

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	68
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30621fcpgp-u3c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Item	Performance				
		M16C/62P	M16C/62PT ⁽⁴⁾			
CPU	Number of Basic Instructions	91 instructions				
	Minimum Instruction Execution Time	41.7ns(f(BCLK)=24MHz, VCC1=3.3 to 5.5V) 100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)	41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5.5V)			
	Operating Mode	Single-chip, memory expansion	Single-chip			
		and microprocessor mode				
	Address Space	1 Mbyte (Available to 4 Mbytes by	1 Mbyte			
		memory space expansion function)				
	Memory Capacity	See Table 1.4 to 1.7 Product Lis	st			
Peripheral	Port	Input/Output : 87 pins, Input : 1 pin				
Function	Multifunction Timer	Timer A : 16 bits x 5 channels, Timer Three phase motor control circuit	r B : 16 bits x 6 channels,			
	Serial Interface	3 channels				
		Clock synchronous, UART, I ² C bu	ıs ⁽¹⁾ , IEBus ⁽²⁾			
		2 channels				
		Clock synchronous				
	A/D Converter	10-bit A/D converter: 1 circuit, 26 cha	annels			
	D/A Converter	8 bits x 2 channels				
	DMAC	2 channels				
	CRC Calculation Circuit	CCITT-CRC				
	Watchdog Timer	15 bits x 1 channel (with prescaler)				
	Interrupt	Internal: 29 sources, External: 8 sources, Software: 4 sources, Priority level: 7 levels				
	Clock Generation Circuit	 4 circuits Main clock generation circuit (*), Subclock generation circuit (*), On-chip oscillator, PLL synthesizer (*)Equipped with a built-in feedback resistor. 				
	Oscillation Stop Detection Function	Stop detection of main clock oscillation, re-oscillation detection function				
	Voltage Detection Circuit	Available (option ⁽⁵⁾)	Absent			
Electric Characteristics	Supply Voltage	VCC1=3.0 to 5.5 V, VCC2=2.7V to VCC1 (f(BCLK=24MHz) VCC1=2.7 to 5.5 V, VCC2=2.7V to VCC1 (f(BCLK=10MHz)	VCC1=VCC2=4.0 to 5.5V (f(BCLK=24MHz)			
	Power Consumption	$\begin{array}{l} 14 \text{ mA (VCC1=VCC2=5V, f(BCLK)=24MHz)} \\ 8 \text{ mA (VCC1=VCC2=3V, f(BCLK)=10MHz)} \\ 1.8 \mu\text{A (VCC1=VCC2=3V, f(XCIN)=32kHz, wait mode)} \\ 0.7 \mu\text{A (VCC1=VCC2=3V, stop mode)} \end{array}$	14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz) 2.0μA (VCC1=VCC2=5V, f(XCIN)=32kHz, wait mode) 0.8μA (VCC1=VCC2=5V, stop mode)			
Flash memory	Program/Erase Supply Voltage	3.3±0.3 V or 5.0±0.5 V	5.0±0.5 V			
version	Program and Erase Endurance	100 times (all area) or 1,000 times (user ROM area with / 10,000 times (block A, block 1) ⁽³⁾	out block A and block 1)			
Operating Ambi	ient Temperature	-20 to 85°C, -40 to 85°C ⁽³⁾	T version : -40 to 85°C V version : -40 to 125°C			
Package		100-pin plastic mold QFP, LQFP	1			

Table 1.2 Performance Outline of M16C/62P Group (M16C/62P, M16C/62PT)(100-pin version)

NOTES:

- 1. I²C bus is a registered trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.
- 3. See **Table 1.8 and 1.9 Product Code** for the program and erase endurance, and operating ambient temperature.
 - In addition 1,000 times/10,000 times are under development as of Jul., 2005. Please inquire about a release schedule.
- 4. Use the M16C/62PT on VCC1=VCC2
- 5. All options are on request basis.

1.5 Pin Configuration

Figures 1.6 to 1.9 show the Pin Configuration (Top View).

Figure 1.6 Pin Configuration (Top View)

Pin	No.				T i Di			
FP	GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
51	49		P4 3					A19
52	50		P4_2					A18
53	51		P4_1					A17
54	52		P4_0					A16
54	52		F4_0				-	A10
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13
58	56		P3_4					A12
59	57		P3_3					A11
60	58		P3_2					A10
61	59		P3_1					A9
62	60	VCC2						
63	61		P3_0					A8(/-/D7)
64	62	VSS						
65	63		P2_7				AN2_7	A7(/D7/D6)
66	64		P2_6				AN2_6	A6(/D6/D5)
67	65		P2_5				AN2_5	A5(/D5/D4)
68	66		P2_4				AN2_4	A4(/D4/D3)
69	67		P2_3				AN2_3	A3(/D3/D2)
70	68		P2_2				AN2_2	A2(/D2/D1)
71	69		P2_1				AN2_1	A1(/D1/D0)
72	70		P2_0				AN2_0	A0(/D0/-)
73	71		P1_7	INT5				D15
74	72		P1 6	INT4				D14
75	72		D1 5					D12
70	73			IIN I 3				D13
70	74		F1_4					D12
70	75		P1_3					DII
78	76		P1_2					D10
79	77		P1_1					D9
80	78		P1_0					D8
81	79		P0_7				AN0_7	D7
82	80		P0_6				AN0_6	D6
83	81		P0_5				AN0_5	D5
84	82		P0_4				AN0_4	D4
85	83		P0_3				AN0_3	D3
86	84		P0_2				AN0_2	D2
87	85		_ P0_1				AN0_1	D1
88	86		P0_0				ANO 0	D0
80	87			<u>K13</u>			ANI7	-
0.0	01							
90	88		P10_6	KI2			AN6	
91	89		P10_5	KI1			AN5	
92	90		P10_4	KI0			AN4	
93	91		P10_3				AN3	
94	92		P10_2				AN2	
95	93		P10_1				AN1	
96	94	AVSS						
97	95		P10_0				AN0	
98	96	VREF						
00	07	AVCC						
99	31	AV 00						
100	98		P9_7			SIN4	ADTRG	

 Table 1.14
 Pin Characteristics for 100-Pin Package (2)

RENESAS

1.	Overview

Signal Name	Pin Name	I/O	Power	Description
		Туре	Supply ⁽¹⁾	
Reference	VREF	Ι	VCC1	Applies the reference voltage for the A/D converter and D/A
voltage input				converter.
A/D converter	AN0 to AN7,	I	VCC1	Analog input pins for the A/D converter.
	AN0_0 to			
	AN0_7,			
	AN2_0 to			
	AN2_7			
	ADTRG	-	VCC1	This is an A/D trigger input pin.
	ANEX0	I/O	VCC1	This is the extended analog input pin for the A/D converter, and is
				the output in external op-amp connection mode.
	ANEX1	_	VCC1	This is the extended analog input pin for the A/D converter.
D/A converter	DA0, DA1	0	VCC1	This is the output pin for the D/A converter.
I/O port ⁽¹⁾	P0_0 to P0_7,	I/O	VCC1	8-bit I/O ports in CMOS, having a direction register to select an
	P2_0 to P2_7,			input or output.
	P3_0 to P3_7,			Each pin is set as an input port or output port. An input port can
	P5_0 to P5_7,			be set for a pull-up or for no pull-up in 4-bit unit by program.
	P6_0 to P6_7,			
	P10_0 to			
	P10_7			
	P8_0 to P8_4,	I/O	VCC1	I/O ports having equivalent functions to P0.
	P8_6, P8_7,			
	P9_0,			
	P9_2 to P9_7			
	P4_0 to P4_3,	I/O	VCC1	I/O ports having equivalent functions to P0.
	P7_0, P7_1,			(however, output of P7_0 and P7_1 for the N-channel open drain
	P/_6, P/_/			
Input port	P8_5	I	VCC1	Input pin for the NMI interrupt.
				Pin states can be read by the P8_5 bit in the P8 register.

Table 1.21Pin Description (80-pin Version) (2)

I : Input O : Output I/O : Input and output

NOTES:

1. There is no external connections for port P1, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version. Set the direction bits in these ports to "1" (output mode), and set the output data to "0" ("L") using the program.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

3. Memory

Figure 3.1 is a Memory Map of the M16C/62P group. The address space extends the 1M bytes from address 00000h to FFFFFh.

The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 64-Kbyte internal ROM is allocated to the addresses from F0000h to FFFFFh.

As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 10-Kbyte internal RAM is allocated to the addresses from 00400h to 02BFFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SRF is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to the **M16C/60 and M16C/20 Series Software Manual**.

In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users. Use M16C/62P (80-pin version) and M16C/62PT in single-chip mode. The memory expansion and microprocessor modes cannot be used

RENESAS

and the PM13 bit in the PM1 register is "1"

5. When using the masked ROM version, write nothing to internal ROM area.

RENESAS

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.34 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Onit
tc(TA)	TAilN Input Cycle Time	150		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	60		ns
tw(TAL)	TAIIN Input LOW Pulse Width	60		ns

Table 5.35 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Onit
tc(TA)	TAiIN Input Cycle Time	600		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	300		ns
tw(TAL)	TAIIN Input LOW Pulse Width	300		ns

Table 5.36 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Onit
tc(TA)	TAilN Input Cycle Time	300		ns
tw(TAH)	TAilN Input HIGH Pulse Width	150		ns
tw(TAL)	TAilN Input LOW Pulse Width	150		ns

Table 5.37 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Baramatar	Stan	Linit	
Symbol	Falantelei	Min.	Max.	Onit
tw(TAH)	TAIIN Input HIGH Pulse Width	150		ns
tw(TAL)	TAIIN Input LOW Pulse Width	150		ns

Table 5.38 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Offic
tc(UP)	TAiOUT Input Cycle Time	3000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1500		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1500		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	600		ns
th(TIN-UP)	TAiOUT Input Hold Time	600		ns

Table 5.39 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Offic
tc(TA)	TAiIN Input Cycle Time	2		μs
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	500		ns
tsu(TAOUT-TAIN)	TAiIN Input Setup Time	500		ns

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.40 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Paramotor	Star	Linit	
	Falametei	Min.	Max.	Offic
tc(TB)	TBilN Input Cycle Time (counted on one edge)	150		ns
tw(TBH)	TBilN Input HIGH Pulse Width (counted on one edge)	60		ns
tw(TBL)	TBilN Input LOW Pulse Width (counted on one edge)	60		ns
tc(TB)	TBilN Input Cycle Time (counted on both edges)	300		ns
tw(TBH)	TBilN Input HIGH Pulse Width (counted on both edges)	120		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	120		ns

Table 5.41 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	Lloit	
	i alameter	Min.	Max.	Onic
tc(TB)	TBilN Input Cycle Time	600		ns
tw(TBH)	TBilN Input HIGH Pulse Width	300		ns
tw(TBL)	TBiIN Input LOW Pulse Width	300		ns

Table 5.42 Timer B Input (Pulse Width Measurement Mode)

Symbol	Derometer	Stan	Linit		
Symbol	Farameter	Min.	Max.	Unit	
tc(TB)	TBiIN Input Cycle Time	600		ns	
tw(TBH)	TBiIN Input HIGH Pulse Width	300		ns	
tw(TBL)	TBiIN Input LOW Pulse Width	300		ns	

Table 5.43 A/D Trigger Input

Symbol Parameter	Deromotor	Stan	L Incit	
	Min.	Max.	Unit	
tc(AD)	ADTRG Input Cycle Time	1500		ns
tw(ADL)	ADTRG Input LOW Pulse Width	200		ns

Table 5.44 Serial Interface

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Offic
tc(CK)	CLKi Input Cycle Time	300		ns
tw(CKH)	CLKi Input HIGH Pulse Width	150		ns
tw(CKL)	CLKi Input LOW Pulse Width	150		ns
td(C-Q)	TXDi Output Delay Time		160	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	100		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 5.45 External Interrupt INTi Input

Symbol Para	Parameter	Stan	Llnit	
	Falanetei	Min.	Max.	Offic
tw(INH)	INTi Input HIGH Pulse Width	380		ns
tw(INL)	INTi Input LOW Pulse Width	380		ns

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Symbol	Parameter		Stan	dard	Linit
Symbol	Farameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5 12		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	rigure 5.12	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾]	(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time]		40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns] \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR X \ln (1 - VoL / VcC2)$ by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

t = -30pF X 1k Ω X In(1-0.2Vcc₂ / Vcc₂)

= 6.7ns.

Figure 5.12 Ports P0 to P14 Measurement Circuit

Symbol	Parameter		Standard			Linit	
Symbol		Parameter		Min.	Тур.	Max.	Unit
VCC1, VCC2	Supply Voltage (VCC1 = VCC2)		4.0	5.0	5.5	V
AVcc	Analog Supply V	oltage			Vcc1		V
Vss	Supply Voltage	upply Voltage			0		V
AVss	Analog Supply V	oltage			0		V
Viн	HIGH Input Voltage ⁽⁴⁾	P3_1 to P3_7, P4_0 to P4_7, F P12_0 to P12_7, P13_0 to P13	25_0 to P5_7, 8_7	0.8Vcc2		Vcc2	V
	Ū	P0_0 to P0_7, P1_0 to P1_7, F (during single-chip mode)	P2_0 to P2_7, P3_0	0.8Vcc2		Vcc2	V
		P6_0 to P6_7, P7_2 to P7_7, F P10_ <u>0 to P10</u> _7, P11_0 to P11 XIN, RESET, CNVSS, BYTE	P8_0 to P8_7, P9_0 to P9_7, _7, P14_0, P14_1,	0.8Vcc1		Vcc1	V
		P7_0, P7_1		0.8Vcc1		6.5	V
VIL	LOW Input Voltage (4)	P3_1 to P3_7, P4_0 to P4_7, F P12_0 to P12_7, P13_0 to P13	25_0 to P5_7, 8_7	0		0.2Vcc2	V
		P0_0 to P0_7, P1_0 to P1_7, F (during single-chip mode)	P2_0 to P2_7, P3_0	0		0.2Vcc2	V
		P6_0 to P6_7, P7_0 to P7_7, F P10_ <u>0 to P10_7, P11_0 to P11</u> XIN, RESET, CNVSS, BYTE	P8_0 to P8_7, P9_0 to P9_7, _7, P14_0, P14_1,	0		0.2Vcc	V
IOH(peak)	HIGH Peak Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12	P2_0 to P2_7, P3_0 to P3_7, P6_0 to P6_7, P7_2 to P7_7, _0 to P9_7, P10_0 to P10_7, _7, P13_0 to P13_7, P14_0, P14_1			-10.0	mA
IOH(avg)	HIGH Average Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12_	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7_P12_0 to P12_7_P13_0 to P13_7_P14_0_P14_1			-5.0	mA
IOL(peak)	LOW Peak Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12_	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0. P14_1			10.0	mA
IOL(avg)	LOW Average Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12_	P2_0 to P2_7, P3_0 to P3_7, P6_0 to P6_7, P7_0 to P7_7, _0 to P9_7, P10_0 to P10_7, _7, P13_0 to P13_7, P14_0, P14_1			5.0	mA
f(XIN)	Main Clock Input	Oscillation Frequency	VCC1=4.0V to 5.5V	0		16	MHz
f(XCIN)	Sub-Clock Oscillation Frequency			32.768	50	kHz	
f(Ring)	On-chip Oscillation	on Frequency		0.5	1	2	MHz
f(PLL)	PLL Clock Oscilla	ation Frequency	VCC1=4.0V to 5.5V	10		24	MHz
f(BCLK)	CPU Operation C	Clock		0		24	MHz
tsu(PLL)	PLL Frequency S Wait Time	Synthesizer Stabilization	VCC1=5.5V			20	ms

 Table 5.50
 Recommended Operating Conditions (1) ⁽¹⁾

NOTES:

1. Referenced to Vcc1 = Vcc2 = 4.7 to 5.5V at Topr = -40 to 85° C / -40 to 125° C unless otherwise specified.

T version = -40 to 85 °C, V version = -40 to 125 °C.

2. The Average Output Current is the mean value within 100ms.

3. The total IOL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10 P1, P14_0 and P14_1 must be 80mA max. The total IOL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40mA max.

As for 80-pin version, the total IOL(peak) for all ports and IOH(peak) must be 80mA. max. due to one Vcc and one Vss.

4. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Symbol	Parameter	Measuring Condition		Lloit		
Symbol			Min.	Тур.	Max.	Onit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=4.0V to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

Table 5.56	Power Supply Circuit Timing Characteristic	s
		_

Figure 5.22 Power Supply Circuit Timing Diagram

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, Vss = 0V, at Topr = -40 to 85° C (T version) / -40 to 125° C (V version) unless otherwise specified)

Table 5.66	Timer B Input (Counter Input in Event Counter Mode)
------------	---

Symbol	Parameter	Star	Lloit		
Symbol	Falameter	Min.	Max.	Onit	
tc(TB)	TBiIN Input Cycle Time (counted on one edge)	100		ns	
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on one edge)	40		ns	
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	40		ns	
tc(TB)	TBiIN Input Cycle Time (counted on both edges)	200		ns	
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on both edges)	80		ns	
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	80		ns	

Table 5.67 Timer B Input (Pulse Period Measurement Mode)

Symbol	Baramatar	Stan	Lipit	
	Farameter	Min.	Max.	Onit
tc(TB)	TBilN Input Cycle Time	400		ns
tw(TBH)	TBilN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 5.68 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	Unit	
	Falanetei	Min.	Max.	Onic
tc(TB)	TBiIN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 5.69 A/D Trigger Input

Symbol	Paramotor	Stan	Linit	
	Farameter	Min.	Max.	Onic
tc(AD)	ADTRG Input Cycle Time	1000		ns
tw(ADL)	ADTRG input LOW Pulse Width	125		ns

Table 5.70 Serial Interface

Symbol	Parameter	Stan	Lloit	
	Falameter	Min.	Max.	Offic
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input HIGH Pulse Width	100		ns
tw(CKL)	CLKi Input LOW Pulse Width	100		ns
td(C-Q)	TXDi Output Delay Time		80	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	70		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 5.71 External Interrupt INTi Input

Symbol	Parameter	Stan	Lloit		
Symbol	Falanielei	Min.	Max.	Onit	
tw(INH)	INTi Input HIGH Pulse Width	250		ns	
tw(INL)	INTi Input LOW Pulse Width	250		ns	

VCC1=VCC2=5V

Switching Characteristics $(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -40 to 85^{\circ}C (T version) / -40 to 125^{\circ}C (V version) unless otherwise specified)$

Figure 5.23 Ports P0 to P10 Measurement Circuit

RENESAS

REVISION HISTORY

M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual

Data			Description
Rev.	Date	Page	Summary
1.10	May 28, 2003	1	Applications are partly revised.
		2	Table 1.1.1 is partly revised.
		4-5	Table 1.1.2 and 1.1.3 is partly revised.
			"Note 1" is partly revised.
		22	Table 1.5.3 is partly revised.
		23	Table 1.5.5 is partly revised.
			Table 1.5.6 is added.
		24	Table 1.5.9 is partly revised.
		30	Notes 1 and 2 in Table 1.5.26 is partly revised.
		31	Notes 1 in Table 1.5.27 is partly revised.
		30-31	Note 3 is added to "Data output hold time (refers to BCLK)" in Table 1.5.26 and 1.5.27.
		32	Note 4 is added to "th(ALE-AD)" in Table 1.5.28.
		30-32	Switching Characteristics is partly revised.
		36-39	th(WR-AD) and th(WR-DB) in Figure 1.5.5 to 1.5.8 is partly revised.
		40-41	th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.9 to
			1.5.10 is partly revised.
		42	Note 2 is added to Table 1.5.29.
		47	Notes 1 and 2 in Table 1.5.45 is partly revised.
		48	Notes 1 in Table 1.5.46 is partly revised.
		47-48	Note 3 is added to "Data output hold time (refers to BCLK)" in Table
			1.5.45 and 1.5.46.
		49	Note 4 is added to "th(ALE-AD)" in Table 1.5.47.
		47-48	Switching Characteristics is partly revised.
		53-56	th(WR-AD) and th(WR-DB) in Figure 1.5.15 to 1.5.18 is partly revised.
		57-56	1.5.20 is partly revised.
2.00	Oct 29, 2003	-	Since high reliability version is added, a group name is revised. M16C/62 Group (M16C/62P) \rightarrow M16C/62 Group (M16C/62PT)
		2-4	Table 1.1 to 1.3 are revised. Note 3 is partly revised.
		2-4	Table 1.1 to 1.3 are revised.
			Note 3 is partly revised.
		6	Figure 1.2 Note5 is deleted.
		7-9	Table 1.4 to 1.7 Product List is partly revised.
		11	Table 1.8 and Figure 1.4 are added.
		12-15	Figure 1.5 to 1.9 ZP is added.
		17,19	Table 1.10 and 1.12 ZP is added to timer A.
		18,20	Table 1.11 and 1.13 VCC1 is added to VREF.
		30	Table 5.1 is revised.
		31-32	Table 5.2 and 5.3 are revised.

REVISION HISTORY M16C/62P Grou	up (M16C/62P, M16C/62PT) Hardware Manual		
	Description		
Rev. Date Page	Summary		
33 Table 5.4 A-D Conversion	Characteristics is revised.		
Table 5.5 D-A Conversion	Table 5.5 D-A Conversion Characteristics revised.		
34,74 Table 5.6 to 5.7 and table 5	5.54 to 5.55 are revised.		
36 Table 5.11 is revised.	able 5.11 is revised.		
38,55 Table 5.14 and 5.33 HLDA	output deley time is deleted.		
41 Figure 5.1 is partly revised.			
41-43, Table 5.27 to 5.29 and tabl	e 5.46 to 48 HLDA output deley time is added.		
58-60			
44 Figure 5.2 Timing Diagram	(1) XIN input is added.		
47-48 Figure 5.5 to 5.6 Read timin	ng DB \rightarrow DBi		
49-50 Figure 5.7 to 5.8 Write timir	ng DB \rightarrow DBi		
52 Figure 5.10 DB → DBi			
53 Table 5.30 is revised.			
58 Figure 5.11 is partly revised	d.		
61 Figure 5.12 Timing Diagram	n (1) XIN input is added.		
64-65 Figure 5.15 to 5.16 Read ti	ming $DB \rightarrow DBi$		
66-67 Figure 5.17 to 5.18 Write ti	ming $DB \to DBi$		
69 Figure 5.20 DB \rightarrow DBi			
70-85 Electrical Characteristics (N	M16C/62PT) is added.		
2.10 Nov 07, 2003 8-9 Table 1.5 to 1.7 Product Lis 23 Table 3.1 is revised.	Table 1.5 to 1.7 Product List is partly revised. Note 1 is deleted. Table 3.1 is revised.		
71 Table 5.50 is revised.	Table 5.50 is revised.		
72 Table 5.51 is deleted.			
2.11 Jan 06, 2004 16 Table 1.9 NOTE 3 VCC1 V	$/CC2 \rightarrow VCC1 > VCC2$ $VCC1 + VCC2 \rightarrow VCC1 > VCC2$		
31 Table 5.2 Power Supply Pi			
12 Table 1.0 and Figure 1.5 at			
2.30 Sep 01, 2004 10, 21 Table 1.11 to 1.13 are revis			
24 Figure 3.1 is partly revised	seu.		
24 Figure 5.1 is parity revised.			
Note 3 Is added.			
Note 2 in Table 5.4 is adda	d		
34 Table 5.5 to 5.6 is partly re-	vised		
35 Table 5.8 is revised	videu.		
Table 5.0 is revised.			
37 Table 5.11 is revised			

REVISION HISTORY		RY	M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual			
Rev. Date Page			Description			
		Page		Summary		
		40	Table 5.2	4 is partly revised.		
		57	Table 5.4	3 is partly revised.		
		70	Table 5.4	8 is partly revised.		
		72	Table 5.5	able 5.50 is partly revised.		
		73	Table 5.5	able 5.53 is partly revised.		
		74	Table 5.5	l able 5.55 is revised. Fable 5.57 is partly revised		
		79	Table 5.6	9 is partly revised.		
2.41	Jan 01, 2006	-	voltage de	own detection reset -> brown-out detection Reset		
	,	2-4	Tables 1.	1 to 1.3 Performance outline of M16C/62P group are partly		
		7	Table 1.4 Note 1 is	Product List (1) is partly revised. added.		
		8	Table 1.5 Note 1, 2	Product List (2) is partly revised. and 3 are added.		
		9	Table 1.6 Product List (3) is partly revised. Note 1 and 2 are added.			
		10	Table 1.7 Product List (4) is partly revised. Note 1 and 2 are added.			
		11	Figure 1.3 Type No., Memory Size, Shows RAM capacity, and Package partly revised			
		12	Table 1.8 M16C/62I	Product Code of Flash Memory version and ROMless version for P is partly revised.		
		13	Table 1.9 revised.	Product Code of Flash Memory version for M16C/62P is partly		
		14	Figure 1.6	6 Pin Configuration (Top View) is partly revised.		
		15-17	Tables 1.	10 to 1.12 Pin Characteristics for 128-Pin Package are added.		
		18-19	Figure 1.7	7 and 1.8 Pin Configuration (Top View) are partly revised.		
		20-21	Tables 1.	13 to 1.14 Pin Characteristics for 100-Pin Package are added.		
		22	Figure 1.9	9 Pin Configuration (Top View) is partly revised.		
		23-24	Tables 1.	15 to 1.16 Pin Characteristics for 80-Pin Package are added.		
		25-29	Tables 1.	17 to 1.21 are partly revised.		
		34	Note 4 of	Table 4.1 SFR Information is partly revised.		
		43	Table 5.4	A/D Conversion Characteristics is partly revised.		
		45	Table 5.6 products i	Flash Memory Version Electrical Characteristics for 100 cycle is partly revised.		
			Table 5.7 products	Flash Memory Version Electrical Characteristics for 10,000 cycle is partly revised.		
			Table 5.8 Operatior	Flash Memory Version Program / Erase Voltage and Read Voltage Characteristics is partly revised.		
		46	Table 5.9 revised.	Low Voltage Detection Circuit Electrical Characteristics is partly		