

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	50
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30622spgp-u5c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.3 Performance Outline of M16C/62P Group (M16C/62P, M16C/62PT)(80-pin version)

	Item	Performance					
		M16C/62P	M16C/62PT ⁽⁴⁾				
CPU	Number of Basic Instructions	91 instructions	W1700/021 1 ()				
0.0	Minimum Instruction	41.7ns(f(BCLK)=24MHz, VCC1=3.3 to 5.5V)	41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5.5V)				
	Execution Time	100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)					
	Operating Mode	Single-chip mode					
	Address Space	1 Mbyte					
	Memory Capacity	See Table 1.4 to 1.7 Product List	st				
Peripheral	Port	Input/Output: 70 pins, Input: 1 pin					
Function	Multifunction Timer	Timer A: 16 bits x 5 channels (Time Timer B: 16 bits x 6 channels (Time					
	Serial Interface	2 channels Clock synchronous, UART, I ² C bu 1 channel Clock synchronous, I ² C bus ⁽¹⁾ , IE 2 channels Clock synchronous (1 channel is c	Bus ⁽²⁾				
	A/D Converter	10-bit A/D converter: 1 circuit, 26 ch	annels				
	D/A Converter	8 bits x 2 channels					
	DMAC	2 channels					
	CRC Calculation Circuit	cuit CCITT-CRC					
	Watchdog Timer	15 bits x 1 channel (with prescaler)					
	Interrupt	Internal: 29 sources, External: 5 sources, Software: 4 sources, Priority level: 7 levels					
	Clock Generation Circuit	4 circuits Main clock generation circuit (*), Subclock generation circuit (*), On-chip oscillator, PLL synthesizer (*)Equipped with a built-in feedback resistor.					
	Oscillation Stop Detection Function	Stop detection of main clock oscillation, re-oscillation detection function					
	Voltage Detection Circuit		Absent				
Electric Characteristics	Supply Voltage	VCC1=3.0 to 5.5 V, (f(BCLK=24MHz) VCC1=2.7 to 5.5 V, (f(BCLK=10MHz)	VCC1=4.0 to 5.5V, (f(BCLK=24MHz)				
	Power Consumption	14 mA (VCC1=5V, f(BCLK)=24MHz) 8 mA (VCC1=3V, f(BCLK)=10MHz) 1.8μA (VCC1=3V, f(XCIN)=32kHz, wait mode) 0.7μA (VCC1=3V, stop mode)	14 mA (VCC1=5V, f(BCLK)=24MHz) 2.0μA (VCC1=5V, f(XCIN)=32kHz, wait mode) 0.8μA (VCC1=5V, stop mode)				
Flash memory	Program/Erase Supply Voltage	3.3 ± 0.3V or 5.0 ± 0.5V	5.0 ± 0.5V				
version	Program and Erase Endurance	100 times (all area) or 1,000 times (user ROM area without block A and block 1) / 10,000 times (block A, block 1) (3)					
Operating Amb	ient Temperature	-20 to 85°C, -40 to 85°C (3) T version : -40 to 85°C V version : -40 to 125°C					
Package		80-pin plastic mold QFP					

- 1. I²C bus is a registered trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.
- 3. See **Table 1.8 and 1.9 Product Code** for the program and erase endurance, and operating ambient temperature.
 - In addition 1,000 times/10,000 times are under development as of Jul., 2005. Please inquire about a release schedule.
- 4. All options are on request basis.

1.3 Block Diagram

Figure 1.1 is a M16C/62P Group (M16C/62P, M16C/62PT) 128-pin and 100-pin version Block Diagram, Figure 1.2 is a M16C/62P Group (M16C/62P, M16C/62PT) 80-pin version Block Diagram.

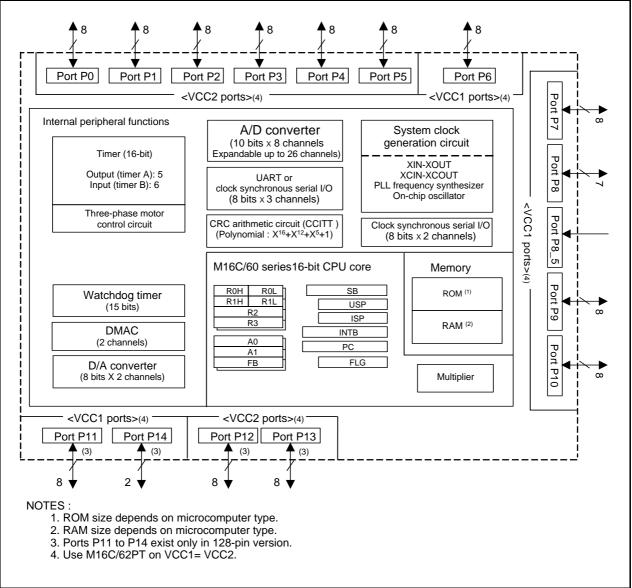


Figure 1.1 M16C/62P Group (M16C/62P, M16C/62PT) 128-pin and 100-pin version Block Diagram

Page 5 of 96

Table 1.5 Product List (2) (M16C/62P)

As of Dec. 2005

		RAM		
Type No.	ROM Capacity	Capacity	Package Type (1)	Remarks
M30622MHP-XXXFP	384 Kbytes	16 Kbytes	PRQP0100JB-A	Mask ROM version
M30622MHP-XXXGP	1		PLQP0100KB-A	
M30623MHP-XXXGP	1		PLQP0128KB-A	
M30624MHP-XXXFP	1	24 Kbytes	PRQP0100JB-A	
M30624MHP-XXXGP	1		PLQP0100KB-A	
M30625MHP-XXXGP	1		PLQP0128KB-A	
M30626MHP-XXXFP	1	31 Kbytes	PRQP0100JB-A	
M30626MHP-XXXGP	7		PLQP0100KB-A	
M30627MHP-XXXGP	1		PLQP0128KB-A	
M30626MJP-XXXFP (D)	512 Kbytes	31 Kbytes	PRQP0100JB-A	
M30626MJP-XXXGP (D)	7		PLQP0100KB-A	
M30627MJP-XXXGP (D)	1		PLQP0128KB-A	
M30622F8PFP	64K+4 Kbytes	4 Kbytes	PRQP0100JB-A	Flash memory
M30622F8PGP	7		PLQP0100KB-A	version (2)
M30623F8PGP	1		PRQP0080JA-A	
M30620FCPFP	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	
M30620FCPGP	7		PLQP0100KB-A	
M30621FCPGP	7		PRQP0080JA-A	
M3062LFGPFP ⁽³⁾ (D)	256K+4 Kbytes	20 Kbytes	PRQP0100JB-A	
M3062LFGPGP ⁽³⁾ (D)	1		PLQP0100KB-A	
M30625FGPGP			PLQP0128KB-A	
M30626FHPFP	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A	
M30626FHPGP	-		PLQP0100KB-A	
M30627FHPGP	1		PLQP0128KB-A	
M30626FJPFP	512K+4 Kbytes	31 Kbytes	PRQP0100JB-A	
M30626FJPGP	1		PLQP0100KB-A	
M30627FJPGP	1		PLQP0128KB-A	
M30622SPFP	_	4 Kbytes	PRQP0100JB-A	ROM-less version
M30622SPGP	1		PLQP0100KB-A	
M30620SPFP	1	10 Kbytes	PRQP0100JB-A	1
M30620SPGP	7		PLQP0100KB-A	1
M30624SPFP (D)	_	20 Kbytes	PRQP0100JB-A	1
M30624SPGP (D)	1		PLQP0100KB-A	1
M30626SPFP (D)	7	31 Kbytes	PRQP0100JB-A	1
M30626SPGP (D)			PLQP0100KB-A	

(D): Under development

NOTES:

1. The old package type numbers of each package type are as follows.

PLQP0128KB-A: 128P6Q-A, PRQP0100JB-A: 100P6S-A, PLQP0100KB-A: 100P6Q-A, PRQP0080JA-A: 80P6S-A

2. In the flash memory version, there is 4K bytes area (block A).

3. Please use M3062LFGPFP and M3062LFGPGP for your new system instead of M30624FGPFP and M30624FGPGP. The M16C/62P Group (M16C/62P, M16C/62PT) hardware manual is still good for M30624FGPFP and M30624FGPGP.

M30624FGPFP	256K+4 Kbytes	20 Kbytes	PRQP0100JB-A	Flash memory version
M30624FGPGP			PLQP0100KB-A	

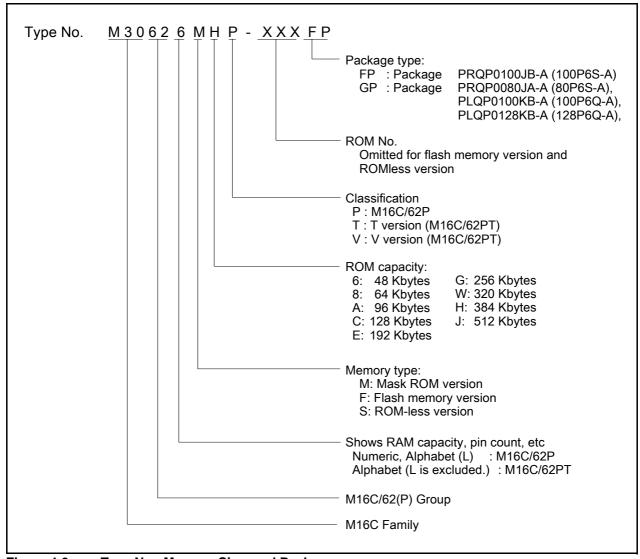


Figure 1.3 Type No., Memory Size, and Package

Table 1.11 Pin Characteristics for 128-Pin Package (2)

Pin No.	Control Pin		Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pi
51		P5_6					ALE
52		P5_5					HOLD
53		P5_4					HLDA
54		P13_3					
55		P13_2					
56		P13_1					
57		P13_0					
58		P5_3					BCLK
59		P5_2					RD
60		P5_1					WRH/BHE
61		P5_0					WRL/WR
62		P12_7					
63		P12_6					
64		P12_5					
65		P4_7					CS3
66		P4_6					CS2
67		P4_5					CS1
68		P4_4					CS0
69		P4_4 P4_3					A19
70		P4_3 P4_2					A18
71		P4_2 P4_1					A17
72		P4_0					A16
73		P3_7					A15
74		P3_6					A14
75		P3_5					A13
76		P3_4					A12
77		P3_3					A11
78		P3_2					A10
79		P3_1					A9
80		P12_4					
81		P12_3					
82		P12_2					
83		P12_1					
84		P12_0					
85	VCC2						
86		P3_0					A8(/-/D7)
87	VSS						
88		P2_7				AN2_7	A7(/D7/D6)
89		P2_6				AN2_6	A6(/D6/D5)
90		P2_5				AN2_5	A5(/D5/D4)
91		P2_4				AN2_4	A4(/D4/D3)
92		P2_3				AN2_3	A3(/D3/D2)
93		P2_2				AN2_2	A2(/D2/D1)
94		P2_1				AN2_1	A1(/D1/D0)
95		P2_0	<u> </u>			AN2_0	A0(/D0/-)
96		P1_7	ĪNT5				D15
97		P1_6	ĪNT4				D14
98		P1_5	ĪNT3				D13
99		P1_4					D12
100		P1_3					D11

Pin Characteristics for 128-Pin Package (3) **Table 1.12**

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
101		P1_2					D10
102		P1_1					D9
103		P1_0					D8
104		P0_7				AN0_7	D7
105		P0_6				AN0_6	D6
106		P0_5				AN0_5	D5
107		P0_4				AN0_4	D4
108		P0_3				AN0_3	D3
109		P0_2				AN0_2	D2
110		P0_1				AN0_1	D1
111		P0_0				AN0_0	D0
112		P11_7					
113		P11_6					
114		P11_5					
115		P11_4					
116		P11_3					
117		P11_2					
118		P11_1					
119		P11_0					
120		P10_7	KI3			AN7	
121		P10_6	KI2			AN6	
122		P10_5	KI1			AN5	
123		P10_4	KI0			AN4	
124		P10_3				AN3	
125		P10_2				AN2	
126		P10_1				AN1	
127	AVSS						
128		P10_0				AN0	

Table 1.21 Pin Description (80-pin Version) (2)

Signal Name	Pin Name	I/O	Power	Description
Reference voltage input	VREF	Type	Supply ⁽¹⁾ VCC1	Applies the reference voltage for the A/D converter and D/A converter.
A/D converter	AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7	I	VCC1	Analog input pins for the A/D converter.
	ADTRG	I	VCC1	This is an A/D trigger input pin.
	ANEX0	I/O	VCC1	This is the extended analog input pin for the A/D converter, and is the output in external op-amp connection mode.
	ANEX1	I	VCC1	This is the extended analog input pin for the A/D converter.
D/A converter	DA0, DA1	0	VCC1	This is the output pin for the D/A converter.
I/O port ⁽¹⁾	P0_0 to P0_7, P2_0 to P2_7, P3_0 to P3_7, P5_0 to P5_7, P6_0 to P6_7, P10_0 to P10_7	I/O	VCC1	8-bit I/O ports in CMOS, having a direction register to select an input or output. Each pin is set as an input port or output port. An input port can be set for a pull-up or for no pull-up in 4-bit unit by program.
	P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7	I/O	VCC1	I/O ports having equivalent functions to P0.
	P4_0 to P4_3, P7_0, P7_1, P7_6, P7_7	I/O	VCC1	I/O ports having equivalent functions to P0. (however, output of P7_0 and P7_1 for the N-channel open drain output.)
Input port	P8_5	I	VCC1	Input pin for the NMI interrupt. Pin states can be read by the P8_5 bit in the P8 register.

I: Input O: Output I/O: Input and output

NOTES:

1. There is no external connections for port P1, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version. Set the direction bits in these ports to "1" (output mode), and set the output data to "0" ("L") using the program.

Recommended Operating Conditions (1) (1) Table 5.2

Symbol		Parameter		Standard			
Symbol		Parameter	Min.	Тур.	Max.	Unit	
VCC1, VCC2	Supply Voltage	(Vcc1 ≥ Vcc2)	2.7	5.0	5.5	V	
AVcc	Analog Supply V	/oltage		Vcc1		V	
Vss	Supply Voltage	·		0		V	
AVss	Analog Supply \	Voltage		0		V	
ViH	HIGH Input	P3 1 to P3 7, P4 0 to P4 7, P5 0 to P5 7,	0.8Vcc2	-	VCC2	V	
VIII	Voltage	P12_0 to P12_7, P13_0 to P13_7	0.67002		VCC2	V	
	, onage	P0 0 to P0 7, P1 0 to P1 7, P2 0 to P2 7, P3 0	0.8Vcc2		VCC2	V	
		(during single-chip mode)	0.0 0 002		V 002	•	
		P0 0 to P0 7, P1 0 to P1 7, P2 0 to P2 7, P3 0	0.5Vcc2		VCC2	V	
		(data input during memory expansion and microprocessor mode)	0.01002		1 002	,	
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7,	0.8Vcc1		Vcc1	V	
		P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1,					
		XIN, RESET, CNVSS, BYTE					
		P7_0, P7_1	0.8Vcc1		6.5	V	
VIL	LOW Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7,	0		0.2Vcc2	V	
	Voltage	P12_0 to P12_7, P13_0 to P13_7					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2Vcc2	V	
		(during single-chip mode)					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16Vcc2	V	
		(data input during memory expansion and microprocessor mode)					
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7,	0		0.2Vcc	V	
		P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1,					
		XIN, RESET, CNVSS, BYTE					
IOH(peak)	HIGH Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA	
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,					
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,					
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1					
IOH(avg)	HIGH Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-5.0	mA	
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,					
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,					
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1					
IOL(peak)	LOW Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			10.0	mA	
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,					
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,					
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1					
IOL(avg)	LOW Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			5.0	mA	
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,					
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,					
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1					

- 1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.
- 2. The Average Output Current is the mean value within 100ms.
- 3. The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be 80mA max. The total IoL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IoH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IoH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P14_0, and P14_1 must be -40mA max. Set Average Output Current to 1/2 of peak. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40mA max.
 - As for 80-pin version, the total IoL(peak) for all ports and IoH(peak) must be 80mA. max. due to one Vcc and one Vss.
- 4. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Table 5.4 A/D Conversion Characteristics (1)

Symbol	Parame	tor		Measuring Condition		Standard		
Symbol	Faiaille	, aramotor		3	Min.	Тур.	Max.	Unit
-	Resolution		VREF=V	/CC1			10	Bits
INL	Integral Non-Linearity Error	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
			VREF= VCC1= 3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±5	LSB
				External operation amp connection mode			±7	LSB
		8bit	VREF=V	/cc1=5V, 3.3V			±2	LSB
_	Absolute Accuracy	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
			VREF= VCC1 =3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±5	LSB
				External operation amp connection mode			±7	LSB
		8bit	VREF=V	/cc1=5V, 3.3V			±2	LSB
=	Tolerance Level Impeda	ance				3		kΩ
DNL	Differential Non-Linearit	y Error					±1	LSB
-	Offset Error						±3	LSB
_	Gain Error						±3	LSB
RLADDER	Ladder Resistance		VREF=V	/cc1	10		40	kΩ
tconv	10-bit Conversion Time, Available	•	VREF=V	/cc1=5V, φAD=12MHz	2.75			μS
tconv	8-bit Conversion Time, S Available	Sample & Hold	VREF=V	/cc1=5V, φAD=12MHz	2.33			μS
tsamp	Sampling Time				0.25			μS
VREF	Reference Voltage				2.0		Vcc1	V
VIA	Analog Input Voltage				0		VREF	V

- 1. Referenced to Vcc1=AVcc=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.
- 2. If Vcc1 > Vcc2, do not use AN0_0 to AN0_7 and AN2_0 to AN2_7 as analog input pins.
- 3. φAD frequency must be 12 MHz or less. And divide the fAD if Vcc1 is less than 4.0V, and φAD frequency into 10 MHz or less.
- When sample & hold is disabled, φAD frequency must be 250 kHz or more, in addition to the limitation in Note 3.
 When sample & hold is enabled, φAD frequency must be 1MHz or more, in addition to the limitation in Note 3.

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.21 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
	Falanielei	Min.	Max.	Offic
tc(TB)	TBilN Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBilN Input HIGH Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	40		ns
tc(TB)	TBilN Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBilN Input HIGH Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBilN Input LOW Pulse Width (counted on both edges)	80		ns

Table 5.22 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	Unit	
	Falameter	Min.	Max.	Offic
tc(TB)	TBilN Input Cycle Time	400		ns
tw(TBH)	TBilN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 5.23 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Falanielei	Min.	Max.	Offic
tc(TB)	TBilN Input Cycle Time	400		ns
tw(TBH)	TBilN Input HIGH Pulse Width	200		ns
tw(TBL)	TBilN Input LOW Pulse Width	200		ns

Table 5.24 A/D Trigger Input

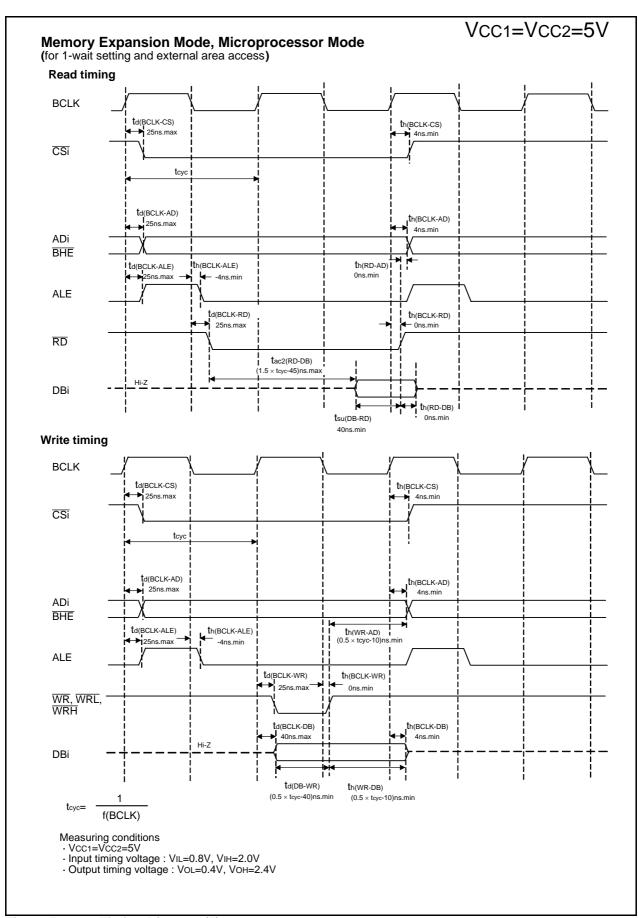

Symbol	Symbol Parameter -		Standard		
Symbol			Max.	Unit	
tc(AD)	ADTRG Input Cycle Time	1000		ns	
tw(ADL)	ADTRG input LOW Pulse Width	125		ns	

Table 5.25 Serial Interface

Symbol	Parameter	Star	Unit	
Symbol	Falanetei	Min.	Max.	Offic
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input HIGH Pulse Width	100		ns
tw(CKL)	CLKi Input LOW Pulse Width	100		ns
td(C-Q)	TXDi Output Delay Time		80	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	70		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 5.26 External Interrupt INTi Input

Symbol	Parameter	Stan	Unit	
Symbol	Symbol		Max.	Offic
tw(INH)	INTi Input HIGH Pulse Width	250		ns
tw(INL)	INTi Input LOW Pulse Width	250		ns

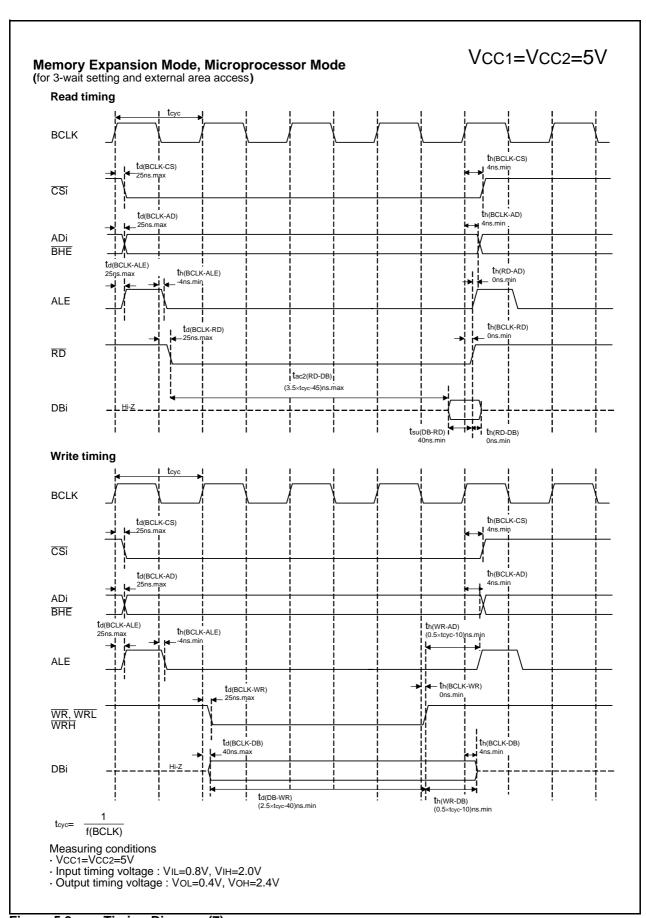


Figure 5.9 Timing Diagram (7)

VCC1=VCC2=3V

Table 5.30 Electrical Characteristics (1) (1)

Symbol	Parameter			Measuring Condition	Standard			Unit
Symbol		raiaiiielei	wiedsuring Condition	Min.	Тур.	Max.	Uiill	
Vон	HIGH Output Voltage (3) P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1			IOH=-1mA	Vcc1-0.5		Vcc1	V
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to F	IOH=-1mA (2)	Vcc2-0.5		VCC2		
Vон	HIGH Output	Voltage XOUT	HIGHPOWER	IOH=-0.1mA	Vcc1-0.5		Vcc1	V
			LOWPOWER	IOH=-50μA	Vcc1-0.5		Vcc1	, v
	HIGH Output	Voltage XCOUT	HIGHPOWER	With no load applied		2.5		V
			LOWPOWER	With no load applied		1.6		V
Vol	LOW Output Voltage (3)	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P1	P10_0 to P10_7,	IOL=1mA			0.5	V
		P0_0 to P0_7, P1_0 to P1_ P3_0 to P3_7, P4_0 to P4_1 P12_0 to P12_7, P13_0 to P	7, P5 0 to P5 7,	IOL=1mA (2)			0.5	V
Vol	LOW Output \	/oltage XOUT	HIGHPOWER	IOL=0.1mA			0.5	V
-			IOL=50μA			0.5	\ \	
	LOW Output \	/oltage XCOUT	With no load applied		0		V	
	LOWPOWER			With no load applied		0		V
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN to TA4I TB0IN to TB5IN, INTO to IN ADTRG, CTS0 to CTS2, CL TA0OUT to TA4OUT, KI0 to SCL0 to SCL2, SDA0 to SD		0.2		0.8	V	
VT+-VT-	Hysteresis	RESET			0.2	(0.7)	1.8	V
Іін	HIGH Input Current (3)	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1,		VI=3V			4.0	μА
li∟	LOW Input Current (3)	XIN, RESET, CNVSS, BYTE P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE		VI=0V			-4.0	μА
RPULLUP	Pull-Up Resistance (3)	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 e to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7,P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1		VI=0V	50	100	500	kΩ
RfXIN	Feedback Res	sistance XIN				3.0		МΩ
RfXCIN	Feedback Res	sistance XCIN				25		МΩ
VRAM	RAM Retentio	n Voltage		At stop mode	2.0			V

- 1. Referenced to Vcc1 = Vcc2 = 2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(XIN)=10MHz no wait unless otherwise specified.
- 2. Vcc1 for the port P6 to P11 and P14, and Vcc2 for the port P0 to P5 and P12 to P13
- 3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Table 5.31 Electrical Characteristics (2) (1)

Cumbal	Parameter		Measuring Condition		Standard			Unit
Symbol	Paramet	eı	ivieasuring Condition		Min.	Тур.	Max.	Unit
Icc	(Vcc1=Vcc2=2.7V to 3.6V) mode, the output pins are open and other pins are Vss		Mask ROM	f(BCLK)=10MHz No division		8	11	mA
				No division, On-chip oscillation		1		mA
		Flash Memory	f(BCLK)=10MHz, No division		8	13	mA	
			,	No division, On-chip oscillation		1.8		mA
		Program	Flash Memory Program	f(BCLK)=10MHz, VCC1=3.0V		12		mA
			Flash Memory Erase	f(BCLK)=10MHz, VCC1=3.0V		22		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μА
			Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μА
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μА
				On-chip oscillation, Wait mode		45		μА
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		6.0		μА
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		1.8		μА
				Stop mode Topr =25°C		0.7	3.0	μА
Idet4	Low Voltage Detection Diss	sipation Current (4)				0.6	4	μА
Idet3	Reset Area Detection Dissi	pation Current (4)				0.4	2	μА

- NOTES:

 1. Referenced to Vcc1=Vcc2=2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=10MHz unless otherwise specified.

 2. With one timer operated using fC32.

 3. This indicates the memory in which the program to be executed exists.

 4. Idea is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register Idet3: VC26 bit in the VCR2 register

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.32 External Clock Input (XIN input)(1)

Symbol	Parameter	Stan	Unit		
Symbol	Faiametei	Min.	Max.	Offic	
tc	External Clock Input Cycle Time		ns		
tw(H)	External Clock Input HIGH Pulse Width	(NOTE 3)		ns	
tw(L)	External Clock Input LOW Pulse Width	(NOTE 3)		ns	
tr	External Clock Rise Time		(NOTE 4)	ns	
tf	External Clock Fall Time		(NOTE 4)	ns	

NOTES:

- 1. The condition is Vcc1=Vcc2=2.7 to 3.0V.
- 2. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times V \text{CC2} - 44} \text{ [ns]}$$

3. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times V\text{CC1} - 44} \times 0.4 \text{ [ns]}$$

4. Calculated according to the Vcc1 voltage as follows:

$$-10 \times Vcc1 + 45 [ns]$$

Table 5.33 Memory Expansion Mode and Microprocessor Mode

Cumbal	Parameter	Star	Standard			
Symbol	Parameter	Min.	Min. Max.			
tac1(RD-DB)	Data Input Access Time (for setting with no wait) (NOTE 1)					
tac2(RD-DB)	Data Input Access Time (for setting with wait) (NOTE 2)					
tac3(RD-DB)	Data Input Access Time (when accessing multiplex bus area) (NOTE 3)					
tsu(DB-RD)	Data Input Setup Time	50		ns		
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns		
tsu(HOLD-BCLK)	HOLD Input Setup Time	50		ns		
th(RD-DB)	Data Input Hold Time	0		ns		
th(BCLK-RDY)	RDY Input Hold Time	0		ns		
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns		

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5x10^9}{f(BCLK)} - 60[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)}-60[ns] \qquad \text{n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

Page 67 of 96

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns] \qquad \text{n is "2" for 2-wait setting, "3" for 3-wait setting.}$$

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.46 Memory Expansion and Microprocessor Modes (for setting with no wait)

Cumbal	Parameter		Stan	dard	Unit	
Symbol	i didilicici		Min.	Max.	Oille	
td(BCLK-AD)	Address Output Delay Time			30	ns	
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns	
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns	
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns	
td(BCLK-CS)	Chip Select Output Delay Time			30	ns	
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns	
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns	
th(BCLK-ALE)	ALE Signal Output Hold Time	1	-4		ns	
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.12		30	ns	
th(BCLK-RD)	RD Signal Output Hold Time	l iguic 3.12	0		ns	
td(BCLK-WR)	WR Signal Output Delay Time			30	ns	
th(BCLK-WR)	WR Signal Output Hold Time		0		ns	
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns	
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)	4		ns		
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns	
th(WR-DB)	Data Output Hold Time (in relation to WR) (3)	7	(NOTE 2)		ns	
td(BCLK-HLDA)	HLDA Output Delay Time	7		40	ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{x} 10^9}{\text{f(BCLK)}} - 40 [\text{ns}] \hspace{1cm} \text{f(BCLK) is 12.5MHz or less.}$$

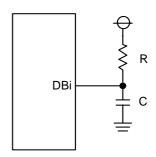
2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


$$t = -CR X In (1-VoL / Vcc2)$$

by a circuit of the right figure.

For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k \Omega X In(1-0.2Vcc2 / Vcc2)$$

= 6.7 ns.

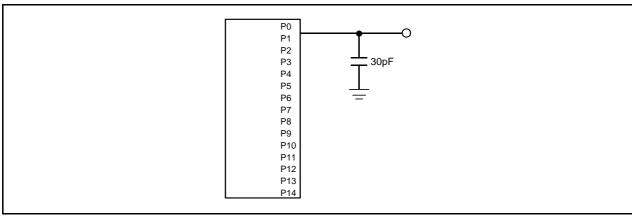
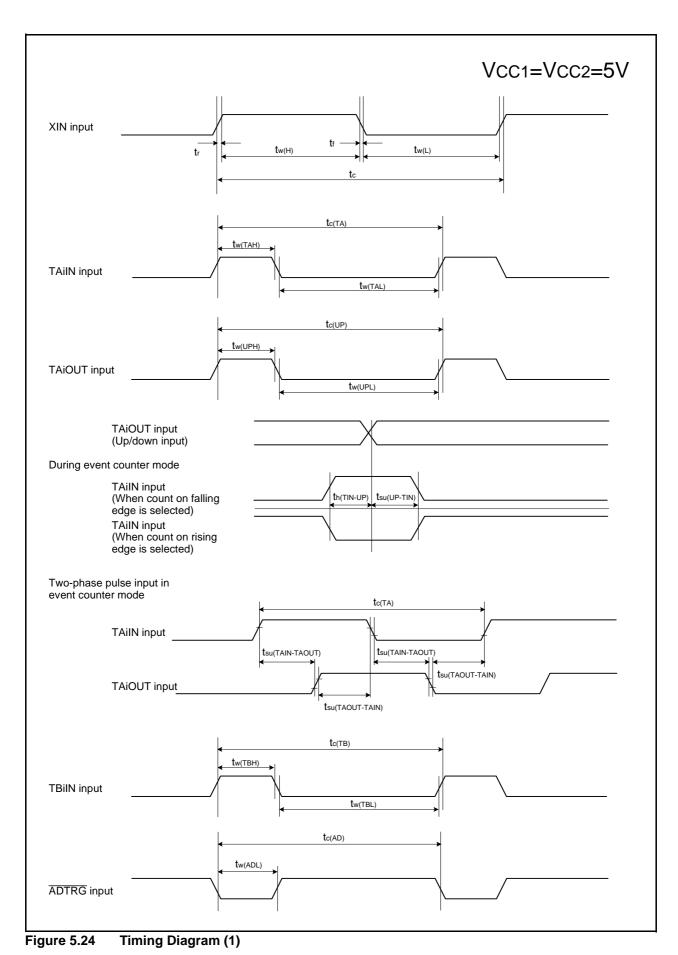


Figure 5.12 Ports P0 to P14 Measurement Circuit

Page 70 of 96


VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, Vss = 0V, at T_{opr} = -40 to 85°C (T version) / -40 to 125°C (V version) unless otherwise specified)

Table 5.59 External Clock Input (XIN input)

Symbol	Parameter	Stan	Unit	
	Faianietei	Min.	Max.	UTIIL
tc	External Clock Input Cycle Time	62.5		ns
tw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

RENESAS

REVISION HISTORY

Pov	Data		Description
Rev.	Date	Page	Summary
1.10	May 28, 2003	1	Applications are partly revised.
		2	Table 1.1.1 is partly revised.
		4-5	Table 1.1.2 and 1.1.3 is partly revised.
			"Note 1" is partly revised.
		22	Table 1.5.3 is partly revised.
		23	Table 1.5.5 is partly revised.
			Table 1.5.6 is added.
		24	Table 1.5.9 is partly revised.
		30	Notes 1 and 2 in Table 1.5.26 is partly revised.
		31	Notes 1 in Table 1.5.27 is partly revised.
		30-31	Note 3 is added to "Data output hold time (refers to BCLK)" in Table 1.5.26 and 1.5.27.
		32	Note 4 is added to "th(ALE-AD)" in Table 1.5.28.
		30-32	Switching Characteristics is partly revised.
		36-39	th(WR-AD) and th(WR-DB) in Figure 1.5.5 to 1.5.8 is partly revised.
		40-41	th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.9 to
		42	1.5.10 is partly revised.
			Note 2 is added to Table 1.5.29.
		47	Notes 1 and 2 in Table 1.5.45 is partly revised.
		48 47-48	Notes 1 in Table 1.5.46 is partly revised.
		47-40	Note 3 is added to "Data output hold time (refers to BCLK)" in Table
		49	1.5.45 and 1.5.46.
		49 47-48	Note 4 is added to "th(ALE-AD)" in Table 1.5.47. Switching Characteristics is partly revised.
		_	th(WR-AD) and th(WR-DB) in Figure 1.5.15 to 1.5.18 is partly revised.
		57-58	th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.19 to
			1.5.20 is partly revised.
2.00	Oct 29, 2003	-	Since high reliability version is added, a group name is revised. M16C/62 Group (M16C/62P) → M16C/62 Group (M16C/62P, M16C/62PT)
		2-4	Table 1.1 to 1.3 are revised. Note 3 is partly revised.
		2-4	Table 1.1 to 1.3 are revised.
			Note 3 is partly revised.
		6	Figure 1.2 Note5 is deleted.
		7-9	Table 1.4 to 1.7 Product List is partly revised.
		11	Table 1.8 and Figure 1.4 are added.
		12-15	Figure 1.5 to 1.9 ZP is added. Table 1.10 and 1.12 ZP is added to timer A.
		17,19	
		18,20 30	Table 1.11 and 1.13 VCC1 is added to VREF. Table 5.1 is revised.
		31-32	
		01-02	Table 5.2 and 5.3 are revised.

R	REVISION HISTORY		RY	M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual		
Rev.	Rev. Date			Description		
ixev.	Date	Page		Summary		
		47	Figure 5.	1 Power Supply Circuit Timing Diagram is partly revised.		
		48	Table 5.11 Electrical Characteristics (1) is partly deleted.			
		49	Table 5.12 Electrical Characteristics (2) is partly revised.			
		50	Note 1 of Table 5.13 External Clock Input (XIN input) is added.			
		67	Notes 1 to	o 4 of Table 5.32 External Clock Input (XIN input) are added.		
		85	products Table 5.5 cycle prod Note 5 is Table 23.	3 Flash Memory Version Electrical Characteristics for 100 cycle is partly revised. Standard (Min.) is partly revised. 4 Flash Memory Version Electrical Characteristics for 10,000 ducts is partly revised. Standard (Min.) is partly revised. revised. 55 Flash Memory Version Program / Erase Voltage and Read of Voltage Characteristics is partly revised.		
		87	Table 5.5	7 Electrical Characteristics (1) is partly deleted.		
		88	Table 5.5	8 Electrical Characteristics is partly revised.		