



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | M16C/60                                                                         |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IEBus, UART/USART                                             |
| Peripherals                | DMA, WDT                                                                        |
| Number of I/O              | 50                                                                              |
| Program Memory Size        | -                                                                               |
| Program Memory Type        | ROMIess                                                                         |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 4K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                                     |
| Data Converters            | A/D 26x10b; D/A 2x8b                                                            |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -20°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 100-BQFP                                                                        |
| Supplier Device Package    | 100-QFP (14x20)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/m30622spfp-u5c |

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

# RENESAS

# M16C/62P Group (M16C/62P, M16C/62PT) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0001-0241 Rev.2.41 Jan 10, 2006

# 1. Overview

The M16C/62P Group (M16C/62P, M16C/62PT) of single-chip microcomputers are built using the high performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 80-pin, 100-pin and 128-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.

## 1.1 Applications

Audio, cameras, television, home appliance, office/communications/portable/industrial equipment, automobile, etc.

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.



|                               | Item                                   | Performance                                                                                                                                                                |                                                                                                                             |  |  |  |
|-------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                               |                                        | M16C/62P                                                                                                                                                                   | M16C/62PT <sup>(4)</sup>                                                                                                    |  |  |  |
| CPU                           | Number of Basic Instructions           | 91 instructions                                                                                                                                                            |                                                                                                                             |  |  |  |
|                               | Minimum Instruction<br>Execution Time  | 41.7ns(f(BCLK)=24MHz, VCC1=3.3 to 5.5V)<br>100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)                                                                                          | 41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5.5V)                                                                                     |  |  |  |
|                               | Operating Mode                         | Single-chip, memory expansion<br>and microprocessor mode                                                                                                                   | Single-chip                                                                                                                 |  |  |  |
|                               | Address Space                          | 1 Mbyte (Available to 4 Mbytes by memory space expansion function)                                                                                                         | 1 Mbyte                                                                                                                     |  |  |  |
|                               | Memory Capacity                        | See Table 1.4 to 1.7 Product Lis                                                                                                                                           | st                                                                                                                          |  |  |  |
| Peripheral                    | Port                                   | Input/Output : 87 pins, Input : 1 pin                                                                                                                                      |                                                                                                                             |  |  |  |
| Function                      | Multifunction Timer                    | Timer A : 16 bits x 5 channels, Timer<br>Three phase motor control circuit                                                                                                 | r B : 16 bits x 6 channels,                                                                                                 |  |  |  |
|                               | Serial Interface                       | 3 channels<br>Clock synchronous, UART, I <sup>2</sup> C bu<br>2 channels<br>Clock synchronous                                                                              | ıs <sup>(1)</sup> , IEBus <sup>(2)</sup>                                                                                    |  |  |  |
|                               | A/D Converter                          | 10-bit A/D converter: 1 circuit, 26 ch                                                                                                                                     | annels                                                                                                                      |  |  |  |
|                               | D/A Converter                          | 8 bits x 2 channels                                                                                                                                                        |                                                                                                                             |  |  |  |
|                               | DMAC                                   | 2 channels                                                                                                                                                                 |                                                                                                                             |  |  |  |
|                               | CRC Calculation Circuit                | CCITT-CRC                                                                                                                                                                  |                                                                                                                             |  |  |  |
|                               | Watchdog Timer                         | 15 bits x 1 channel (with prescaler)                                                                                                                                       |                                                                                                                             |  |  |  |
|                               | Interrupt                              |                                                                                                                                                                            |                                                                                                                             |  |  |  |
|                               | Clock Generation Circuit               | 4 circuits<br>Main clock generation circuit (*), Subclock generation circuit (*),<br>On-chip oscillator, PLL synthesizer<br>(*)Equipped with a built-in feedback resistor. |                                                                                                                             |  |  |  |
|                               | Oscillation Stop<br>Detection Function | Stop detection of main clock oscillati                                                                                                                                     | on, re-oscillation detection function                                                                                       |  |  |  |
|                               | Voltage Detection Circuit              | Available (option <sup>(5)</sup> )                                                                                                                                         | Absent                                                                                                                      |  |  |  |
| Electric<br>Characteristics   | Supply Voltage                         | VCC1=3.0 to 5.5 V, VCC2=2.7V to<br>VCC1 (f(BCLK=24MHz)<br>VCC1=2.7 to 5.5 V, VCC2=2.7V to<br>VCC1 (f(BCLK=10MHz)                                                           | VCC1=VCC2=4.0 to 5.5V<br>(f(BCLK=24MHz)                                                                                     |  |  |  |
|                               | Power Consumption                      | 14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz)<br>8 mA (VCC1=VCC2=3V, f(BCLK)=10MHz)<br>1.8μA (VCC1=VCC2=3V, f(XCIN)=32kHz,<br>wait mode)<br>0.7μA (VCC1=VCC2=3V, stop mode)          | 14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz)<br>2.0μA (VCC1=VCC2=5V, f(XCIN)=32kHz,<br>wait mode)<br>0.8μA (VCC1=VCC2=5V, stop mode) |  |  |  |
| Flash memory                  | Program/Erase Supply Voltage           | 3.3±0.3 V or 5.0±0.5 V                                                                                                                                                     | 5.0±0.5 V                                                                                                                   |  |  |  |
| version                       | Program and Erase<br>Endurance         | 100 times (all area)<br>or 1,000 times (user ROM area with<br>/ 10,000 times (block A, block 1) <sup>(3)</sup>                                                             | out block A and block 1)                                                                                                    |  |  |  |
| Operating Ambient Temperature |                                        | -20 to 85°C,<br>-40 to 85°C <sup>(3)</sup>                                                                                                                                 | T version : -40 to 85°C<br>V version : -40 to 125°C                                                                         |  |  |  |
| Package                       |                                        | 100-pin plastic mold QFP, LQFP                                                                                                                                             |                                                                                                                             |  |  |  |

#### Table 1.2 Performance Outline of M16C/62P Group (M16C/62P, M16C/62PT)(100-pin version)

#### NOTES:

- 1. I<sup>2</sup>C bus is a registered trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.
- 3. See **Table 1.8 and 1.9 Product Code** for the program and erase endurance, and operating ambient temperature.
  - In addition 1,000 times/10,000 times are under development as of Jul., 2005. Please inquire about a release schedule.
- 4. Use the M16C/62PT on VCC1=VCC2
- 5. All options are on request basis.



| 1. Overview |  |
|-------------|--|
|-------------|--|

| Pin No.  | Control Pin |              | Interrupt Pin | Timer Pin | UART Pin | Analog Pin | Bus Control F |
|----------|-------------|--------------|---------------|-----------|----------|------------|---------------|
| 51       |             | P5_6         |               |           |          |            | ALE           |
| 52       |             | P5_5         |               |           |          |            | HOLD          |
| 53       |             | P5_4         |               |           |          |            | HLDA          |
| 54       |             | _<br>P13_3   |               |           |          |            |               |
| 55       |             | P13_2        |               |           |          |            |               |
| 56       |             | <br>P13_1    |               |           |          |            |               |
| 57       |             | P13_0        |               |           |          |            |               |
| 58       |             | P5_3         |               |           |          |            | BCLK          |
| 59       |             | P5_2         |               |           |          |            | RD            |
| 60       |             | P5_1         |               |           |          |            | WRH/BHE       |
| 61       |             | <br>P5_0     |               |           |          |            | WRL/WR        |
| 62       |             | P12_7        |               |           |          |            |               |
| 63       |             | P12_6        |               |           |          |            |               |
| 64       |             | P12_5        |               |           |          |            |               |
| 65       |             | P4_7         |               |           |          |            | CS3           |
| 66       |             | P4_6         |               |           |          |            | CS2           |
| 67       |             |              |               |           |          |            | CS1           |
|          |             | P4_5         |               |           |          |            |               |
| 68       |             | P4_4         |               |           |          |            | CS0           |
| 69       |             | P4_3         |               |           |          |            | A19           |
| 70       |             | P4_2         |               |           |          |            | A18           |
| 71       |             | P4_1         |               |           |          |            | A17           |
| 72       |             | P4_0         |               |           |          |            | A16           |
| 73<br>74 |             | P3_7         |               |           |          |            | A15<br>A14    |
| 74       |             | P3_6<br>P3_5 |               |           |          |            | A14<br>A13    |
| 75       |             | P3_5<br>P3_4 |               |           |          |            | A13<br>A12    |
| 70       |             | P3_4<br>P3_3 |               |           |          |            | A12<br>A11    |
| 78       |             | P3_2         |               |           |          |            | A10           |
| 79       |             | P3_1         |               |           |          |            | A10<br>A9     |
| 80       |             | P12_4        |               |           |          |            | <u>A</u> 9    |
| 81       |             | P12_4        |               |           |          |            |               |
| 82       |             | P12_3        |               |           |          |            |               |
| 83       |             | P12_1        |               |           |          |            |               |
| 84       |             | P12_0        |               |           |          |            |               |
| 85       | VCC2        | 1.12_0       |               |           |          |            |               |
| 86       |             | P3_0         | 1             |           |          |            | A8(/-/D7)     |
| 87       | VSS         |              | 1             |           |          |            | - x /         |
| 88       |             | P2_7         |               |           |          | AN2_7      | A7(/D7/D6)    |
| 89       |             | _<br>P2_6    |               |           |          | <br>AN2_6  | A6(/D6/D5)    |
| 90       |             | _<br>P2_5    |               |           |          | <br>AN2_5  | A5(/D5/D4)    |
| 91       |             | P2_4         |               |           |          | AN2_4      | A4(/D4/D3)    |
| 92       |             | P2_3         |               |           |          | AN2_3      | A3(/D3/D2)    |
| 93       |             | P2_2         |               |           |          | AN2_2      | A2(/D2/D1)    |
| 94       |             | P2_1         |               |           |          | AN2_1      | A1(/D1/D0)    |
| 95       |             | P2_0         |               |           |          | AN2_0      | A0(/D0/-)     |
| 96       |             | P1_7         | INT5          |           |          |            | D15           |
| 97       |             | _<br>P1_6    | INT4          |           |          |            | D14           |
| 98       |             | P1_5         | INT3          |           |          |            | D13           |
| 99       |             | P1_4         |               |           |          |            | D13           |
| 100      |             | P1_3         |               |           |          |            | D12           |

 Table 1.11
 Pin Characteristics for 128-Pin Package (2)

RENESAS

| Pin No. | Control Pin | Port  | Interrupt Pin | Timer Pin | UART Pin | Analog Pin | Bus Control Pin |
|---------|-------------|-------|---------------|-----------|----------|------------|-----------------|
| 101     |             | P1_2  |               |           |          |            | D10             |
| 102     |             | P1_1  |               |           |          |            | D9              |
| 103     |             | P1_0  |               |           |          |            | D8              |
| 104     |             | P0_7  |               |           |          | AN0_7      | D7              |
| 105     |             | P0_6  |               |           |          | AN0_6      | D6              |
| 106     |             | P0_5  |               |           |          | AN0_5      | D5              |
| 107     |             | P0_4  |               |           |          | AN0_4      | D4              |
| 108     |             | P0_3  |               |           |          | AN0_3      | D3              |
| 109     |             | P0_2  |               |           |          | AN0_2      | D2              |
| 110     |             | P0_1  |               |           |          | AN0_1      | D1              |
| 111     |             | P0_0  |               |           |          | AN0_0      | D0              |
| 112     |             | P11_7 |               |           |          |            |                 |
| 113     |             | P11_6 |               |           |          |            |                 |
| 114     |             | P11_5 |               |           |          |            |                 |
| 115     |             | P11_4 |               |           |          |            |                 |
| 116     |             | P11_3 |               |           |          |            |                 |
| 117     |             | P11_2 |               |           |          |            |                 |
| 118     |             | P11_1 |               |           |          |            |                 |
| 119     |             | P11_0 |               |           |          |            |                 |
| 120     |             | P10_7 | KI3           |           |          | AN7        |                 |
| 121     |             | P10_6 | KI2           |           |          | AN6        |                 |
| 122     |             | P10_5 | KI1           |           |          | AN5        |                 |
| 123     |             | P10_4 | KI0           |           |          | AN4        |                 |
| 124     |             | P10_3 |               |           |          | AN3        |                 |
| 125     |             | P10_2 |               |           |          | AN2        |                 |
| 126     |             | P10_1 |               |           |          | AN1        |                 |
| 127     | AVSS        |       |               |           |          |            |                 |
| 128     |             | P10_0 |               |           |          | AN0        |                 |

 Table 1.12
 Pin Characteristics for 128-Pin Package (3)

#### 2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

## 2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

### 2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

#### 2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

### 2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

### 2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

#### 2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

#### 2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

#### 2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

#### 2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

#### 2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

#### 2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

## 2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

## 2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

#### 2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1".

The U flag is cleared to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

#### 2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt is enabled.

#### 2.8.10 Reserved Area

When write to this bit, write "0". When read, its content is indeterminate.

# 5. Electrical Characteristics

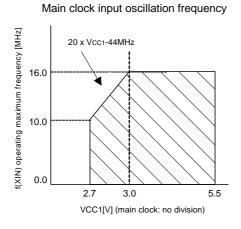
## 5.1 Electrical Characteristics (M16C/62P)

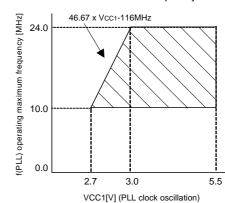
 Table 5.1
 Absolute Maximum Ratings

| Symbol           |                      | Parameter                                                                                                                                                                   | Condition                                                    | Rated Value                     | Unit |
|------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|------|
| VCC1, VCC2       | Supply Voltage       |                                                                                                                                                                             | Vcc1=AVcc                                                    | -0.3 to 6.5                     | V    |
| VCC2             | Supply Voltage       |                                                                                                                                                                             | Vcc2                                                         | -0.3 to Vcc1+0.1                | V    |
| AVcc             | Analog Supply V      | /oltage                                                                                                                                                                     | Vcc1=AVcc                                                    | -0.3 to 6.5                     | V    |
| Vi Input Voltage |                      | RESET, CNVSS, BYTE,           P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7,           P9_0 to P9_7, P10_0 to P10_7,           P11_0 to P11_7, P14_0, P14_1,           VREF, XIN |                                                              | -0.3 to Vcc1+0.3 <sup>(1)</sup> | V    |
|                  |                      | P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,<br>P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,<br>P12_0 to P12_7, P13_0 to P13_7                                                    |                                                              | -0.3 to Vcc2+0.3 <sup>(1)</sup> | V    |
|                  |                      | P7_0, P7_1                                                                                                                                                                  |                                                              | -0.3 to 6.5                     | V    |
| Vo               | Output Voltage       | P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4,<br>P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,<br>P11_0 to P11_7, P14_0, P14_1,<br>XOUT                                             |                                                              | -0.3 to Vcc1+0.3 <sup>(1)</sup> | V    |
|                  |                      | P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,<br>P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,<br>P12_0 to P12_7, P13_0 to P13_7                                                    |                                                              | -0.3 to Vcc2+0.3 <sup>(1)</sup> | V    |
|                  |                      | P7_0, P7_1                                                                                                                                                                  |                                                              | -0.3 to 6.5                     | V    |
| Pd               | Power Dissipation    |                                                                                                                                                                             | –40°C <topr≤85°c< td=""><td>300</td><td>mW</td></topr≤85°c<> | 300                             | mW   |
| Topr             | Operating<br>Ambient | When the Microcomputer is Operating                                                                                                                                         |                                                              | -20 to 85 / -40 to 85           | °C   |
|                  | Temperature          | Flash Program Erase                                                                                                                                                         |                                                              | 0 to 60                         |      |
| Tstg             | Storage Temper       | ature                                                                                                                                                                       |                                                              | -65 to 150                      | °C   |

NOTES:

1. There is no external connections for port P1\_0 to P1\_7, P4\_4 to P4\_7, P7\_2 to P7\_5 and P9\_1 in 80-pin version.


| Symbol   | Parameter                                      |                   |        | Standard  |                    |      |  |
|----------|------------------------------------------------|-------------------|--------|-----------|--------------------|------|--|
| Symbol   | Parameter                                      |                   |        | Min. Typ. |                    | Unit |  |
| f(XIN)   | Main Clock Input Oscillation Frequency (2)     | VCC1=3.0V to 5.5V | 0      |           | 16                 | MHz  |  |
|          |                                                | VCC1=2.7V to 3.0V | 0      |           | 20×Vcc1<br>-44     | MHz  |  |
| f(XCIN)  | Sub-Clock Oscillation Frequency                |                   | 32.768 | 50        | kHz                |      |  |
| f(Ring)  | On-chip Oscillation Frequency                  |                   | 0.5    | 1         | 2                  | MHz  |  |
| f(PLL)   | PLL Clock Oscillation Frequency <sup>(2)</sup> | VCC1=3.0V to 5.5V | 10     |           | 24                 | MHz  |  |
|          |                                                | VCC1=2.7V to 3.0V | 10     |           | 46.67×Vcc1<br>-116 | MHz  |  |
| f(BCLK)  | CPU Operation Clock                            |                   | 0      |           | 24                 | MHz  |  |
| ts∪(PLL) | PLL Frequency Synthesizer Stabilization        | VCC1=5.5V         |        |           | 20                 | ms   |  |
|          | Wait Time                                      | VCC1=3.0V         |        |           | 50                 | ms   |  |


 Table 5.3
 Recommended Operating Conditions (2) <sup>(1)</sup>

NOTES:

1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.

2. Relationship between main clock oscillation frequency, and supply voltage.





#### PLL clock oscillation frequency

| Symbol | Parameter                            | Macouring Condition |      | Unit |      |      |
|--------|--------------------------------------|---------------------|------|------|------|------|
|        | Farameter                            | Measuring Condition | Min. | Тур. | Max. | Unit |
| -      | Resolution                           |                     |      |      | 8    | Bits |
| -      | Absolute Accuracy                    |                     |      |      | 1.0  | %    |
| tsu    | Setup Time                           |                     |      |      | 3    | μS   |
| Ro     | Output Resistance                    |                     | 4    | 10   | 20   | kΩ   |
| IVREF  | Reference Power Supply Input Current | (NOTE 2)            |      |      | 1.5  | mA   |

NOTES:

1. Referenced to Vcc1=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -20 to  $85^{\circ}C$  / -40 to  $85^{\circ}C$  unless otherwise specified.

2. This applies when using one D/A converter, with the D/A register for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, when D/A register contents are not "00h", the IVREF will flow even if Vref id disconnected by the A/D control register.

| Symbol  | Parameter                                |                                                                                                                                                                                                                                                  |                                                   | Measuring Condition       | Standard      |     |      | Unit |  |
|---------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------|---------------|-----|------|------|--|
| Symbol  |                                          | Falameter                                                                                                                                                                                                                                        |                                                   | Measuring Condition       | Min. Typ. Max |     |      | Unit |  |
| Vон     | HIGH<br>Output<br>Voltage <sup>(3)</sup> | P6_0 to P6_7, P7_2 to P7_7<br>P8_6, P8_7, P9_0 to P9_7, I<br>P11_0 to P11_7, P14_0, P14                                                                                                                                                          | P10_0 to P10_7,                                   | IOH=-5mA                  | Vcc1-2.0      |     | Vcc1 | v    |  |
|         |                                          | P0_0 to P0_7, P1_0 to P1_7<br>P3_0 to P3_7, P4_0 to P4_7<br>P12_0 to P12_7, P13_0 to P                                                                                                                                                           | 7, P5_0 to P5_7,                                  | IOH=-5mA <sup>(2)</sup>   | Vcc2-2.0      |     | Vcc2 |      |  |
| Vон     | HIGH<br>Output<br>Voltage <sup>(3)</sup> | P6_0 to P6_7, P7_2 to P7_7<br>P8_6, P8_7, P9_0 to P9_7, I<br>P11_0 to P11_7, P14_0, P14                                                                                                                                                          | P10_0 to P10_7,                                   | ОН=-200μА                 | Vcc1-0.3      |     | Vcc1 |      |  |
|         |                                          | P0_0 to P0_7, P1_0 to P1_7<br>P3_0 to P3_7, P4_0 to P4_7<br>P12_0 to P12_7, P13_0 to P                                                                                                                                                           | ', P5_0 to P5_7,                                  | IOH=-200µA <sup>(2)</sup> | Vcc2-0.3      |     | Vcc2 |      |  |
| Vон     | HIGH Outpu                               | t Voltage XOUT                                                                                                                                                                                                                                   | HIGHPOWER                                         | IOH=-1mA                  | Vcc1-2.0      |     | VCC1 | V    |  |
|         |                                          |                                                                                                                                                                                                                                                  | LOWPOWER                                          | IOH=-0.5mA                | Vcc1-2.0      |     | VCC1 | V    |  |
|         | HIGH Outpu                               | t Voltage XCOUT                                                                                                                                                                                                                                  | HIGHPOWER                                         | With no load applied      |               | 2.5 |      |      |  |
|         |                                          |                                                                                                                                                                                                                                                  | LOWPOWER                                          | With no load applied      |               | 1.6 |      | V    |  |
| Vol     | LOW<br>Output<br>Voltage <sup>(3)</sup>  | P6_0 to P6_7, P7_0 to P7_7<br>P8_6, P8_7, P9_0 to P9_7, I<br>P11_0 to P11_7, P14_0, P14                                                                                                                                                          | P10 0 to P10 7,                                   | IOL=5mA                   |               |     | 2.0  |      |  |
|         |                                          | P0_0 to P0_7, P1_0 to P1_7<br>P3_0 to P3_7, P4_0 to P4_7<br>P12_0 to P12_7, P13_0 to P                                                                                                                                                           | 7, P2_0 to P2_7,<br>7, P5_0 to P5_7,              | IOL=5mA (2)               |               |     | 2.0  | V    |  |
| Vol     | LOW<br>Output<br>Voltage <sup>(3)</sup>  | P6_0 to P6_7, P7_0 to P7_7<br>P8_6, P8_7, P9_0 to P9_7, I<br>P11_0 to P11_7, P14_0, P14                                                                                                                                                          | 7, P8_0 to P8_4,<br>P10_0 to P10_7,               | IOL=200µА                 |               |     | 0.45 |      |  |
|         | Ū                                        | P0_0 to P0_7, P1_0 to P1_7<br>P3_0 to P3_7, P4_0 to P4_7<br>P12_0 to P12_7, P13_0 to P                                                                                                                                                           | 7, P2_0 to P2_7,<br>7, P5_0 to P5_7,              | IOL=200µA <sup>(2)</sup>  |               |     | 0.45 | V    |  |
| Vol     | LOW Output                               |                                                                                                                                                                                                                                                  | HIGHPOWER                                         | IOL=1mA                   |               |     | 2.0  |      |  |
|         |                                          |                                                                                                                                                                                                                                                  | LOWPOWER                                          | IOL=0.5mA                 |               |     | 2.0  | V    |  |
|         | LOW Output                               | t Voltage XCOUT                                                                                                                                                                                                                                  | HIGHPOWER                                         | With no load applied      |               | 0   |      | .,   |  |
|         |                                          |                                                                                                                                                                                                                                                  | LOWPOWER                                          | With no load applied      |               | 0   |      | V    |  |
| Vt+-Vt- | Hysteresis                               | HOLD, RDY, TAOIN to TA4II<br>INTO to INT5, NMI, ADTRG, I<br>TAOOUT to TA4OUT, KIO to<br>SCL0 to SCL2, SDA0 to SD/                                                                                                                                | CTS0 to CTS2, CLK0 to CLK4,<br>KI3, RXD0 to RXD2, |                           | 0.2           |     | 1.0  | v    |  |
| VT+-VT- | Hysteresis                               | RESET                                                                                                                                                                                                                                            | , ,                                               |                           | 0.2           |     | 2.5  | V    |  |
| Ін      | HIGH Input<br>Current <sup>(3)</sup>     |                                                                                                                                                                                                                                                  | 12_7, P13_0 to P13_7,                             | VI=5V                     |               |     | 5.0  | μΑ   |  |
| lıL     | LOW Input<br>Current <sup>(3)</sup>      |                                                                                                                                                                                                                                                  | 12_7, P13_0 to P13_7,                             | VI=0V                     |               |     | -5.0 | μΑ   |  |
| Rpullup | Pull-Up<br>Resistance<br>(3)             | P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,<br>P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,<br>P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,<br>P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7,<br>P14_0, P14_1 |                                                   | VI=0V                     | 30            | 50  | 170  | kΩ   |  |
| Rfxin   | Feedback R                               | esistance XIN                                                                                                                                                                                                                                    |                                                   |                           |               | 1.5 | l    | MΩ   |  |
| Rfxcin  | Feedback R                               | esistance XCIN                                                                                                                                                                                                                                   |                                                   |                           |               | 15  | l    | MΩ   |  |
| Vram    | RAM Retent                               | ion Voltage                                                                                                                                                                                                                                      |                                                   | At stop mode              | 2.0           |     |      | V    |  |

Table 5.11 Electrical Characteristics (1) (1)

NOTES: 1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=24MHz unless otherwise

specified. 2. Where the product is used at Vcc1 = 5 V and Vcc2 = 3 V, refer to the 3 V version value for the pin specified value on Vcc2 port side.

3. There is no external connections for port P1\_0 to P1\_7, P4\_4 to P4\_7, P7\_2 to P7\_5 and P9\_1 in 80-pin version.

| Symbol | Parameter                                        |                                                                           | Measuring Condition                                                        |                                                                             | Standard |      |      | Unit |
|--------|--------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|------|------|------|
| Symbol | Falamete                                         | 51                                                                        | Ivieas                                                                     | Measuring Condition                                                         |          | Тур. | Max. | Unit |
| Icc    | Power Supply Current<br>(Vcc1=Vcc2=4.0V to 5.5V) | In single-chip<br>mode, the output                                        | Mask ROM                                                                   | f(BCLK)=24MHz<br>No division, PLL operation                                 |          | 14   | 20   | mA   |
|        | , , , , , , , , , , , , , , , , , , ,            | pins are open and other pins are Vss                                      |                                                                            | No division,<br>On-chip oscillation                                         |          | 1    |      | mA   |
|        |                                                  |                                                                           | Flash<br>Memory                                                            | f(BCLK)=24MHz,<br>No division, PLL operation                                |          | 18   | 27   | mA   |
|        |                                                  |                                                                           | ,                                                                          | No division,<br>On-chip oscillation                                         |          | 1.8  |      | mA   |
|        |                                                  |                                                                           | Flash Memory<br>Program                                                    | f(BCLK)=10MHz,<br>VCC1=5.0V                                                 |          | 15   |      | mA   |
|        |                                                  |                                                                           | Flash Memory<br>Erase                                                      | f(BCLK)=10MHz,<br>VCC1=5.0V                                                 |          | 25   |      | mA   |
|        |                                                  |                                                                           | Mask ROM                                                                   | f(XCIN)=32kHz<br>Low power dissipation<br>mode, ROM <sup>(3)</sup>          |          | 25   |      | μA   |
|        |                                                  |                                                                           | Flash Memory                                                               | f(BCLK)=32kHz<br>Low power dissipation<br>mode, RAM <sup>(3)</sup>          |          | 25   |      | μA   |
|        |                                                  |                                                                           |                                                                            | f(BCLK)=32kHz<br>Low power dissipation<br>mode, Flash Memory <sup>(3)</sup> |          | 420  |      | μA   |
|        |                                                  |                                                                           |                                                                            | On-chip oscillation,<br>Wait mode                                           |          | 50   |      | μA   |
|        | Mask ROM<br>Flash Memory                         |                                                                           | f(BCLK)=32kHz<br>Wait mode <sup>(2)</sup> ,<br>Oscillation capability High |                                                                             | 7.5      |      | μA   |      |
|        |                                                  | f(BCLK)=32kHz<br>Wait mode <sup>(2)</sup> ,<br>Oscillation capability Low |                                                                            | 2.0                                                                         |          | μA   |      |      |
|        |                                                  |                                                                           |                                                                            | Stop mode<br>Topr =25°C                                                     |          | 0.8  | 3.0  | μA   |
| Idet4  | Low Voltage Detection Diss                       | ipation Current (4)                                                       |                                                                            |                                                                             |          | 0.7  | 4    | μA   |
| Idet3  | Reset Area Detection Dissi                       | pation Current <sup>(4)</sup>                                             |                                                                            |                                                                             |          | 1.2  | 8    | μΑ   |

Table 5.12 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=24MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register

Idet3: VC26 bit in the VCR2 register

#### Switching Characteristics

#### (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to $85^{\circ}$ C / -40 to $85^{\circ}$ C unless otherwise specified)

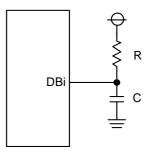
| Table 5.28 | Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting and external |
|------------|----------------------------------------------------------------------------------|
|            | area access)                                                                     |

| Symbol        | Parameter                                                |                | Standard |      | 1.1.4.14 |
|---------------|----------------------------------------------------------|----------------|----------|------|----------|
| Symbol        |                                                          |                | Min.     | Max. | Unit     |
| td(BCLK-AD)   | Address Output Delay Time                                |                |          | 25   | ns       |
| th(BCLK-AD)   | Address Output Hold Time (in relation to BCLK)           |                | 4        |      | ns       |
| th(RD-AD)     | Address Output Hold Time (in relation to RD)             |                | 0        |      | ns       |
| th(WR-AD)     | Address Output Hold Time (in relation to WR)             |                | (NOTE 2) |      | ns       |
| td(BCLK-CS)   | Chip Select Output Delay Time                            |                |          | 25   | ns       |
| th(BCLK-CS)   | Chip Select Output Hold Time (in relation to BCLK)       |                | 4        |      | ns       |
| td(BCLK-ALE)  | ALE Signal Output Delay Time                             |                |          | 15   | ns       |
| th(BCLK-ALE)  | ALE Signal Output Hold Time                              |                | -4       |      | ns       |
| td(BCLK-RD)   | RD Signal Output Delay Time                              | See Figure 5.2 |          | 25   | ns       |
| th(BCLK-RD)   | RD Signal Output Hold Time                               | i igure 5.2    | 0        |      | ns       |
| td(BCLK-WR)   | WR Signal Output Delay Time                              |                |          | 25   | ns       |
| th(BCLK-WR)   | WR Signal Output Hold Time                               |                | 0        |      | ns       |
| td(BCLK-DB)   | Data Output Delay Time (in relation to BCLK)             |                |          | 40   | ns       |
| th(BCLK-DB)   | Data Output Hold Time (in relation to BCLK) (3)          |                | 4        |      | ns       |
| td(DB-WR)     | Data Output Delay Time (in relation to WR)               |                | (NOTE 1) |      | ns       |
| th(WR-DB)     | Data Output Hold Time (in relation to WR) <sup>(3)</sup> |                | (NOTE 2) |      | ns       |
| td(BCLK-HLDA) | HLDA Output Delay Time                                   |                |          | 40   | ns       |

NOTES:

1. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)x10^9}{f(\text{BCLK})} - 40[\text{ns}]$ 


n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. (BCLK) is 12.5MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{x10}^9}{f(\text{BCLK})} - 10[\text{ns}]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / VCc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is

> $t = -30pF X 1k\Omega X In(1-0.2Vcc2 / Vcc2)$ = 6.7ns.



RENESAS

#### Switching Characteristics

.

#### (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to $85^{\circ}$ C / -40 to $85^{\circ}$ C unless otherwise specified)

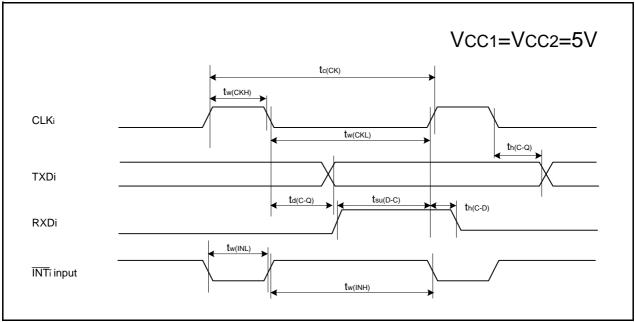
| Table 5.29 | Memory Expansion and Microprocessor Modes (for 2- to 3-wait setting, external area |
|------------|------------------------------------------------------------------------------------|
|            | access and multiplex bus selection)                                                |

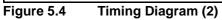
| Sumbol        | Deremeter                                             |            | Stan     | dard | Unit |  |
|---------------|-------------------------------------------------------|------------|----------|------|------|--|
| Symbol        | Parameter                                             |            | Min.     | Max. | Unit |  |
| td(BCLK-AD)   | Address Output Delay Time                             |            |          | 25   | ns   |  |
| th(BCLK-AD)   | Address Output Hold Time (in relation to BCLK)        |            | 4        |      | ns   |  |
| th(RD-AD)     | Address Output Hold Time (in relation to RD)          |            | (NOTE 1) |      | ns   |  |
| th(WR-AD)     | Address Output Hold Time (in relation to WR)          |            | (NOTE 1) |      | ns   |  |
| td(BCLK-CS)   | Chip Select Output Delay Time                         |            |          | 25   | ns   |  |
| th(BCLK-CS)   | Chip Select Output Hold Time (in relation to BCLK)    |            | 4        |      | ns   |  |
| th(RD-CS)     | Chip Select Output Hold Time (in relation to RD)      |            | (NOTE 1) |      | ns   |  |
| th(WR-CS)     | Chip Select Output Hold Time (in relation to WR)      |            | (NOTE 1) |      | ns   |  |
| td(BCLK-RD)   | RD Signal Output Delay Time                           |            |          | 25   | ns   |  |
| th(BCLK-RD)   | RD Signal Output Hold Time                            |            | 0        |      | ns   |  |
| td(BCLK-WR)   | WR Signal Output Delay Time                           |            |          | 25   | ns   |  |
| th(BCLK-WR)   | WR Signal Output Hold Time                            | See        | 0        |      | ns   |  |
| td(BCLK-DB)   | Data Output Delay Time (in relation to BCLK)          | Figure 5.2 |          | 40   | ns   |  |
| th(BCLK-DB)   | Data Output Hold Time (in relation to BCLK)           |            | 4        |      | ns   |  |
| td(DB-WR)     | Data Output Delay Time (in relation to WR)            |            | (NOTE 2) |      | ns   |  |
| th(WR-DB)     | Data Output Hold Time (in relation to WR)             |            | (NOTE 1) |      | ns   |  |
| td(BCLK-HLDA) | HLDA Output Delay Time                                |            |          | 40   | ns   |  |
| td(BCLK-ALE)  | ALE Signal Output Delay Time (in relation to BCLK)    |            |          | 15   | ns   |  |
| th(BCLK-ALE)  | ALE Signal Output Hold Time (in relation to BCLK)     |            | -4       |      | ns   |  |
| td(AD-ALE)    | ALE Signal Output Delay Time (in relation to Address) |            | (NOTE 3) |      | ns   |  |
| th(AD-ALE)    | ALE Signal Output Hold Time (in relation to Address)  |            | (NOTE 4) |      | ns   |  |
| td(AD-RD)     | RD Signal Output Delay From the End of Address        |            | 0        |      | ns   |  |
| td(AD-WR)     | WR Signal Output Delay From the End of Address        |            | 0        |      | ns   |  |
| tdz(RD-AD)    | Address Output Floating Start Time                    |            |          | 8    | ns   |  |

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$


2. Calculated according to the BCLK frequency as follows:


$$\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns] \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25[ns]$$

4. Calculated according to the BCLK frequency as follows:





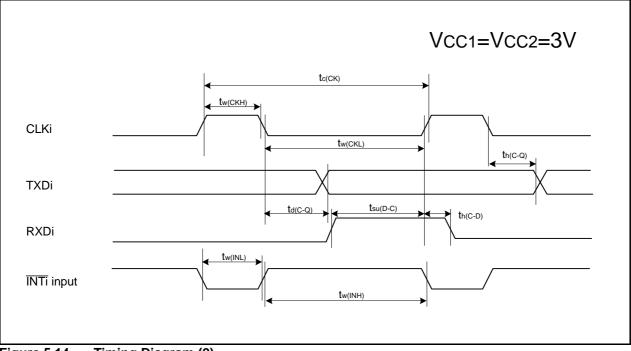



Figure 5.14 Timing Diagram (2)

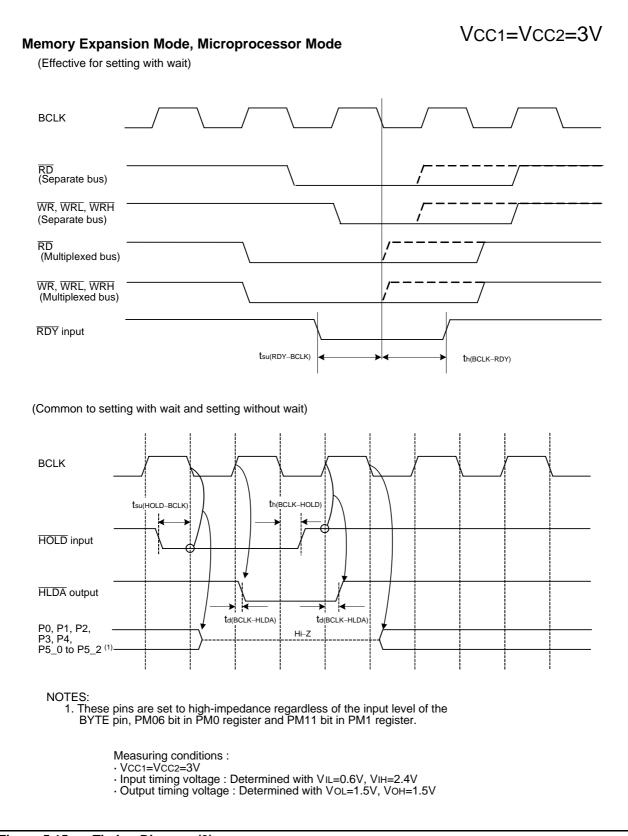



Figure 5.15 Timing Diagram (3)

| Symbol     | Parameter                             |                                                                                                                                                                                                                                              |                             | 11.1    |        |         |     |
|------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|--------|---------|-----|
|            |                                       |                                                                                                                                                                                                                                              | Min.                        | Тур.    | Max.   | Unit    |     |
| VCC1, VCC2 | Supply Voltage (                      | VCC1 = VCC2)                                                                                                                                                                                                                                 | 4.0                         | 5.0     | 5.5    | V       |     |
| AVcc       | Analog Supply V                       | /oltage                                                                                                                                                                                                                                      |                             | VCC1    |        | V       |     |
| Vss        | Supply Voltage                        |                                                                                                                                                                                                                                              |                             | 0       |        | V       |     |
| AVss       | Analog Supply V                       | /oltage                                                                                                                                                                                                                                      |                             |         | 0      |         | V   |
| Viн        | HIGH Input<br>Voltage (4)             | P3_1 to P3_7, P4_0 to P4_7, P<br>P12_0 to P12_7, P13_0 to P13                                                                                                                                                                                |                             | 0.8Vcc2 |        | Vcc2    | V   |
|            |                                       | P0_0 to P0_7, P1_0 to P1_7, F<br>(during single-chip mode)                                                                                                                                                                                   | P2_0 to P2_7, P3_0          | 0.8Vcc2 |        | Vcc2    | V   |
|            |                                       | P6_0 to P6_7, P7_2 to P7_7, F<br>P10_0 to P10_7, P11_0 to P11<br>XIN, RESET, CNVSS, BYTE                                                                                                                                                     |                             | 0.8Vcc1 |        | Vcc1    | V   |
|            |                                       | P7_0, P7_1                                                                                                                                                                                                                                   |                             | 0.8Vcc1 |        | 6.5     | V   |
| VIL        | LOW Input<br>Voltage <sup>(4)</sup>   | P3_1 to P3_7, P4_0 to P4_7, P<br>P12_0 to P12_7, P13_0 to P13                                                                                                                                                                                |                             | 0       |        | 0.2Vcc2 | V   |
|            |                                       | P0_0 to P0_7, P1_0 to P1_7, F<br>(during single-chip mode)                                                                                                                                                                                   | P2_0 to P2_7, P3_0          | 0       |        | 0.2Vcc2 | V   |
|            |                                       | P6_0 to P6_7, P7_0 to P7_7, F<br>P10_ <u>0 to P10_7, P11_0 to P11</u><br>XIN, RESET, CNVSS, BYTE                                                                                                                                             |                             | 0       |        | 0.2Vcc  | V   |
| IOH(peak)  | HIGH Peak<br>Output Current<br>(4)    | P0_0 to P0_7, P1_0 to P1_7, F<br>P4_0 to P4_7, P5_0 to P5_7, F<br>P8_0 to P8_4, P8_6, P8_7, P9<br>P11_0 to P11_7, P12_0 to P12                                                                                                               | P6_0 to P6_7, P7_2 to P7_7, |         |        | -10.0   | mA  |
| IOH(avg)   | HIGH Average<br>Output Current<br>(4) | P_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,<br>P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,<br>P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,<br>P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 |                             |         |        | -5.0    | mA  |
| IOL(peak)  | LOW Peak<br>Output Current<br>(4)     | P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,<br>P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,<br>P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P1_0 to P10_7,<br>P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 |                             |         |        | 10.0    | mA  |
| IOL(avg)   | LOW Average<br>Output Current<br>(4)  | P0_0 to P0_7, P1_0 to P1_7, F<br>P4_0 to P4_7, P5_0 to P5_7, F<br>P8_0 to P8_4, P8_6, P8_7, P9<br>P11_0 to P11_7, P12_0 to P12                                                                                                               | P6_0 to P6_7, P7_0 to P7_7, |         |        | 5.0     | mA  |
| f(XIN)     | Main Clock Inpu                       | t Oscillation Frequency                                                                                                                                                                                                                      | VCC1=4.0V to 5.5V           | 0       |        | 16      | MHz |
| f(XCIN)    | Sub-Clock Oscillation Frequency       |                                                                                                                                                                                                                                              |                             |         | 32.768 | 50      | kHz |
| f(Ring)    | On-chip Oscillation Frequency         |                                                                                                                                                                                                                                              |                             | 0.5     | 1      | 2       | MHz |
| f(PLL)     | PLL Clock Oscill                      | L Clock Oscillation Frequency Vcc1=4.0V to 5.5V                                                                                                                                                                                              |                             | 10      |        | 24      | MHz |
| f(BCLK)    | CPU Operation                         | ion Clock                                                                                                                                                                                                                                    |                             | 0       |        | 24      | MHz |
| tsu(PLL)   | PLL Frequency Wait Time               | Synthesizer Stabilization VCC1=5.5V                                                                                                                                                                                                          |                             |         |        | 20      | ms  |

 Table 5.50
 Recommended Operating Conditions (1) <sup>(1)</sup>

NOTES:

1. Referenced to Vcc1 = Vcc2 = 4.7 to 5.5V at Topr = -40 to  $85^{\circ}$ C / -40 to  $125^{\circ}$ C unless otherwise specified.

T version = -40 to 85 °C, V version = -40 to 125 °C.

2. The Average Output Current is the mean value within 100ms.

3. The total IOL(peak) for ports P0, P1, P2, P8\_6, P8\_7, P9, P10 P1, P14\_0 and P14\_1 must be 80mA max. The total IOL(peak) for ports P3, P4, P5, P6, P7, P8\_0 to P8\_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8\_0 to P8\_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8\_0 to P8\_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8\_0 to P8\_4 must be -40mA max. The total IOH(peak) for ports P8\_6, P8\_7, P9, P10, P11, P14\_0, and P14\_1 must be -40mA max.

As for 80-pin version, the total IOL(peak) for all ports and IOH(peak) must be 80mA. max. due to one Vcc and one Vss.

4. There is no external connections for port P1\_0 to P1\_7, P4\_4 to P4\_7, P7\_2 to P7\_5 and P9\_1 in 80-pin version.

RENESAS

# Switching Characteristics $(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -40 to 85^{\circ}C (T version) / -40 to 125^{\circ}C (V version) unless otherwise specified)$

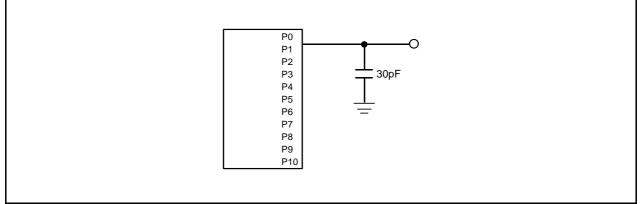



Figure 5.23 Ports P0 to P10 Measurement Circuit

**REVISION HISTORY** 

# M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual

|           |              | Description |                                                                                                                                                 |
|-----------|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev. Date |              | Page        | Summary                                                                                                                                         |
| 1.10      | May 28, 2003 | 1           | Applications are partly revised.                                                                                                                |
|           |              | 2           | Table 1.1.1 is partly revised.                                                                                                                  |
|           |              | 4-5         | Table 1.1.2 and 1.1.3 is partly revised.                                                                                                        |
|           |              |             | "Note 1" is partly revised.                                                                                                                     |
|           |              | 22          | Table 1.5.3 is partly revised.                                                                                                                  |
|           |              | 23          | Table 1.5.5 is partly revised.                                                                                                                  |
|           |              |             | Table 1.5.6 is added.                                                                                                                           |
|           |              | 24          | Table 1.5.9 is partly revised.                                                                                                                  |
|           |              | 30          | Notes 1 and 2 in Table 1.5.26 is partly revised.                                                                                                |
|           |              | 31          | Notes 1 in Table 1.5.27 is partly revised.                                                                                                      |
|           |              | 30-31       | Note 3 is added to "Data output hold time (refers to BCLK)" in Table 1.5.26 and 1.5.27.                                                         |
|           |              | 32          | Note 4 is added to "th(ALE-AD)" in Table 1.5.28.                                                                                                |
|           |              | 30-32       | Switching Characteristics is partly revised.                                                                                                    |
|           |              | 36-39       | th(WR-AD) and th(WR-DB) in Figure 1.5.5 to 1.5.8 is partly revised.                                                                             |
|           |              | 40-41       | th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.9 to                                                                               |
|           |              | 10          | 1.5.10 is partly revised.                                                                                                                       |
|           |              | 42          | Note 2 is added to Table 1.5.29.                                                                                                                |
|           |              | 47          | Notes 1 and 2 in Table 1.5.45 is partly revised.                                                                                                |
|           |              | 48          | Notes 1 in Table 1.5.46 is partly revised.                                                                                                      |
|           |              | 47-48       | Note 3 is added to "Data output hold time (refers to BCLK)" in Table                                                                            |
|           |              | 40          | 1.5.45 and 1.5.46.                                                                                                                              |
|           |              | 49<br>47-48 | Note 4 is added to "th(ALE-AD)" in Table 1.5.47.<br>Switching Characteristics is partly revised.                                                |
|           |              | -           | th(WR-AD) and th(WR-DB) in Figure 1.5.15 to 1.5.18 is partly revised.                                                                           |
|           |              |             | th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.19 to                                                                              |
|           |              |             | 1.5.20 is partly revised.                                                                                                                       |
| 2.00      | Oct 29, 2003 | -           | Since high reliability version is added, a group name is revised.<br>M16C/62 Group (M16C/62P) $\rightarrow$ M16C/62 Group (M16C/62P, M16C/62PT) |
|           |              | 2-4         | Table 1.1 to 1.3 are revised.<br>Note 3 is partly revised.                                                                                      |
|           |              | 2-4         | Table 1.1 to 1.3 are revised.                                                                                                                   |
|           |              |             | Note 3 is partly revised.                                                                                                                       |
|           |              | 6           | Figure 1.2 Note5 is deleted.                                                                                                                    |
|           |              | 7-9         | Table 1.4 to 1.7 Product List is partly revised.                                                                                                |
|           |              | 11          | Table 1.8 and Figure 1.4 are added.                                                                                                             |
|           |              | 12-15       | Figure 1.5 to 1.9 ZP is added.                                                                                                                  |
|           |              | 17,19       | Table 1.10 and 1.12 ZP is added to timer A.                                                                                                     |
|           |              | 18,20<br>30 | Table 1.11 and 1.13 VCC1 is added to VREF.                                                                                                      |
|           |              | 30<br>31-32 | Table 5.1 is revised.                                                                                                                           |
|           |              | 01-02       | Table 5.2 and 5.3 are revised.                                                                                                                  |