
		Page	Summary			
		33	Table 5.4 A	-D Conversion Characteristics is revised.		
			Table 5.5 D-A Conversion Characteristics revised.			
		34,74	Table 5.6 to 5.7 and table 5.54 to 5.55 are revised.			
		36	Table 5.11 is revised.			
		38,55	Table 5.14	and 5.33 HLDA output deley time is deleted.		
		41	Figure 5.1 is partly revised.			
		41-43,	Table 5.27	to 5.29 and table 5.46 to 48 HLDA output deley time is added.		
		58-60				
		44	Figure 5.2	Timing Diagram (1) XIN input is added.		
		47-48	Figure 5.5 t	to 5.6 Read timing $DB \rightarrow DBi$		
		49-50	Figure 5.7 t	to 5.8 Write timing $DB \rightarrow DBi$		
		52	Figure 5.10			
		53	Table 5.30			
		58	-	is partly revised.		
		61	-	Timing Diagram (1) XIN input is added.		
		64-65	0	to 5.16 Read timing $DB \rightarrow DBi$		
		66-67	-	to 5.18 Write timing $DB \rightarrow DBi$		
		69	Figure 5.20 DB \rightarrow DBi			
		70-85	Electrical Characteristics (M16C/62PT) is added.			
2.10	Nov 07, 2003	8-9 23	Table 1.5 to Table 3.1 is	o 1.7 Product List is partly revised. Note 1 is deleted. s revised.		
		71	Table 5.50			
		72	Table 5.51			
2.11 Jan 06, 2004 16 Table 1.9 NOTE 3 VCC1 VCC2 \rightarrow VCC1 > VCC2						
		17-18		to 1.11 NOTE 1 VCC1 VCC2 \rightarrow VCC1 > VCC2		
		31		Power Supply Ripple Allowable Frequency Unit MHz \rightarrow kHz		
		12		nd Figure 1.5 are added.		
2.30	Sep 01, 2004	18, 20		to 1.13 are revised.		
		19,21		to 1.14 are revised.		
		24	-	s partly revised.		
		05	Note 3 is ad			
		25	Note 6 is ad			
		33	Table 5.3 is			
		34		able 5.4 is added.		
		34 35	Table 5.5 to	5.6 is partly revised.		
		- 30	Table 5.8 is			
		37	37 Table 5.11 is revised.			
		57				