

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30624fgpfp-u7c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

M16C/62P Group (M16C/62P, M16C/62PT) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0001-0241 Rev.2.41 Jan 10, 2006

1. Overview

The M16C/62P Group (M16C/62P, M16C/62PT) of single-chip microcomputers are built using the high performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 80-pin, 100-pin and 128-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.

1.1 Applications

Audio, cameras, television, home appliance, office/communications/portable/industrial equipment, automobile, etc

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

RENESAS

Table 1.3 Performance Outline of M16C/62P Group (M16C/62P, M16C/62PT)(80-pin version)

	Item	Performance							
		M16C/62P	M16C/62PT ⁽⁴⁾						
CPU	Number of Basic Instructions	91 instructions	W1700/021 1 ()						
0.0	Minimum Instruction	41.7ns(f(BCLK)=24MHz, VCC1=3.3 to 5.5V) 41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5							
	Execution Time	100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)							
	Operating Mode	Single-chip mode							
	Address Space	1 Mbyte							
	Memory Capacity	See Table 1.4 to 1.7 Product List	st						
Peripheral	Port	Input/Output: 70 pins, Input: 1 pin							
Function	Multifunction Timer	Timer A: 16 bits x 5 channels (Time Timer B: 16 bits x 6 channels (Time							
	Serial Interface	2 channels Clock synchronous, UART, I ² C bu 1 channel Clock synchronous, I ² C bus ⁽¹⁾ , IE 2 channels Clock synchronous (1 channel is c	Bus ⁽²⁾						
	A/D Converter	10-bit A/D converter: 1 circuit, 26 ch	annels						
	D/A Converter	8 bits x 2 channels							
	DMAC	2 channels							
	CRC Calculation Circuit	CCITT-CRC							
	Watchdog Timer	15 bits x 1 channel (with prescaler)							
	Interrupt	Internal: 29 sources, External: 5 sources, Software: 4 sources, Priority level: 7 levels							
	Clock Generation Circuit	4 circuits Main clock generation circuit (*), Subclock generation circuit (*), On-chip oscillator, PLL synthesizer (*)Equipped with a built-in feedback resistor.							
	Oscillation Stop Detection Function	Stop detection of main clock oscillat	ion, re-oscillation detection function						
	Voltage Detection Circuit		Absent						
Electric Characteristics	Supply Voltage	VCC1=3.0 to 5.5 V, (f(BCLK=24MHz) VCC1=2.7 to 5.5 V, (f(BCLK=10MHz)	VCC1=4.0 to 5.5V, (f(BCLK=24MHz)						
	Power Consumption	14 mA (VCC1=5V, f(BCLK)=24MHz) 8 mA (VCC1=3V, f(BCLK)=10MHz) 1.8μA (VCC1=3V, f(XCIN)=32kHz, wait mode) 0.7μA (VCC1=3V, stop mode) 14 mA (VCC1=5V, f(BCLK)=24 2.0μA (VCC1=5V, f(XCIN)=32kHz, wait mode) 0.8μA (VCC1=5V, stop mode)							
Flash memory	Program/Erase Supply Voltage	3.3 ± 0.3V or 5.0 ± 0.5V	5.0 ± 0.5V						
version Program and Erase Endurance 100 times (all area) or 1,000 times (user ROM area without block A and block 1) / 10,000 times (block A, block 1) (3)									
Operating Amb	ient Temperature	-20 to 85°C, -40 to 85°C (3) T version : -40 to 85°C V version : -40 to 125°C							
Package		80-pin plastic mold QFP							

- 1. I²C bus is a registered trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.
- 3. See **Table 1.8 and 1.9 Product Code** for the program and erase endurance, and operating ambient temperature.
 - In addition 1,000 times/10,000 times are under development as of Jul., 2005. Please inquire about a release schedule.
- 4. All options are on request basis.

Table 1.7 Product List (4) (V version (M16C/62PT))

As of Dec. 2005

Type No.		ROM Capacity	RAM Capacity	Package Type ⁽¹⁾	Re	emarks
M3062CM6V-XXXFP	(P)	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM	V Version
M3062CM6V-XXXGP	(P)			PLQP0100KB-A	version	(High reliability
M3062EM6V-XXXGP	(P)			PRQP0080JA-A		125°C version)
M3062CM8V-XXXFP	(P)	64 Kbytes	4 Kbytes	PRQP0100JB-A		
M3062CM8V-XXXGP	(P)			PLQP0100KB-A		
M3062EM8V-XXXGP	(P)			PRQP0080JA-A		
M3062CMAV-XXXFP	(P)	96 Kbytes	5 Kbytes	PRQP0100JB-A		
M3062CMAV-XXXGP	(P)			PLQP0100KB-A		
M3062EMAV-XXXGP	(P)			PRQP0080JA-A		
M3062AMCV-XXXFP	(D)	128 Kbytes	10 Kbytes	PRQP0100JB-A		
M3062AMCV-XXXGP	(D)			PLQP0100KB-A		
M3062BMCV-XXXGP	(P)			PRQP0080JA-A		
M3062AFCVFP	(D)	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	Flash	
M3062AFCVGP	(D)			PLQP0100KB-A	memory	
M3062BFCVGP	(P)			PRQP0080JA-A	version ⁽²⁾	
M3062JFHVFP	(P)	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A		
M3062JFHVGP	(P)			PLQP0100KB-A		

(D): Under development(P): Under planning

NOTES:

1. The old package type numbers of each package type are as follows.

PLQP0128KB-A: 128P6Q-A, PRQP0100JB-A: 100P6S-A, PLQP0100KB-A: 100P6Q-A, PRQP0080JA-A: 80P6S-A

2. In the flash memory version, there is 4K bytes area (block A).

Page 10 of 96

Pin Description (100-pin and 128-pin Version) (2) **Table 1.18**

Signal Name	Pin Name	I/O Typo	Power Supply ⁽¹⁾	Description
Main clock	VINI	Туре	VCC1	I/O nine for the main clock generation sireuit. Connect a connect
input	XIN	-		I/O pins for the main clock generation circuit. Connect a ceramic resonator or crystal oscillator between XIN and XOUT ⁽³⁾ . To use
Main clock output	XOUT	0	VCC1	the external clock, input the clock from XIN and leave XOUT open
Sub clock input	XCIN	I	VCC1	I/O pins for a sub clock oscillation circuit. Connect a crystal
Sub clock output	XCOUT	0	VCC1	oscillator between XCIN and XCOUT $^{(3)}$. To use the external clock, input the clock from XCIN and leave XCOUT open.
BCLK output (2)	BCLK	0	VCC2	Outputs the BCLK signal.
Clock output	CLKOUT	0	VCC2	The clock of the same cycle as fC, f8, or f32 is outputted.
INT interrupt	INT0 to INT2	I	VCC1	Input pins for the INT interrupt.
input	NT3 to INT5	ı	VCC2	
NMI interrupt input	NMI	ļ	VCC1	Input pin for the NMI interrupt. Pin states can be read by the P8_5 bit in the P8 register.
Key input interrupt input	KI0 to KI3	I	VCC1	Input pins for the key input interrupt.
Timer A	TA0OUT to TA4OUT	I/O	VCC1	These are timer A0 to timer A4 I/O pins. (however, output of TA0OUT for the N-channel open drain output.)
	TA0IN to TA4IN	_	VCC1	These are timer A0 to timer A4 input pins.
	ZP		VCC1	Input pin for the Z-phase.
Timer B	TB0IN to TB5IN	_	VCC1	These are timer B0 to timer B5 input pins.
Three-phase motor control output	$U, \overline{U}, V, \overline{V}, W, \overline{W}$	0	VCC1	These are Three-phase motor control output pins.
Serial interface	CTS0 to	I	VCC1	These are send control input pins.
	RTS0 to	0	VCC1	These are receive control output pins.
	CLK0 to CLK4	I/O	VCC1	These are transfer clock I/O pins.
	RXD0 to RXD2	-	VCC1	These are serial data input pins.
	SIN3, SIN4	ı		These are serial data input pins.
	TXD0 to TXD2	0	VCC1	These are serial data output pins. (however, output of TXD2 for the N-channel open drain output.)
	SOUT3, SOUT4	0	VCC1	These are serial data output pins.
	CLKS1	0	VCC1	This is output pin for transfer clock output from multiple pins function.
I ² C mode	SDA0 to SDA2	I/O	VCC1	These are serial data I/O pins. (however, output of SDA2 for the N-channel open drain output.)
	SCL0 to SCL2	I/O	VCC1	These are transfer clock I/O pins. (however, output of SCL2 for the N-channel open drain output.)

I : Input O : Output I/O : Input and output

- 1. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 2. This pin function in M16C/62PT cannot be used.
- 3. Ask the oscillator maker the oscillation characteristic.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

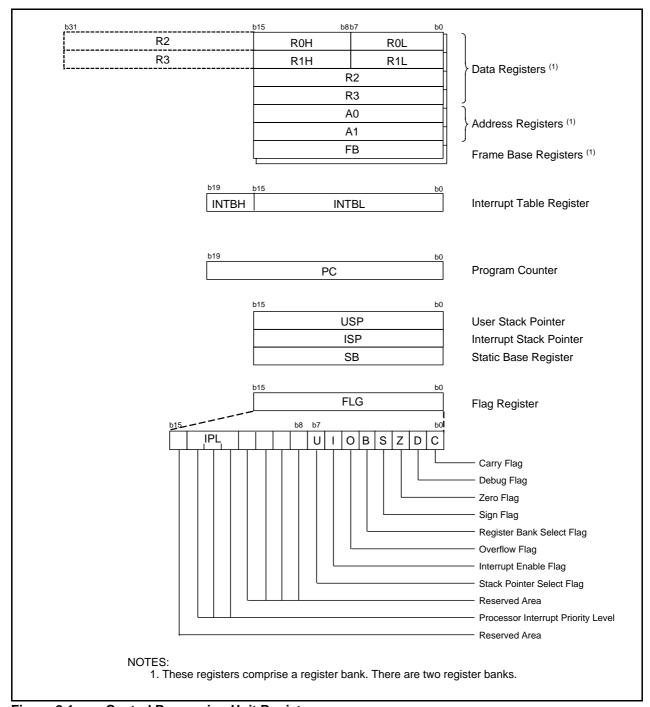


Figure 2.1 Central Processing Unit Register

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers.

R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

Table 5.4 A/D Conversion Characteristics (1)

Symbol	Parame	tor	Measuring Condition			Standard	l	Unit
Symbol	Faiaille	lei		3	Min.	Тур.	Max.	Offic
-	Resolution		VREF=V	/CC1			10	Bits
INL	Integral Non-Linearity Error	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
			VREF= VCC1= 3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±5	LSB
				External operation amp connection mode			±7	LSB
		8bit	VREF=V	/cc1=5V, 3.3V			±2	LSB
_	Absolute Accuracy	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
			VREF= VCC1 =3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±5	LSB
				External operation amp connection mode			±7	LSB
		8bit	VREF=V	/cc1=5V, 3.3V			±2	LSB
=	Tolerance Level Impeda	ance				3		kΩ
DNL	Differential Non-Linearit	y Error					±1	LSB
-	Offset Error						±3	LSB
_	Gain Error						±3	LSB
RLADDER	Ladder Resistance		VREF=V	/cc1	10		40	kΩ
tconv	10-bit Conversion Time, Available	•	VREF=V	/cc1=5V, φAD=12MHz	2.75			μS
tconv	8-bit Conversion Time, S Available	Sample & Hold	VREF=V	/cc1=5V, φAD=12MHz	2.33			μS
tsamp	Sampling Time				0.25			μS
VREF	Reference Voltage				2.0		Vcc1	V
VIA	Analog Input Voltage				0		VREF	V

- 1. Referenced to Vcc1=AVcc=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.
- 2. If Vcc1 > Vcc2, do not use AN0_0 to AN0_7 and AN2_0 to AN2_7 as analog input pins.
- 3. φAD frequency must be 12 MHz or less. And divide the fAD if Vcc1 is less than 4.0V, and φAD frequency into 10 MHz or less.
- When sample & hold is disabled, φAD frequency must be 250 kHz or more, in addition to the limitation in Note 3.
 When sample & hold is enabled, φAD frequency must be 1MHz or more, in addition to the limitation in Note 3.

Table 5.9 Low Voltage Detection Circuit Electrical Characteristics

Symbol	Parameter	Measuring Condition	Standard		Unit	
Symbol	Faianielei	Weasuring Condition	Min.	Тур.	Max.	Offic
Vdet4	Low Voltage Detection Voltage (1)	Vcc1=0.8V to 5.5V	3.3	3.8	4.4	V
Vdet3	Reset Level Detection Voltage (1, 2)]	2.2	2.8	3.6	V
Vdet4-Vdet3	Electric potential difference of Low Voltage Detection and Reset Level Detection		0.3			V
Vdet3s	Low Voltage Reset Retention Voltage				0.8	V
Vdet3r	Low Voltage Reset Release Voltage (3)		2.2	2.9	4.0	V

NOTES:

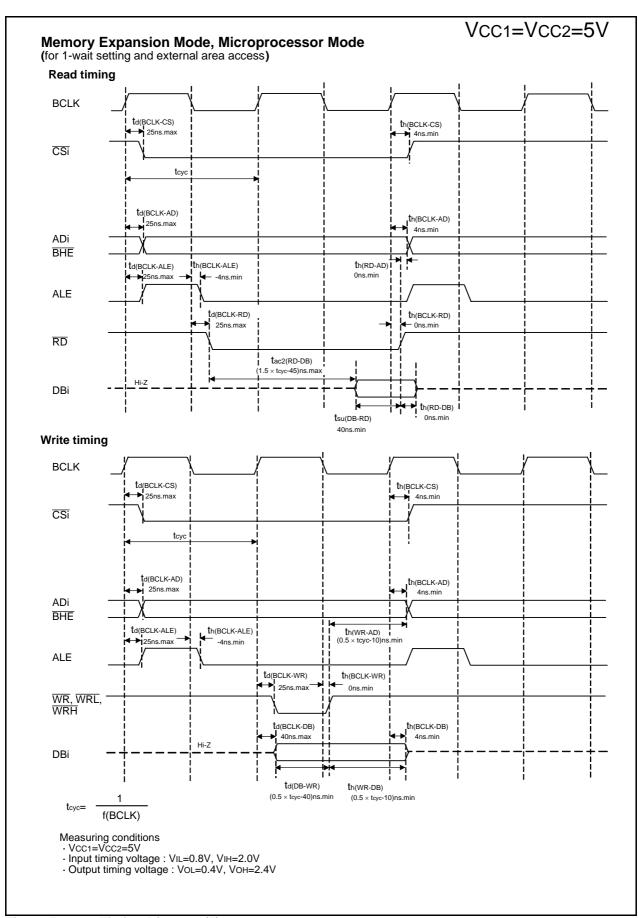

- 1. Vdet4 > Vdet3.
- 2. Where reset level detection voltage is less than 2.7 V, if the supply power voltage is greater than the reset level detection voltage, the microcomputer operates with f(BCLK) ≤ 10MHz.
- 3. Vdet3r > Vdet3 is not guaranteed.
- 4. The voltage detection circuit is designed to use when VCC1 is set to 5V.

Table 5.10 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring Condition Standard		Unit		
Symbol	Faianetei	Measuring Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=2.7V to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μS
td(S-R)	Brown-out Detection Reset (Hardware Reset 2) Release Wait Time	VCC1=Vdet3r to 5.5V		6 ⁽¹⁾	20	ms
td(E-A)	Low Voltage Detection Circuit Operation Start Time	Vcc1=2.7V to 5.5V			20	μ\$

NOTES:

1. When Vcc1 = 5V.

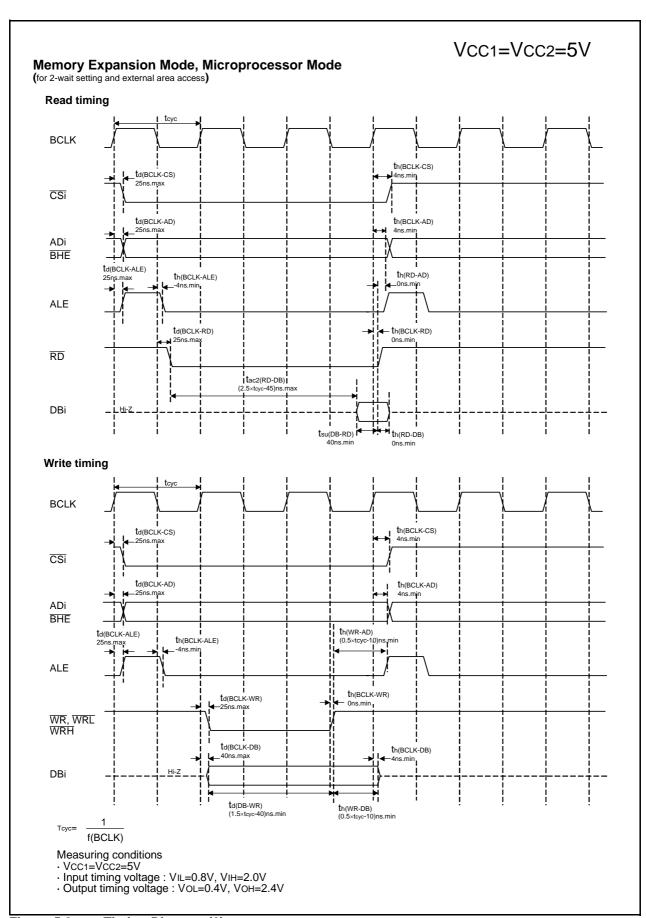


Figure 5.8 Timing Diagram (6)

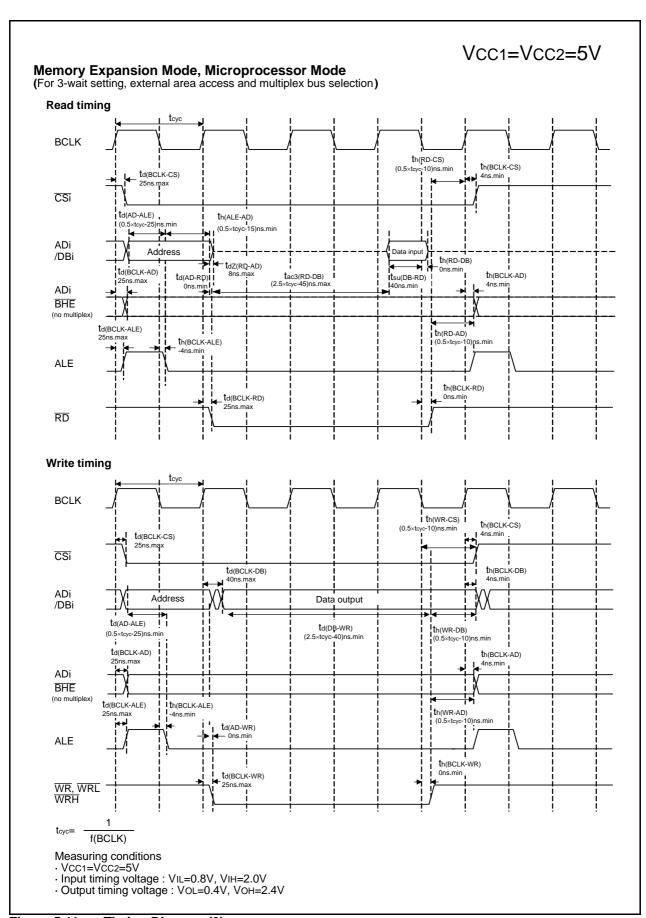


Figure 5.11 Timing Diagram (9)

VCC1=VCC2=3V

Table 5.30 Electrical Characteristics (1) (1)

Symbol		Parameter		Measuring Condition	St	andard		Unit
Symbol		Farameter		Weasuring Condition	Min.	Тур.	Max.	Offic
Vон	HIGH Output Voltage (3)	P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P1	P10_0 to P10_7,	IOH=-1mA	Vcc1-0.5		Vcc1	V
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to F	7, P5_0 to P5_7,	IOH=-1mA (2)	Vcc2-0.5		VCC2	V
Vон	HIGH Output	Voltage XOUT	HIGHPOWER	IOH=-0.1mA	Vcc1-0.5		Vcc1	V
			LOWPOWER	IOH=-50μA	Vcc1-0.5		VCC1	, v
	HIGH Output	Voltage XCOUT	HIGHPOWER	With no load applied		2.5		V
			LOWPOWER	With no load applied		1.6		V
Vol	LOW Output Voltage (3)	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P1	P10_0 to P10_7,	IOL=1mA			0.5	V
		P0_0 to P0_7, P1_0 to P1_ P3_0 to P3_7, P4_0 to P4_1 P12_0 to P12_7, P13_0 to P	7, P5 0 to P5 7,	IOL=1mA (2)			0.5	V
Vol	LOW Output \	/oltage XOUT	HIGHPOWER	IOL=0.1mA			0.5	V
			LOWPOWER	IOL=50μA			0.5	V
	LOW Output Voltage XCOUT		HIGHPOWER	With no load applied		0		.,
			LOWPOWER	With no load applied		0		V
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INTO to INT5, NMI, ADTRG, CTS0 to CTS2, CLK0 to CLK4, TA0OUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SCL0 to SCL2, SDA0 to SDA2, SIN3, SIN4			0.2		0.8	V
VT+-VT-	Hysteresis	RESET			0.2	(0.7)	1.8	V
Іін	HIGH Input Current (3)	P0_0 to P0_7, P1_0 to P1_ P3_0 to P3_7, P4_0 to P4_ P6_0 to P6_7, P7_0 to P7_ P9_0 to P9_7, P10_0 to P10 P12_0 to P12_7, P13_0 to P10 XIN, RESET, CNVSS, BYTE	7, P5_0 to P5_7, 7, P8_0 to P8_7, 0_7, P11_0 to P11_7, P13_7, P14_0, P14_1,	VI=3V			4.0	μА
li∟	LOW Input Current (3)	P0_0 to P0_7, P1_0 to P1_ P3_0 to P3_7, P4_0 to P4_ P6_0 to P6_7, P7_0 to P7_ P9_0 to P9_7, P10_0 to P10_ P12_0 to P12_7, P13_0 to P3_ XIN, RESET, CNVSS, BYTE	7, P2_0 to P2_7, 7, P5_0 to P5_7, 7, P8_0 to P8_7, 0_7, P11_0 to P11_7, P13_7, P14_0, P14_1,	VI=0V			-4.0	μА
RPULLUP	Pull-Up Resistance (3)	P0_0 to P0_7, P1_0 to P1_7 to P3_7, P4_0 to P4_7, P5_ P6_7, P7_2 to P7_7, P8_0 to P9_0 to P9_7, P10_0 to P10_0 P11_0 to P11_7, P12_0 to P14_0, P14_1	0 to P5_7, P6_0 to o P8_4, P8_6, P8_7, 0_7,	VI=0V	50	100	500	kΩ
RfXIN	Feedback Res	sistance XIN				3.0		МΩ
RfXCIN	Feedback Res	sistance XCIN				25		МΩ
VRAM	RAM Retentio	n Voltage		At stop mode	2.0			V

- 1. Referenced to Vcc1 = Vcc2 = 2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(XIN)=10MHz no wait unless otherwise specified.
- 2. Vcc1 for the port P6 to P11 and P14, and Vcc2 for the port P0 to P5 and P12 to P13
- 3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Table 5.31 Electrical Characteristics (2) (1)

Cumbal	Doromot	•	Maga	uring Condition	,	Standard	t	Unit
Symbol	Paramet	eı	ivieas	suring Condition	Min.	Тур.	Max.	Unit
Icc	Power Supply Current (Vcc1=Vcc2=2.7V to 3.6V)	In single-chip mode, the output	Mask ROM	f(BCLK)=10MHz No division		8	11	mA
	,	pins are open and other pins are Vss		No division, On-chip oscillation		1		mA
			Flash Memory	f(BCLK)=10MHz, No division		8	13	mA
			,	No division, On-chip oscillation		1.8		mA
			Flash Memory Program	f(BCLK)=10MHz, VCC1=3.0V		12		mA
			Flash Memory Erase	f(BCLK)=10MHz, VCC1=3.0V		22		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μА
			Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μА
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μА
				On-chip oscillation, Wait mode		45		μА
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		6.0		μА
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		1.8		μА
				Stop mode Topr =25°C		0.7	3.0	μА
Idet4	Low Voltage Detection Diss	sipation Current (4)				0.6	4	μА
Idet3	Reset Area Detection Dissi	pation Current (4)				0.4	2	μА

- NOTES:

 1. Referenced to Vcc1=Vcc2=2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=10MHz unless otherwise specified.

 2. With one timer operated using fC32.

 3. This indicates the memory in which the program to be executed exists.

 4. Idea is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register Idet3: VC26 bit in the VCR2 register

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.46 Memory Expansion and Microprocessor Modes (for setting with no wait)

Symbol	Parameter		Stan	dard	Unit
Symbol	Falameter		Min.	Max.	Offic
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	1	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.12		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	Tigule 3.12	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)	1	(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) (3)	7	(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{x} 10^9}{\text{f(BCLK)}} - 40 [\text{ns}] \hspace{1cm} \text{f(BCLK) is 12.5MHz or less.}$$

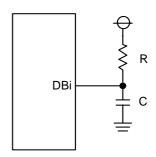
2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


$$t = -CR X In (1-VoL / Vcc2)$$

by a circuit of the right figure.

For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k \Omega X In(1-0.2Vcc2 / Vcc2)$$

= 6.7 ns.

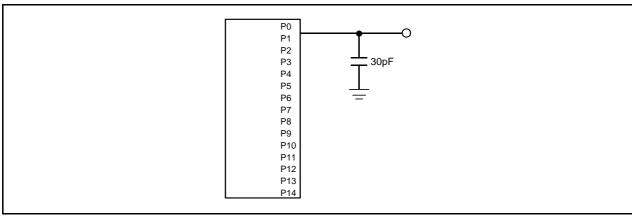


Figure 5.12 Ports P0 to P14 Measurement Circuit

Page 70 of 96

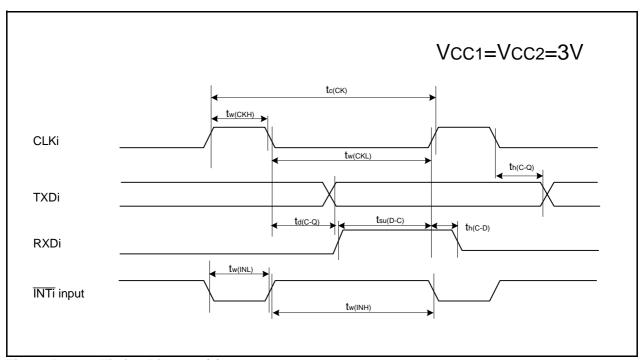


Figure 5.14 Timing Diagram (2)

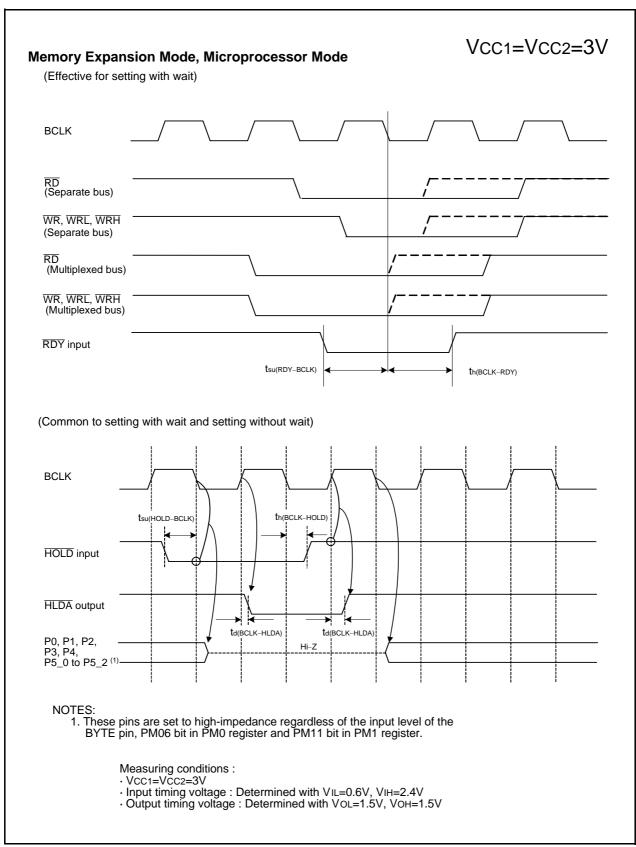


Figure 5.15 Timing Diagram (3)

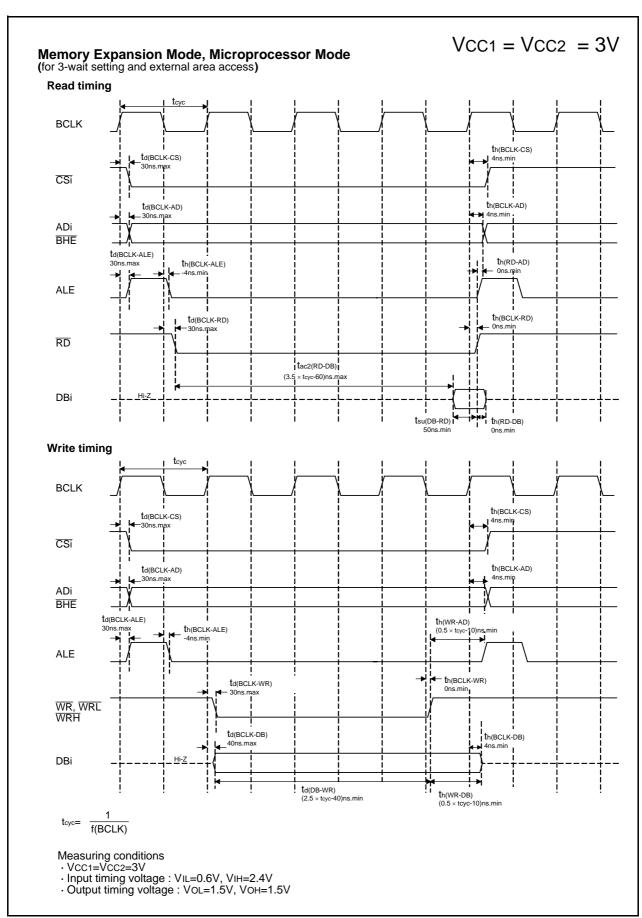


Figure 5.19 Timing Diagram (7)

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, Vss = 0V, at T_{opr} = -40 to 85°C (T version) / -40 to 125°C (V version) unless otherwise specified)

Table 5.60 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
	Falanielei	Min.	Max.	Offic
tc(TA)	TAilN Input Cycle Time	100		ns
tw(TAH)	TAilN Input HIGH Pulse Width	40		ns
tw(TAL)	TAilN Input LOW Pulse Width	40		ns

Table 5.61 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Unit	
	Falametei	Min.	Max.	Offic
tc(TA)	TAilN Input Cycle Time	400		ns
tw(TAH)	TAilN Input HIGH Pulse Width	200		ns
tw(TAL)	TAilN Input LOW Pulse Width	200		ns

Table 5.62 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(TA)	TAilN Input Cycle Time	200		ns
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAilN Input LOW Pulse Width	100		ns

Table 5.63 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAilN Input LOW Pulse Width	100		ns

Table 5.64 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(UP)	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time		ns	

Table 5.65 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(TA)	TAilN Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAilN Input Setup Time	200		ns

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, Vss = 0V, at T_{opr} = -40 to 85°C (T version) / -40 to 125°C (V version) unless otherwise specified)

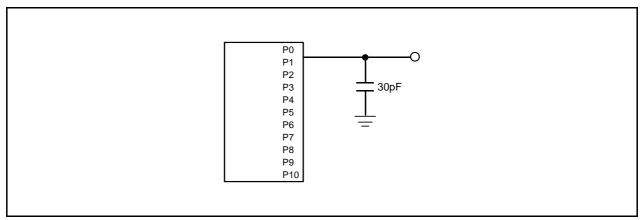


Figure 5.23 Ports P0 to P10 Measurement Circuit

REVISION HISTORY			RY	M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual		
Pov Dota				Description		
Rev.	Rev. Date			Summary		
		40	Table 5.24 is partly revised.			
		57	Table 5.43 is partly revised.			
		70		Table 5.48 is partly revised.		
		72		Γable 5.50 is partly revised.		
		73		3 is partly revised.		
		74 70		5 is revised.		
		76 79		7 is partly revised. 9 is partly revised.		
2.41	Jan 01, 2006	-		own detection reset -> brown-out detection Reset		
2.41	Jan 01, 2000	2.4				
		2-4	revised.	1 to 1.3 Performance outline of M16C/62P group are partly		
		7	Table 1.4 Note 1 is	Product List (1) is partly revised. added.		
		8		Product List (2) is partly revised. and 3 are added.		
		9		Product List (3) is partly revised. d 2 are added.		
		10	Table 1.7 Product List (4) is partly revised. Note 1 and 2 are added.			
		11	Figure 1.3 Type No., Memory Size, Shows RAM capacity, and Package partly revised			
		12	Table 1.8 Product Code of Flash Memory version and ROMless version M16C/62P is partly revised.			
		13	Table 1.9 Product Code of Flash Memory version for M16C/62P is parevised.			
		14	Figure 1.6	6 Pin Configuration (Top View) is partly revised.		
		15-17	Tables 1.	10 to 1.12 Pin Characteristics for 128-Pin Package are added.		
		18-19	Figure 1.7	7 and 1.8 Pin Configuration (Top View) are partly revised.		
		20-21	_	13 to 1.14 Pin Characteristics for 100-Pin Package are added.		
		22		9 Pin Configuration (Top View) is partly revised.		
		23-24		15 to 1.16 Pin Characteristics for 80-Pin Package are added.		
		25-29		17 to 1.21 are partly revised.		
		34		Table 4.1 SFR Information is partly revised.		
		43		A/D Conversion Characteristics is partly revised.		
		45	Table 5.6	Flash Memory Version Electrical Characteristics for 100 cycle is partly revised.		
			Table 5.7	Flash Memory Version Electrical Characteristics for 10,000 cycle is partly revised.		
			Table 5.8	Flash Memory Version Program / Erase Voltage and Read Noltage Characteristics is partly revised.		
		46		Low Voltage Detection Circuit Electrical Characteristics is partly		