

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30622f8pfp-u3c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Product	Internal ROM (User ROM Area Without Block A, Block 1)		Internal ROM (Block A, Block 1)		Operating	
		Code	гаскаде	Program and Erase Endurance	Temperature Range	Program and Erase Endurance	Temperature Range	Temperature
Flash	T Version	В	Lead-	100	0°C to 60°C	100	0°C to 60°C	-40°C to 85°C
memory	V Version		included					-40°C to 125°C
Version	T Version	B7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	V Version						-40°C to 125°C	-40°C to 125°C
	T Version	U	Lead-free	100		100	0°C to 60°C	-40°C to 85°C
	V Version							-40°C to 125°C
	T Version	U7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	V Version						-40°C to 125°C	-40°C to 125°C

Figure 1.5 Marking Diagram of Flash Memory version for M16C/62PT (Top View)

1. Overview	
-------------	--

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
51		P5_6					ALE
52		P5_5					HOLD
53		P5_4					HLDA
54		 P13_3					
55		P13_2					
56		P13_1					
57		P13_0					
58		P5_3					BCLK
59		P5_2					RD
60		P5_1					WRH/BHE
61		P5_0					WRL/WR
62		P12_7					
63		P12_6					
64		P12_5					
65		P4_7					CS3
66		P4_6					CS2
67		P4_5					CS1
68		P4 4					CSO
69		_ P4_3					A19
70		P4 2					A18
71		 P4_1					A17
72		P4_0					A16
73		P3_7					A15
74		P3_6					A14
75		P3_5					A13
76		P3_4					A12
77		P3_3					A11
78		P3_2					A10
79		P3_1					A9
80		P12_4					
81		P12_3					
82		P12_2					
83		P12_1					
84		P12_0					
85	VCC2	D 0 0					
86	VCC	P3_0					A8(/-/D7)
0/	V 3 3	D0 7					
00		P2_7				ANZ_7	A7(/D7/D6)
09		FZ_0				AN2_0	A0(/D0/D3)
91		P2_4				AN2_3	A3(/D4/D3)
92		P2_3				AN2_3	A3(/D3/D2)
93		P2 2				AN2 2	A2(/D2/D1)
94		P2 1				AN2 1	A1(/D1/D0)
95		P2_0				 AN2_0	A0(/D0/-)
96		 P1_7	INT5				D15
97		_ P1_6	INT4				D14
98		P1_5	INT3				D13
99		_ P1_4				1	D12
100		P1_3					D11

 Table 1.11
 Pin Characteristics for 128-Pin Package (2)

RENESAS

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
1		P9_5			CLK4	ANEX0	
2		P9_4		TB4IN		DA1	
3		P9_3		TB3IN		DA0	
4		P9 2		TB2IN	SOUT3		
5		P9_0		TB0IN	CLK3		
C	CNVSS						
0	(BYTE)						
7	XCIN	P8_7					
8	XCOUT	P8_6					
9	RESET						
10	XOUT						
11	VSS						
12	XIN						
13	VCC1						
14		P8_5	NMI				
15		P8_4	INT2	ZP			
16		P8_3	INT1				
17		P8_2	INT0				
18		P8_1		TA4IN			
19		P8_0		TA4OUT			
20		P7_7		TA3IN			
21		P7_6		TA3OUT			
22		P7_1		TA0IN/TB5IN	RXD2/SCL2		
23		P7_0		TA0OUT	TXD2/SDA2		
24		P6_7			TXD1/SDA1		
25		P6_6			RXD1/SCL1		
26		P6_5			CLK1		
27		P6_4			CTS1/RTS1/CTS0/CLKS1		
28		P6_3			TXD0/SDA0		
29		P6_2			RXD0/SCL0		
30		P6_1					
31		P6_0			CIS0/RIS0		
32		P5_7					CLKOUT
33		P5_6					
34		P5_5					
35		P5_4					
36		P5_3					
37		P5_2					
38		P5_1					
39		P5_0					
40		P4_3					
41		P4_2					
42		P4 1					
43		_ P4_0					
44		P3_7					
45		_ P3_6					
46		P3 5					
_10 /17		. 0_0 D3 4					
41		- J_4 D2 2					
40		ro_o					
49		P3_2					
50		P3_1					

 Table 1.15
 Pin Characteristics for 80-Pin Package (1)

1.6 Pin Description

Signal Name	Pin Name	I/O	Power	Description
		Туре	Supply ⁽³⁾	
Power supply input	VCC1,VCC2 VSS	Ι	-	Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is that VCC1 \geq VCC2. ^(1, 2)
Analog power supply input	AVCC AVSS	Ι	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	Ι	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS	Ι	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode.
External data bus width select input	BYTE	Ι	VCC1	Switches the data bus in external memory space. The data bus is 16 bits long when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it to either one. Connect this pin to VSS when an single-chip mode.
Bus control pins ⁽⁴⁾	D0 to D7	I/O	VCC2	Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.
	D8 to D15	I/O	VCC2	Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus.
	A0 to A19	0	VCC2	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A0 to A7) by timesharing when external 8-bit data bus are set as the multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A1 to A8) by timesharing when external 16-bit data bus are set as the multiplexed bus.
	CS0 to CS3	0	VCC2	Output $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ signals. $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are chip-select signals to specify an external space.
	WRL/WR WRH/BHE RD	0	VCC2	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR can be switched by program. • WRL, WRH and RD are selected The WRL signal becomes "L" by writing data to an even address in an external memory space. The WRH signal becomes "L" by writing data to an odd address in an external memory space. The RD pin signal becomes "L" by reading data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. The RD signal becomes "L" by reading data in an external memory space. The BHE signal becomes "L" by accessing an odd address. Select WR, BHE and RD for an external 8-bit data bus.
	ALE	0	VCC2	ALE is a signal to latch the address.
	HOLD	Ι	VCC2	While the HOLD pin is held "L", the microcomputer is placed in a hold state.
	HLDA	0	VCC2	In a hold state, HLDA outputs a "L" signal.
	RDY	Ι	VCC2	While applying a "L" signal to the $\overline{\text{RDY}}$ pin, the microcomputer is placed in a wait state.

Table 1.17Pin Description (100-pin and 128-pin Version) (1)

I : Input O : Output I/O : Input and output

Power Supply : Power supplies which relate to the external bus pins are separated as VCC2, thus they can be interfaced using the different voltage as VCC1.

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 and VCC2 pins. Also the apply condition is that VCC1 = VCC2.

- 3. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 4. Bus control pins in M16C/62PT cannot be used.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1".

The U flag is cleared to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt is enabled.

2.8.10 Reserved Area

When write to this bit, write "0". When read, its content is indeterminate.

Symbol	Poromotor			Standard			
Symbol	Falameter	Falantelei			Max.	Unit	
f(XIN)	Main Clock Input Oscillation Frequency ⁽²⁾	VCC1=3.0V to 5.5V	0		16	MHz	
		VCC1=2.7V to 3.0V	0		20×Vcc1	MHz	
					-44		
f(XCIN)	Sub-Clock Oscillation Frequency			32.768	50	kHz	
f(Ring)	On-chip Oscillation Frequency		0.5	1	2	MHz	
f(PLL)	PLL Clock Oscillation Frequency ⁽²⁾	VCC1=3.0V to 5.5V	10		24	MHz	
		VCC1=2.7V to 3.0V	10		46.67×Vcc1	MHz	
					-116		
f(BCLK)	CPU Operation Clock	·	0		24	MHz	
ts∪(PLL)	PLL Frequency Synthesizer Stabilization	VCC1=5.5V			20	ms	
	Wait Time	VCC1=3.0V			50	ms	

 Table 5.3
 Recommended Operating Conditions (2) ⁽¹⁾

NOTES:

1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.

2. Relationship between main clock oscillation frequency, and supply voltage.

PLL clock oscillation frequency

Table 5.6Flash Memory Version Electrical Characteristics (1) for 100 cycle products (D3, D5, U3,
U5)

Symbol	Deremeter		Standard			
	Parameter	Min.	Тур.	Max.	Unit	
-	Program and Erase Endurance (3)		100			cycle
-	Word Program Time (Vcc1=5.0V)			25	200	μS
-	Lock Bit Program Time			25	200	μS
-	Block Erase Time	4-Kbyte block		0.3	4	S
-	(Vcc1=5.0V)	8-Kbyte block		0.3	4	S
-		32-Kbyte block		0.5	4	S
-		64-Kbyte block		0.8	4	S
-	Erase All Unlocked Blocks Time ⁽²⁾				4×n	S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μS
-	Data Hold Time ⁽⁵⁾		10			year

Table 5.7Flash Memory Version Electrical Characteristics (6) for 10,000 cycle products (D7, D9,
U7, U9) (Block A and Block 1 (7))

Symbol	Parameter		Lloit			
Symbol	Falameter	Min.	Тур.	Max.	Unit	
-	Program and Erase Endurance ^(3, 8, 9)					cycle
-	Word Program Time (Vcc1=5.0V)			25		μS
-	Lock Bit Program Time			25		μS
-	Block Erase Time (Vcc1=5.0V)	4-Kbyte block		0.3		S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μS
_	Data Hold Time ⁽⁵⁾		10			year

NOTES:

1. Referenced to Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 °C (D3, D5, U3, U5) unless otherwise specified.

2. n denotes the number of block erases.

3. Program and Erase Endurance refers to the number of times a block erase can be performed.

If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times.

For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)

- 4. Maximum number of E/W cycles for which operation is guaranteed.
- 5. Topr = -40 to 85 °C (D3, D7, U3, U7) / -20 to 85 °C (D5, D9, U5, U9).
- 6. Referenced to Vcc1 = 4.5 to 5.5V, 3.0 to 3.6V at Topr = -40 to 85 °C (D7, U7) / -20 to 85 °C (D9, U9) unless otherwise specified.
- 7. Table 5.7 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.6.
- 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to track the total number of times erasure is used.
- 9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase command at least three times until erase error disappears.
- 10. Set the PM17 bit in the PM1 register to "1" (wait state) when executing more than 100 times rewrites (D7, D9, U7 and U9).
- 11. Customers desiring E/W failure rate information should contact their Renesas technical support representative.

Table 5.8Flash Memory Version Program / Erase Voltage and Read Operation Voltage
Characteristics (at Topr = 0 to 60 °C(D3, D5, U3, U5), Topr = -40 to 85 °C(D7, U7) / Topr =
-20 to 85 °C(D9, U9))

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC1 = 3.3 V \pm 0.3 V \text{ or } 5.0 V \pm 0.5 V$	Vcc1=2.7 to 5.5 V

Symbol	Paramotor	Moosuring Condition		Linit		
	Falanielei	measuring Condition	Min.	Тур.	Max.	Unit
Vdet4	Low Voltage Detection Voltage (1)	Vcc1=0.8V to 5.5V	3.3	3.8	4.4	V
Vdet3	Reset Level Detection Voltage (1, 2)		2.2	2.8	3.6	V
Vdet4-Vdet3	Electric potential difference of Low Voltage Detection and Reset Level Detection		0.3			V
Vdet3s	Low Voltage Reset Retention Voltage				0.8	V
Vdet3r	Low Voltage Reset Release Voltage (3)		2.2	2.9	4.0	V

 Table 5.9
 Low Voltage Detection Circuit Electrical Characteristics

NOTES:

1. Vdet4 > Vdet3.

2. Where reset level detection voltage is less than 2.7 V, if the supply power voltage is greater than the reset level detection voltage, the microcomputer operates with $f(BCLK) \le 10MHz$.

3. Vdet3r > Vdet3 is not guaranteed.

4. The voltage detection circuit is designed to use when VCC1 is set to 5V.

Table 5.10 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Moosuring Condition		Unit		
		measuring Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=2.7V to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μS
td(S-R)	Brown-out Detection Reset (Hardware Reset 2) Release Wait Time	VCC1=Vdet3r to 5.5V		6 ⁽¹⁾	20	ms
td(E-A)	Low Voltage Detection Circuit Operation Start Time	Vcc1=2.7V to 5.5V			20	μS

NOTES:

1. When Vcc1 = 5V.

M16C/62P Group (M16C/62P, M16C/62PT)

Figure 5.1 Power Supply Circuit Timing Diagram

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.27	Memory Expansion and Microprocessor Modes (for setting with no wait)

Symbol			Stan	dard	Lloit
Symbol			Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	rigure 5.2	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾]	(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time]		40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} = 40[ns] \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1k Ω X ln(1-0.2Vcc2 / Vcc2)

 $t = -30 \text{ F } \times 1 \text{ K} \Omega \times 1 \text{ m} (1 - 0.2 \text{ VCC})$

= 6.7ns.

Figure 5.2 Ports P0 to P14 Measurement Circuit

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.28	Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting and external
	area access)

Symbol Darameter			Stan	dard	Linit
Symbol	Symbol		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0.44	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	- I iguic 0.2	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)x10^9}{f(\text{BCLK})} - 40[\text{ns}]$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. (BCLK) is 12.5MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{x10}^9}{f(\text{BCLK})} - 10[\text{ns}]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / VCc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is

> $t = -30pF X 1k\Omega X In(1-0.2Vcc2 / Vcc2)$ = 6.7ns.

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.32 External Clock Input (XIN input)⁽¹⁾

Symbol	Paramotor	Stan	Lipit	
Symbol			Max.	Offic
tc	External Clock Input Cycle Time	(NOTE 2)		ns
tw(H)	External Clock Input HIGH Pulse Width	(NOTE 3)		ns
tw(L)	External Clock Input LOW Pulse Width	(NOTE 3)		ns
tr	External Clock Rise Time		(NOTE 4)	ns
tf	External Clock Fall Time		(NOTE 4)	ns

NOTES:

- 1. The condition is Vcc1=Vcc2=2.7 to 3.0V.
- 2. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times Vcc_2 - 44}$$
 [ns]

3. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times \text{Vcc1} - 44} \times 0.4 \text{ [ns]}$$

4. Calculated according to the Vcc1 voltage as follows: $-10 \times Vcc1 + 45$ [ns]

Table 5.33 Memory Expansion Mode and Microprocessor Mode

Symbol	Paramatar	Stan	Linit	
Symbol	Farameter	Min.	Max.	Unit
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data Input Access Time (when accessing multiplex bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data Input Setup Time	50		ns
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	50		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns]$$
 n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

RENESAS

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns]$$
 n is "2" for 2-wait setting, "3" for 3-wait setting.

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Symbol	Symbol Parameter		Stan	dard	Lloit
Symbol			Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5 12		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	rigure 5.12	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾]	(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time]		40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns] \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times In (1-VoL / Vcc2)$ by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

t = -30pF X 1k Ω X In(1-0.2Vcc2 / Vcc2)

= 6.7ns.

Figure 5.12 Ports P0 to P14 Measurement Circuit

5.2 Electrical Characteristics (M16C/62PT)

Symbol	Parameter		Condition	Rated Value	Unit
VCC1, VCC2	Supply Voltage		Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
AVcc	Analog Supply V	/oltage	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
VI	Input Voltage	RESET, CNVSS, BYTE, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, VREF, XIN		–0.3 to Vcc1+0.3 ⁽¹⁾	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		-0.3 to Vcc2+0.3 ⁽¹⁾	V
		P7_0, P7_1		-0.3 to 6.5	V
Vo	Output Voltage	P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, XOUT		-0.3 to Vcc1+0.3 ⁽¹⁾	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		-0.3 to Vcc2+0.3 ⁽¹⁾	V
		P7_0, P7_1		-0.3 to 6.5	V
Pd	Power Dissipation		–40°C <topr≤85°c< td=""><td>300</td><td>m\\/</td></topr≤85°c<>	300	m\\/
			85°C <topr≤125°c< td=""><td>200</td><td>11100</td></topr≤125°c<>	200	11100
Topr	Operating Ambient	When the Microcomputer is Operating		-40 to 85 / -40 to 125 (2)	°C
	Temperature	Flash Program Erase		0 to 60	
Tstg	Storage Temper	ature		-65 to 150	°C

Table 5.49 Absolute Maximum Ratings

NOTES:

- 1. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
- 2. T version = -40 to 85 °C, V version = -40 to 125 °C.

Symbol	Paramete	or		Measuring Condition	Standard		Unit			
Cymbol	T aramete		Meddulling Condition		Min.	Тур.	Max.	0		
-	Resolution		VREF=VCC1		VREF=VCC1				10	Bits
INL	Integral Non-Linearity Error	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB		
				External operation amp connection mode			±7	LSB		
		8bit	Vref=V	/cc1=5V			±2	LSB		
_	Absolute Accuracy	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB		
				External operation amp connection mode			±7	LSB		
		8bit	Vref=V	/cc1=5V			±2	LSB		
_	Tolerance Level Impedar	nce				3		kΩ		
DNL	Differential Non-Linearity	Error					±1	LSB		
_	Offset Error						±3	LSB		
_	Gain Error						±3	LSB		
RLADDER	Ladder Resistance		Vref=V	/CC1	10		40	kΩ		
tCONV	10-bit Conversion Time, Function Available	Sample & Hold	Vref=V	/cc1=5V, φAD=12MHz	2.75			μs		
tCONV	8-bit Conversion Time, S Function Available	ample & Hold	Vref=V	/cc1=5V, φAD=12MHz	2.33			μs		
tSAMP	Sampling Time				0.25			μS		
VREF	Reference Voltage				2.0		VCC1	V		
VIA	Analog Input Voltage				0		VREF	V		

Table 5.51 A/D Conversion Characteristics	(1)
---	----	---

NOTES:

1. Referenced to Vcc1=AVcc=VREF=4.0 to 5.5V, Vss=AVss=0V at T_{opr} = -40 to 85° C / -40 to 125° C unless otherwise specified. T version = -40 to 85° C, V version = -40 to 125° C

2. ϕ AD frequency must be 12 MHz or less.

 When sample & hold is disabled, φAD frequency must be 250 kHz or more, in addition to the limitation in Note 2. When sample & hold is enabled, φAD frequency must be 1MHz or more, in addition to the limitation in Note 2.

Table 5.52 D/A Conversion Characteristics (Table 5.52	D/A Conversion Characteristics (1
---	------------	-----------------------------------

Symbol	Parameter	Macouring Condition	Standard			Linit
		Measuring Condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
ts∪	Setup Time				3	μS
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to Vcc1=VREF=4.0 to 5.5V, Vss=AVss=0V at Topr = -40 to 85°C / -40 to 125°C unless otherwise specified. T version = -40 to 85°C, V version = -40 to 125°C

 This applies when using one D/A converter, with the D/A register for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, when D/A register contents are not "00h", the IVREF will flow even if Vref id disconnected by the A/D control register.

Symbol	Parameter			Linit		
Symbol			Min.	Тур.	Max.	Unit
-	Program and Erase Endurance ⁽³⁾		100			cycle
-	Word Program Time (Vcc1=5.0V)			25	200	μS
-	Lock Bit Program Time			25	200	μS
-	Block Erase Time (Vcc1=5.0V)	4-Kbyte block	4	0.3	4	S
-		8-Kbyte block		0.3	4	S
-		32-Kbyte block		0.5	4	S
-		64-Kbyte block		0.8	4	S
-	Erase All Unlocked Blocks Time ⁽²⁾				4×n	S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μS
-	Data Hold Time ⁽⁵⁾		20			year

Table 5.53 Flash Memory Version Electrical Characteristics (1) for 100 cycle products (B, U)

Table 5.54Flash Memory Version Electrical Characteristics (6) for 10,000 cycle products (B7, U7)(Block A and Block 1 (7))

Symbol	Parameter			Linit		
Symbol			Min.	Тур.	Max.	Onit
_	Program and Erase Endurance ^(3, 8, 9)		10,000 (4)			cycle
_	Word Program Time (Vcc1=5.0V)			25		μS
_	Lock Bit Program Time			25		μS
_	Block Erase Time 4-Kbyte block (Vcc1=5.0V)		4	0.3		S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μS
_	Data Hold Time ⁽⁵⁾		20			year

NOTES:

- 1. Referenced to Vcc1=4.5 to 5.5V at $T_{opr} = 0$ to 60 °C unless otherwise specified.
- 2. n denotes the number of block erases.

 Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times. For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)

- 4. Maximum number of E/W cycles for which operation is guaranteed.
- 5. Ta (ambient temperature)=55 °C. As to the data hold time except Ta=55 °C, please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor.
- 6. Referenced to Vcc1 = 4.5 to 5.5V at Topr = −40 to 85 °C (B7, U7 (T version)) / −40 to 125 °C (B7, U7 (V version)) unless otherwise specified.
- 7. Table 5.54 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.53.
- 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to track the total number of times erasure is used.
- 9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase command at least three times until erase error disappears.
- 10. Set the PM17 bit in the PM1 register to "1" (wait state) when executing more than 100 times rewrites (B7 and U7).
- 11. Customers desiring E/W failure rate information should contact their Renesas technical support representative.

Table 5.55Flash Memory Version Program/Erase Voltage and Read Operation Voltage
Characteristics (at Topr = 0 to 60 °C(B, U), Topr = -40 to 85 °C (B7, U7 (T version)) / -40
to 125 °C (B7, U7 (V version))

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC1 = 5.0 V \pm 0.5 V$	Vcc1=4.0 to 5.5 V

Unit

mΑ mΑ mΑ mΑ

mΑ

mΑ

μA

μΑ

μA

μΑ

μA

μΑ

μA μA μA

Symbol	nbol Parameter Measuring Condition		Measuring Condition		Standard		
Symbol			Min.	Тур.	Max.		
Icc	C Power Supply Current In single-chip Mask ROM	f(BCLK)=24MHz No division, PLL operation		14	20		
		pins are open and other pins are Vss		No division, On-chip oscillation		1	
		Flash f(Memory N	f(BCLK)=24MHz, No division, PLL operation		18	27	
	· · ·	No division, On-chip oscillation		1.8			
	Flash Memory Program	f(BCLK)=10MHz, Vcc1=5.0V		15			
	Flash Memory Erase	f(BCLK)=10MHz, Vcc1=5.0V		25			
	Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25			
	Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25			
		f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420			
				On-chip oscillation, Wait mode		50	
	Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5			
		f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0			
		Stop mode Topr =25°C		2.0	6.0		
			Stop mode Topr =85°C			20	
	S.	Stop mode Topr =125°C			TBD		

Table 5.58 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.0 to 5.5V, Vss = 0V at Topr = -40 to 85°C / -40 to 125°C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85°C, V version =-40 to 125°C.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.

VCC1=VCC2=5V

Timing Requirements

(Vcc1 = Vcc2 = 5V, Vss = 0V, at Topr = -40 to 85°C (T version) / -40 to 125°C (V version) unless otherwise specified)

Table 5.59	External	Clock Ir	nput (XIN in	iput)
------------	----------	----------	--------	--------	-------

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Offic
tc	External Clock Input Cycle Time	62.5		ns
tw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tr	External Clock Fall Time		15	ns

Appendix 1.Package Dimensions

RENESAS