

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	50
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30620spgp-u3c

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.3 Type No., Memory Size, and Package

1.6 Pin Description

Signal Name	Pin Name	I/O	Power	Description			
		Туре	Supply ⁽³⁾				
Power supply input	VCC1,VCC2 VSS	Ι	-	Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is that VCC1 \geq VCC2. ^(1, 2)			
Analog power supply input	AVCC AVSS	Ι	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.			
Reset input	RESET	Ι	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.			
CNVSS	CNVSS	Ι	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode.			
External data bus width select input	BYTE	Ι	VCC1	Switches the data bus in external memory space. The data bus is 16 bits long when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it to either one. Connect this pin to VSS when an single-chip mode.			
Bus control pins ⁽⁴⁾	D0 to D7	I/O	VCC2	Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.			
	D8 to D15	I/O	VCC2	Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus.			
	A0 to A19	0	VCC2	Output address bits (A0 to A19).			
	A0/D0 to A7/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A0 to A7) by timesharing when external 8-bit data bus are set as the multiplexed bus.			
	A1/D0 to A8/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A1 to A8) by timesharing when external 16-bit data bus are set as the multiplexed bus.			
CS0 to CS3 O VCC2 Output CS0 to CS3 signals. CS0 to C specify an external space.				Output $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ signals. $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are chip-select signals to specify an external space.			
	WRL/WR WRH/BHE RD	0	VCC2	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR can be switched by program. • WRL, WRH and RD are selected The WRL signal becomes "L" by writing data to an even address in an external memory space. The WRH signal becomes "L" by writing data to an odd address in an external memory space. The RD pin signal becomes "L" by reading data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. The RD signal becomes "L" by reading data in an external memory space. The BHE signal becomes "L" by accessing an odd address. Select WR, BHE and RD for an external 8-bit data bus.			
	ALE	0	VCC2	ALE is a signal to latch the address.			
	HOLD	Ι	VCC2	While the HOLD pin is held "L", the microcomputer is placed in a hold state.			
	HLDA	0	VCC2	In a hold state, HLDA outputs a "L" signal.			
	RDY	Ι	VCC2	While applying a "L" signal to the $\overline{\text{RDY}}$ pin, the microcomputer is placed in a wait state.			

Table 1.17Pin Description (100-pin and 128-pin Version) (1)

I : Input O : Output I/O : Input and output

Power Supply : Power supplies which relate to the external bus pins are separated as VCC2, thus they can be interfaced using the different voltage as VCC1.

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 and VCC2 pins. Also the apply condition is that VCC1 = VCC2.

- 3. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 4. Bus control pins in M16C/62PT cannot be used.

Signal Name	Pin Name	I/O	Power	Description
		Туре	Supply ⁽¹⁾	
Main clock input	XIN	I	VCC1	I/O pins for the main clock generation circuit. Connect a ceramic resonator or crystal oscillator between XIN and XOUT ⁽³⁾ . To use
Main clock output	XOUT	0	VCC1	the external clock, input the clock from XIN and leave XOUT open.
Sub clock input	XCIN	I	VCC1	I/O pins for a sub clock oscillation circuit. Connect a crystal
Sub clock	XCOUT	0	VCC1	oscillator between XCIN and XCOUT ⁽³⁾ . To use the external clock,
output				input the clock from XCIN and leave XCOUT open.
BCLK output ⁽²⁾	BCLK	0	VCC2	Outputs the BCLK signal.
Clock output	CLKOUT	0	VCC2	The clock of the same cycle as fC, f8, or f32 is outputted.
INT interrupt	INT0 to INT2	I	VCC1	Input pins for the INT interrupt.
input	NT3 to INT5	I	VCC2	
NMI interrupt input	NMI	Ι	VCC1	Input pin for the $\overline{\text{NMI}}$ interrupt. Pin states can be read by the P8_5 bit in the P8 register.
Key input interrupt input	KI0 to KI3	I	VCC1	Input pins for the key input interrupt.
Timer A	TA0OUT to	I/O	VCC1	These are timer A0 to timer A4 I/O pins. (however, output of
	TA4OUT			TA0OUT for the N-channel open drain output.)
	TA0IN to TA4IN	Ι	VCC1	These are timer A0 to timer A4 input pins.
	ZP	I	VCC1	Input pin for the Z-phase.
Timer B	TB0IN to TB5IN	Ι	VCC1	These are timer B0 to timer B5 input pins.
Three-phase motor control output	U, <u>Ū,</u> V, ⊽, W, ₩	0	VCC1	These are Three-phase motor control output pins.
Serial interface	CTS0 CTS2	I	VCC1	These are send control input pins.
	RTS0 RTS2	0	VCC1	These are receive control output pins.
	CLK0 to CLK4	I/O	VCC1	These are transfer clock I/O pins.
	RXD0 to RXD2	I	VCC1	These are serial data input pins.
	SIN3, SIN4	I	VCC1	These are serial data input pins.
	TXD0 to TXD2	0	VCC1	These are serial data output pins. (however, output of TXD2 for the N-channel open drain output.)
	SOUT3, SOUT4	0	VCC1	These are serial data output pins.
	CLKS1	0	VCC1	This is output pin for transfer clock output from multiple pins function.
I ² C mode	SDA0 to SDA2	I/O	VCC1	These are serial data I/O pins. (however, output of SDA2 for the N-channel open drain output.)
	SCL0 to SCL2	I/O	VCC1	These are transfer clock I/O pins. (however, output of SCL2 for the N-channel open drain output.)

Table 1.18	Pin Description	(100-pin and 128-p	oin Version) (2)
		· · · ·	

I : Input O : Output I/O : Input and output

NOTES:

- 1. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 2. This pin function in M16C/62PT cannot be used.
- 3. Ask the oscillator maker the oscillation characteristic.

Signal Name	Pin Name	I/O Type	Power Supply ⁽¹⁾	Description
Reference voltage input	VREF	I	VCC1	Applies the reference voltage for the A/D converter and D/A converter.
A/D converter	AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7	I	VCC1	Analog input pins for the A/D converter.
	ADTRG	I	VCC1	This is an A/D trigger input pin.
	ANEX0	I/O	VCC1	This is the extended analog input pin for the A/D converter, and is the output in external op-amp connection mode.
	ANEX1	I	VCC1	This is the extended analog input pin for the A/D converter.
D/A converter	DA0, DA1	0	VCC1	This is the output pin for the D/A converter.
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7 ⁽²⁾ , P13_0 to P13_7 ⁽²⁾	I/O	VCC2	8-bit I/O ports in CMOS, having a direction register to select an input or output. Each pin is set as an input port or output port. An input port can be set for a pull-up or for no pull-up in 4-bit unit by program.
	P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7 ⁽²⁾ P8_0 to P8_4	1/0	VCC1	8-bit I/O ports having equivalent functions to P0. (however, output of P7_0 and P7_1 for the N-channel open drain output.)
	P8_6, P8_7, P14_0, P14_1 ⁽²⁾	1/0	VCCT	
Input port	P8_5	Ι	VCC1	Input pin for the $\overline{\text{NMI}}$ interrupt. Pin states can be read by the P8_5 bit in the P8 register.

Table 1.19	Pin Description	(100-pin and 128-	-pin Version) (3)
	i ili Desoription		

I : Input O : Output I/O : Input and output

NOTES:

1. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.

2. Ports P11 to P14 in M16C/62P (100-pin version) and M16C/62PT (100-pin version) cannot be used.

Signal Name	Pin Name	I/O Type	Power Supply	Description	
Power supply input	VCC1, VSS	I	_	Apply 2.7 to 5.5 V to the VCC1 pin and 0 V to the VSS pin. $(1, 2)$	
Analog power supply input	AVCC AVSS	Ι	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.	
Reset input	RESET	I	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.	
CNVSS	CNVSS (BYTE)	Ι	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode. As for the BYTE pin of the 80-pin versions, pull-up processing is performed within the microcomputer.	
Main clock input	XIN	Ι	VCC1	I/O pins for the main clock generation circuit. Connect a ceramic resonator or crystal oscillator between XIN and XOUT ⁽³⁾ . To use	
Main clock output	XOUT	0	VCC1	the external clock, input the clock from XIN and leave XOUT open.	
Sub clock input	XCIN	Ι	VCC1	I/O pins for a sub clock oscillation circuit. Connect a crystal	
Sub clock output	XCOUT	0	VCC1	oscillator between XCIN and XCOUT ⁽³⁾ . To use the external clock, input the clock from XCIN and leave XCOUT open.	
Clock output	CLKOUT	0	VCC2	The clock of the same cycle as fC, f8, or f32 is outputted.	
INT interrupt input	INT0 to INT2	Ι	VCC1	Input pins for the \overline{INT} interrupt.	
NMI interrupt input	NMI	Ι	VCC1	Input pin for the $\overline{\text{NMI}}$ interrupt.	
Key input interrupt input	KI0 to KI3	I	VCC1	Input pins for the key input interrupt.	
Timer A	TA0OUT, TA3OUT, TA4OUT	I/O	VCC1	These are Timer A0, Timer A3 and Timer A4 I/O pins. (however output of TA0OUT for the N-channel open drain output.)	
	TAOIN, TA3IN, TA4IN	Ι	VCC1	These are Timer A0, Timer A3 and Timer A4 input pins.	
	ZP	Ι	VCC1	Input pin for the Z-phase.	
Timer B	TB0IN, TB2IN to TB5IN	Ι	VCC1	These are Timer B0, Timer B2 to Timer B5 input pins.	
Serial interface	CTS0 to CTS1	Ι	VCC1	These are send control input pins.	
	RTS0 to RTS1	0	VCC1	These are receive control output pins.	
	CLK0, CLK1, CLK3, CLK4	I/O	VCC1	These are transfer clock I/O pins.	
	RXD0 to RXD2	Ι	VCC1	These are serial data input pins.	
	SIN4	Ι	VCC1	This is serial data input pin.	
	TXD0 to TXD2	0	VCC1	These are serial data output pins. (however, output of TXD2 for the N-channel open drain output.)	
	SOUT3, SOUT4	0	VCC1	These are serial data output pins.	
	CLKS1	0	VCC1	This is output pin for transfer clock output from multiple pins function.	
I ² C mode	SDA0 to SDA2	I/O	VCC1	These are serial data I/O pins. (however, output of SDA2 for the N-channel open drain output.)	
	SCL0 to SCL2	I/O	VCC1	These are transfer clock I/O pins. (however, output of SCL2 for the N-channel open drain output.)	

Table 1.20	Pin Descri	ption (80-i	oin Version) (1) (1)
	1 111 003011				/ ` /

I : Input O : Output I/O : Input and output

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 pin.

3. Ask the oscillator maker the oscillation characteristic.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

Table 4.2	SFR Information	1 (2) (1)
-----------	-----------------	----------------	----

Address	Register	Symbol	After Reset
0040h			
0041h			
0042h			
0043h			
0044h	INT3 Interrupt Control Register	INT3IC	XX00X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXXX000b
0046h	Timer B4 Interrupt Control Register, UART1 BUS Collision Detection Interrupt Control Register	TB4IC, U1BCNIC	XXXXX000b
0047h	Timer B3 Interrupt Control Register, UART0 BUS Collision Detection Interrupt Control Register	TB3IC, U0BCNIC	XXXXX000b
0048h	SI/O4 Interrupt Control Register, INT5 Interrupt Control Register	S4IC, INT5IC	XX00X000b
0049h	SI/O3 Interrupt Control Register, INT4 Interrupt Control Register	S3IC, INT4IC	XX00X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXXX000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXXX000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timer A0 Interrupt Control Register	TAOIC	XXXXX000b
0056h	Timer A1 Interrupt Control Register	TATIC	XXXXX000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXXX000b
0058h	Timer A3 Interrupt Control Register	TA3IC	
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXXXUUUD
005An	Timer BU Interrupt Control Register	TBUIC	XXXXXUUUD
005Dh	Timer B1 Interrupt Control Register	TENC	XXXXX000D
00501	LINTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	INTO Interrupt Control Register		XX00X000b
005Eh	INT2 Interrupt Control Register	INT2IC	XX00X000b
0051 H		1111210	770070000
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			
0072h			
0073h			
007411			
00750			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh			
007Fh			

NOTES: 1. The blank areas are reserved and cannot be accessed by users.

X : Nothing is mapped to this bit

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.27	Memory Expansion and Microprocessor Modes (for setting with no wait)

Symbol	Barametar		Stan	dard	Unit
Symbol	Farameter		Min.	Max.	
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	rigure 5.2	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾]	(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time]		40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} = 40[ns] \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1k Ω X ln(1-0.2Vcc2 / Vcc2)

 $t = -30 \text{ F } \times 1 \text{ K} \Omega \times 1 \text{ m} (1 - 0.2 \text{ VCC})$

= 6.7ns.

Figure 5.2 Ports P0 to P14 Measurement Circuit

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.28	Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting and external
	area access)

Symbol	Deremeter		Stan	dard	Linit
Symbol	Falameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0.44	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	- I iguic 0.2	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)x10^9}{f(\text{BCLK})} - 40[\text{ns}]$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. (BCLK) is 12.5MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{x10}^9}{f(\text{BCLK})} - 10[\text{ns}]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / VCc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is

> $t = -30pF X 1k\Omega X In(1-0.2Vcc2 / Vcc2)$ = 6.7ns.

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Symbol	Barametar		Stan	dard	Lloit
Symbol	Farameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5 12		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	rigure 5.12	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾]	(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time]		40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns] \qquad \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR X \ln (1 - VoL / Vcc2)$ by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

t = -30pF X 1k Ω X In(1-0.2Vcc2 / Vcc2)

= 6.7ns.

Figure 5.12 Ports P0 to P14 Measurement Circuit

RENESAS

Symbol	ol Parameter Measuring Condition		Standard		Unit			
Cymbol	T aramete			vicasuling contaition	Min.	Тур.	Max.	Onit
-	Resolution		Vref=V	CC1			10	Bits
INL	Integral Non-Linearity Error	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
		8bit	Vref=V	/cc1=5V			±2	LSB
_	Absolute Accuracy	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
		8bit	Vref=V	/cc1=5V			±2	LSB
_	Tolerance Level Impedar	nce				3		kΩ
DNL	Differential Non-Linearity	Error					±1	LSB
_	Offset Error						±3	LSB
_	Gain Error						±3	LSB
RLADDER	Ladder Resistance		Vref=V	CC1	10		40	kΩ
tCONV	10-bit Conversion Time, Function Available	Sample & Hold	Vref=V	/cc1=5V, φAD=12MHz	2.75			μs
tCONV	8-bit Conversion Time, S Function Available	ample & Hold	Vref=V	/cc1=5V, φAD=12MHz	2.33			μs
tSAMP	Sampling Time				0.25			μS
VREF	Reference Voltage				2.0		VCC1	V
VIA	Analog Input Voltage				0		VREF	V

Table 5.51 A/D Conversion Characteristics	(1)
---	----	---

NOTES:

1. Referenced to Vcc1=AVcc=VREF=4.0 to 5.5V, Vss=AVss=0V at T_{opr} = -40 to 85° C / -40 to 125° C unless otherwise specified. T version = -40 to 85° C, V version = -40 to 125° C

2. ϕ AD frequency must be 12 MHz or less.

 When sample & hold is disabled, φAD frequency must be 250 kHz or more, in addition to the limitation in Note 2. When sample & hold is enabled, φAD frequency must be 1MHz or more, in addition to the limitation in Note 2.

Table 5.52 D/A Conversion Characteristics (Table 5.52	D/A Conversion Characteristics (1
---	------------	-----------------------------------

Symbol	Deremeter	Macouring Condition	Standard			Linit
Symbol	Faranielei	Measuring Condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
ts∪	Setup Time				3	μS
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to Vcc1=VREF=4.0 to 5.5V, Vss=AVss=0V at Topr = -40 to 85°C / -40 to 125°C unless otherwise specified. T version = -40 to 85°C, V version = -40 to 125°C

 This applies when using one D/A converter, with the D/A register for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, when D/A register contents are not "00h", the IVREF will flow even if Vref id disconnected by the A/D control register.

Symbol	Baramotor	Moosuring Condition	Standard			Lloit
Symbol	Falametei	Measuring Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=4.0V to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

Table 5.56	Power Supply Circuit Timing Characteristic	s
		_

Figure 5.22 Power Supply Circuit Timing Diagram

VCC1=VCC2=5V

Timing Requirements

(Vcc1 = Vcc2 = 5V, Vss = 0V, at Topr = -40 to 85°C (T version) / -40 to 125°C (V version) unless otherwise specified)

Table 5.59	External	Clock Ir	nput (XIN in	put)
------------	----------	----------	--------	--------	------

Symbol	Parameter	Stan	Standard	
Symbol		Min.	Max.	Offic
tc	External Clock Input Cycle Time	62.5		ns
tw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tr	External Clock Fall Time		15	ns

REVISION HISTORY M16C/62P Grou	ıр (M16C/62P, M16C/62PT) Hardware Manual	
	Description	
Rev. Date Page	Summary	
33 Table 5.4 A-D Conversion (Characteristics is revised.	
Table 5.5 D-A Conversion	Characteristics revised.	
34,74 Table 5.6 to 5.7 and table 5	5.54 to 5.55 are revised.	
36 Table 5.11 is revised.		
38,55 Table 5.14 and 5.33 HLDA	output deley time is deleted.	
41 Figure 5.1 is partly revised.		
41-43, Table 5.27 to 5.29 and table	e 5.46 to 48 HLDA output deley time is added.	
58-60		
44 Figure 5.2 Timing Diagram	(1) XIN input is added.	
47-48 Figure 5.5 to 5.6 Read timir	ng DB \rightarrow DBi	
49-50 Figure 5.7 to 5.8 Write timir	ng DB \rightarrow DBi	
52 Figure 5.10 DB \rightarrow DBi		
53 Table 5.30 is revised.		
58 Figure 5.11 is partly revised	d.	
61 Figure 5.12 Timing Diagram	n (1) XIN input is added.	
64-65 Figure 5.15 to 5.16 Read ti	ming $DB \rightarrow DBi$	
66-67 Figure 5.17 to 5.18 Write tir	ming $DB \rightarrow DBi$	
69 Figure 5.20 DB \rightarrow DBi		
70-85 Electrical Characteristics (N	M16C/62PT) is added.	
2.10 Nov 07, 2003 8-9 Table 1.5 to 1.7 Product Lis 23 Table 3.1 is revised.	st is partly revised. Note 1 is deleted.	
71 Table 5.50 is revised.		
72 Table 5.51 is deleted.		
2.11 Jan 06, 2004 16 Table 1.9 NOTE 3 VCC1 V	$VCC2 \rightarrow VCC1 > VCC2$	
31 Table 5.2 Power Supply Pi		
12 Table 1.0 and Figure 1.5 at	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
	e added.	
2.30 Sep 01, 2004 10, 21 Table 1.11 to 1.13 are revis	sed.	
24 Figure 3.1 is partly revised	seu.	
24 Figure 5.1 is parity revised.		
Note 3 Is added.		
Note 2 in Table 5.4 is adda	d	
34 Table 5.5 to 5.6 is partly re-	u. Vised	
35 Table 5.8 is revised	viocu.	
Table 5.0 is revised.		
37 Table 5.11 is revised		