

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30624fgpgp-u7c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1.4 Product List

Table 1.4 to 1.7 list the product list, Figure 1.3 shows the Type No., Memory Size, and Package, Table 1.8 lists the Product Code of Flash Memory version and ROMless version for M16C/62P, and Table 1.9 lists the Product Code of Flash Memory version for M16C/62PT. Figure 1.4 shows the Marking Diagram of Flash Memory version and ROM-less version for M16C/62P (Top View), and Figure 1.5 shows the Marking Diagram of Flash Memory version for M16C/62PT (Top View) at the time of ROM order.

Table 1.4	Product List (1) (M16C/62P)
-----------	-----------------------------

As of Dec. 2005

Type No.	ROM Capacity	RAM Capacity	Package Type (1)	Remarks
M30622M6P-XXXFP	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM version
M30622M6P-XXXGP			PLQP0100KB-A	
M30622M8P-XXXFP	64 Kbytes	4 Kbytes	PRQP0100JB-A	
M30622M8P-XXXGP			PLQP0100KB-A	
M30623M8P-XXXGP			PRQP0080JA-A	
M30622MAP-XXXFP	96 Kbytes	5 Kbytes	PRQP0100JB-A	
M30622MAP-XXXGP			PLQP0100KB-A	
M30623MAP-XXXGP			PRQP0080JA-A	
M30620MCP-XXXFP	128 Kbytes	10 Kbytes	PRQP0100JB-A	
M30620MCP-XXXGP			PLQP0100KB-A	
M30621MCP-XXXGP			PRQP0080JA-A	
M30622MEP-XXXFP	192 Kbytes	12 Kbytes	PRQP0100JB-A	
M30622MEP-XXXGP			PLQP0100KB-A	
M30623MEP-XXXGP			PLQP0128KB-A	
M30622MGP-XXXFP	256 Kbytes	12 Kbytes	PRQP0100JB-A	
M30622MGP-XXXGP			PLQP0100KB-A	
M30623MGP-XXXGP			PLQP0128KB-A	
M30624MGP-XXXFP		20 Kbytes	PRQP0100JB-A	
M30624MGP-XXXGP			PLQP0100KB-A	
M30625MGP-XXXGP			PLQP0128KB-A	
M30622MWP-XXXFP	320 Kbytes	16 Kbytes	PRQP0100JB-A	
M30622MWP-XXXGP			PLQP0100KB-A	
M30623MWP-XXXGP			PLQP0128KB-A	
M30624MWP-XXXFP		24 Kbytes	PRQP0100JB-A]
M30624MWP-XXXGP			PLQP0100KB-A	
M30625MWP-XXXGP			PLQP0128KB-A	
M30626MWP-XXXFP		31 Kbytes	PRQP0100JB-A	
M30626MWP-XXXGP			PLQP0100KB-A	
M30627MWP-XXXGP			PLQP0128KB-A	

(D): Under development

NOTES:

1. The old package type numbers of each package type are as follows.

PLQP0128KB-A : 128P6Q-A, PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A, PRQP0080JA-A : 80P6S-A

Type No.		ROM Capacity	RAM	Package Type ⁽¹⁾	Remarks
M30622MHP-XXXFP		384 Kbytes	Capacity 16 Kbytes	PRQP0100JB-A	Mask ROM version
M30622MHP-XXXGP		304 NDytes	TO Royles	PLQP0100KB-A	
M30623MHP-XXXGP				PLQP0128KB-A	-
M30624MHP-XXXFP			24 Kbytes	PRQP0100JB-A	-
M30624MHP-XXXGP			24 Noyles	PLQP0100KB-A	-
M30625MHP-XXXGP				PLQP0128KB-A	-
M30626MHP-XXXFP			31 Kbytes	PRQP0100JB-A	-
M30626MHP-XXXGP			51 Rbytes	PLQP0100KB-A	-
M30627MHP-XXXGP				PLQP0128KB-A	-
	(D)	512 Kbytes	31 Kbytes	PRQP0100JB-A	-
	(D)	012103100	of hoycoo	PLQP0100KB-A	-
	(D)			PLQP0128KB-A	-
M30622F8PFP	(_)	64K+4 Kbytes	4 Kbytes	PRQP0100JB-A	Flash memory
M30622F8PGP		o net i radytoo	1109100	PLQP0100KB-A	version ⁽²⁾
M30623F8PGP				PRQP0080JA-A	-
M30620FCPFP		128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	-
M30620FCPGP		,,,,,	,	PLQP0100KB-A	
M30621FCPGP				PRQP0080JA-A	
	(D)	256K+4 Kbytes	20 Kbytes	PRQP0100JB-A	
M3062LFGPGP ⁽³⁾	(D)		-	PLQP0100KB-A	
M30625FGPGP	、 <i>,</i>			PLQP0128KB-A	
M30626FHPFP		384K+4 Kbytes	31 Kbytes	PRQP0100JB-A	
M30626FHPGP		,	,	PLQP0100KB-A	
M30627FHPGP				PLQP0128KB-A	
M30626FJPFP		512K+4 Kbytes	31 Kbytes	PRQP0100JB-A	
M30626FJPGP				PLQP0100KB-A	
M30627FJPGP				PLQP0128KB-A	-
M30622SPFP		_	4 Kbytes	PRQP0100JB-A	ROM-less version
M30622SPGP			-	PLQP0100KB-A	-
M30620SPFP			10 Kbytes	PRQP0100JB-A	1
M30620SPGP			-	PLQP0100KB-A	1
M30624SPFP	(D)	_	20 Kbytes	PRQP0100JB-A	1
M30624SPGP	(D)			PLQP0100KB-A	1
M30626SPFP ((D)		31 Kbytes	PRQP0100JB-A	1
M30626SPGP	(D)			PLQP0100KB-A	

Table 1.5	Product List	(2)	(M16C/62P)
	I I O G G O C EIOC	\ -/	(

As of Dec. 2005

(D): Under development

NOTES:

1. The old package type numbers of each package type are as follows.

PLQP0128KB-A : 128P6Q-A, PRQP0100JB-A : 100P6S-A,

PLQP0100KB-A : 100P6Q-A,

PRQP0080JA-A : 80P6S-A

2. In the flash memory version, there is 4K bytes area (block A).

3. Please use M3062LFGPFP and M3062LFGPGP for your new system instead of M30624FGPFP and M30624FGPGP. The M16C/62P Group (M16C/62P, M16C/62PT) hardware manual is still good for M30624FGPFP and M30624FGPGP.

M30624FGPFP	256K+4 Kbytes	20 Kbytes	PRQP0100JB-A	Flash memory version
M30624FGPGP			PLQP0100KB-A	

As of Dec. 2005

			,	,		
Type No.		ROM Capacity	RAM Capacity	Package Type (1)	Re	emarks
M3062CM6T-XXXFP	(D)	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM	T Version
M3062CM6T-XXXGP	(D)			PLQP0100KB-A	version	(High reliability
M3062EM6T-XXXGP	(P)			PRQP0080JA-A	-	85°C version)
M3062CM8T-XXXFP	(D)	64 Kbytes	4 Kbytes	PRQP0100JB-A		
M3062CM8T-XXXGP	(D)			PLQP0100KB-A		
M3062EM8T-XXXGP	(P)			PRQP0080JA-A	-	
M3062CMAT-XXXFP	(D)	96 Kbytes	5 Kbytes	PRQP0100JB-A		
M3062CMAT-XXXGP	(D)			PLQP0100KB-A		
M3062EMAT-XXXGP	(P)			PRQP0080JA-A		
M3062AMCT-XXXFP	(D)	128 Kbytes	10 Kbytes	PRQP0100JB-A		
M3062AMCT-XXXGP	(D)			PLQP0100KB-A		
M3062BMCT-XXXGP	(P)			PRQP0080JA-A	-	
M3062CF8TFP	(D)	64 K+4 Kbytes	4 Kbytes	PRQP0100JB-A	Flash	
M3062CF8TGP				PLQP0100KB-A	memory	
M3062AFCTFP	(D)	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	version ⁽²⁾	
M3062AFCTGP	(D)			PLQP0100KB-A		
M3062BFCTGP	(P)	1		PRQP0080JA-A		
M3062JFHTFP	(D)	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A		
M3062JFHTGP	(D)	1		PLQP0100KB-A		
M3062JFHTGP				PLQP0100KB-A		

Table 1.6 Product List (3) (T version (M16C/62PT))

(D): Under development

(P): Under planning

NOTES:

- The old package type numbers of each package type are as follows. PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A, PRQP0080JA-A : 80P6S-A
- 2. In the flash memory version, there is 4K bytes area (block A).

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
101		P1_2					D10
102		P1_1					D9
103		P1_0					D8
104		P0_7				AN0_7	D7
105		P0_6				AN0_6	D6
106		P0_5				AN0_5	D5
107		P0_4				AN0_4	D4
108		P0_3				AN0_3	D3
109		P0_2				AN0_2	D2
110		P0_1				AN0_1	D1
111		P0_0				AN0_0	D0
112		P11_7					
113		P11_6					
114		P11_5					
115		P11_4					
116		P11_3					
117		P11_2					
118		P11_1					
119		P11_0					
120		P10_7	KI3			AN7	
121		P10_6	KI2			AN6	
122		P10_5	KI1			AN5	
123		P10_4	KI0			AN4	
124		P10_3				AN3	
125		P10_2				AN2	
126		P10_1				AN1	
127	AVSS						
128		P10_0				AN0	

 Table 1.12
 Pin Characteristics for 128-Pin Package (3)

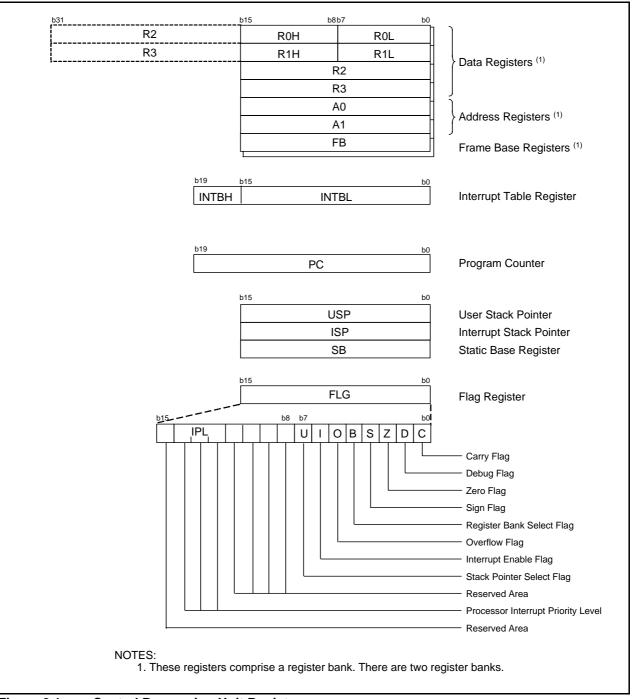

Pin No.	Control Pin		Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
1		P9_5			CLK4	ANEX0	
2		P9_4		TB4IN		DA1	
3		P9_3		TB3IN		DA0	
4		P9_2		TB2IN	SOUT3		
5		P9_0		TB0IN	CLK3		
6	CNVSS						
	(BYTE)	D 0 -					
7	XCIN	P8_7					
8	XCOUT	P8_6					
9	RESET						
10	XOUT VSS						
11 12	XIN						
12	VCC1						
13	1001	P8_5	NMI				
				75			
15		P8_4	INT2	ZP			
16		P8_3	INT1				
17		P8_2	INT0				
18		P8_1		TA4IN			
19		P8_0		TA4OUT		ļ	ļ
20		P7_7		TA3IN			
21		P7_6		TA3OUT			
22		P7_1		TA0IN/TB5IN	RXD2/SCL2		
23		P7_0		TA0OUT	TXD2/SDA2		
24		P6_7			TXD1/SDA1		
25		P6_6			RXD1/SCL1		
26		P6_5			CLK1		
27		P6_4			CTS1/RTS1/CTS0/CLKS1		
28		P6_3			TXD0/SDA0		
29		P6_2			RXD0/SCL0 CLK0		
30		P6_1					
31		P6_0			CTS0/RTS0		
32		P5_7					CLKOUT
33		P5_6					
34		P5_5					
35		P5_4					
36		P5_3					
37		P5_2					
38		P5_1					
39		P5_0					
40		P4_3					
41		P4_2				1	1
42		P4_1				1	1
43	1	P4_0				1	1
43		P4_0 P3_7				1	1
45		P3_6					
46		P3_5				ļ	
47		P3_4					
48		P3_3					
49		P3_2					
50		P3_1					

 Table 1.15
 Pin Characteristics for 80-Pin Package (1)

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

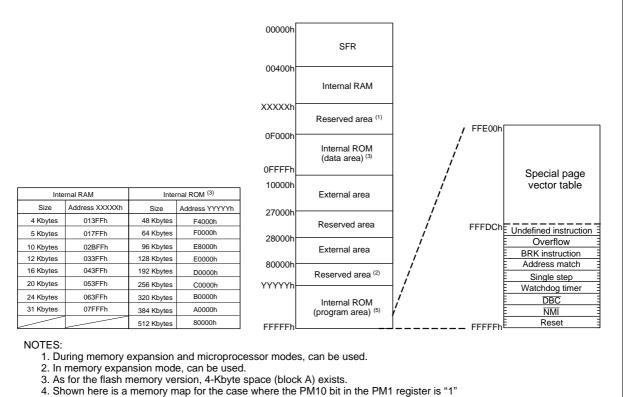
The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

3. Memory

Figure 3.1 is a Memory Map of the M16C/62P group. The address space extends the 1M bytes from address 00000h to FFFFFh.

The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 64-Kbyte internal ROM is allocated to the addresses from F0000h to FFFFFh.

As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.

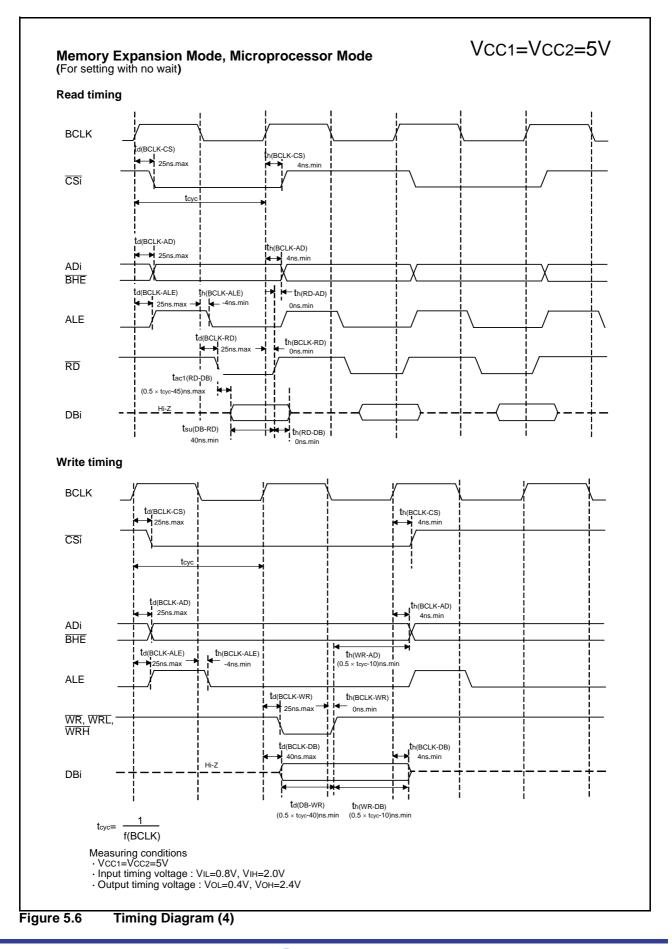

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 10-Kbyte internal RAM is allocated to the addresses from 00400h to 02BFFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SRF is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to the **M16C/60 and M16C/20 Series Software Manual**.

In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users. Use M16C/62P (80-pin version) and M16C/62PT in single-chip mode. The memory expansion and microprocessor modes cannot be used



RENESAS

and the PM13 bit in the PM1 register is "1"

5. When using the masked ROM version, write nothing to internal ROM area.

Symbol	Symbol Parameter		Maaa	uring Condition	;	Standard	b	Unit
Symbol	Falamet	ei	Ivieas		Min.	Тур.	Max.	Onit
Icc	Power Supply Current (Vcc1=Vcc2=2.7V to 3.6V)	In single-chip mode, the output	Mask ROM	f(BCLK)=10MHz No division		8	11	mA
	· · · · · · · · · · · · · · · · · · ·	pins are open and other pins are Vss		No division, On-chip oscillation		1		mA
			Flash Memory	f(BCLK)=10MHz, No division		8	13	mA
			No division, On-chip oscillation		1.8		mA	
			Flash Memory Program	f(BCLK)=10MHz, VCC1=3.0V		12		mA
			Flash Memory Erase	f(BCLK)=10MHz, VCC1=3.0V		22		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μA
			Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μA
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μA
				On-chip oscillation, Wait mode		45		μA
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		6.0		μΑ
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		1.8		μA
				Stop mode Topr =25°C		0.7	3.0	μA
Idet4	Low Voltage Detection Diss	sipation Current (4)				0.6	4	μΑ
Idet3	Reset Area Detection Dissi	pation Current (4)				0.4	2	μΑ

Table 5.31 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=10MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register

Idet3: VC26 bit in the VCR2 register

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.32 External Clock Input (XIN input)⁽¹⁾

Symbol	Parameter	Stan	Unit	
Symbol	Parameter		Max.	Offic
tc	External Clock Input Cycle Time	(NOTE 2)		ns
tw(H)	External Clock Input HIGH Pulse Width	(NOTE 3)		ns
tw(L)	External Clock Input LOW Pulse Width	(NOTE 3)		ns
tr	External Clock Rise Time		(NOTE 4)	ns
tr	External Clock Fall Time		(NOTE 4)	ns

NOTES:

- 1. The condition is Vcc1=Vcc2=2.7 to 3.0V.
- 2. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times Vcc_2 - 44}$$
 [ns]

3. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times \text{Vcc1} - 44} \times 0.4 \text{ [ns]}$$

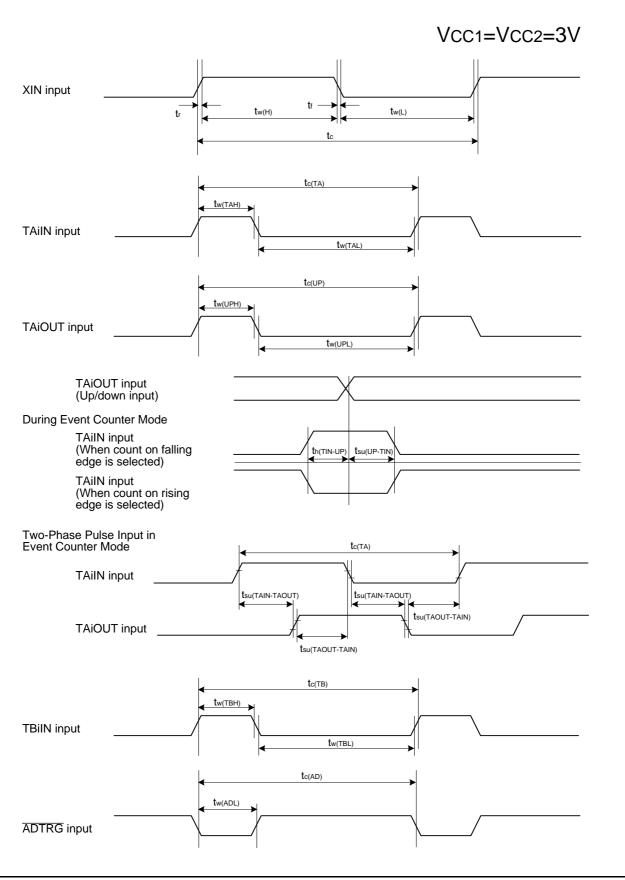
4. Calculated according to the Vcc1 voltage as follows: $-10 \times Vcc1 + 45$ [ns]

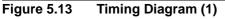
Table 5.33 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Star	Standard	Unit
	Parameter	Min.	Max.	Unit
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data Input Access Time (when accessing multiplex bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data Input Setup Time	50		ns
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	50		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:


2. Calculated according to the BCLK frequency as follows:


$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns]$$
 n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

RENESAS

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns]$$
 n is "2" for 2-wait setting, "3" for 3-wait setting.

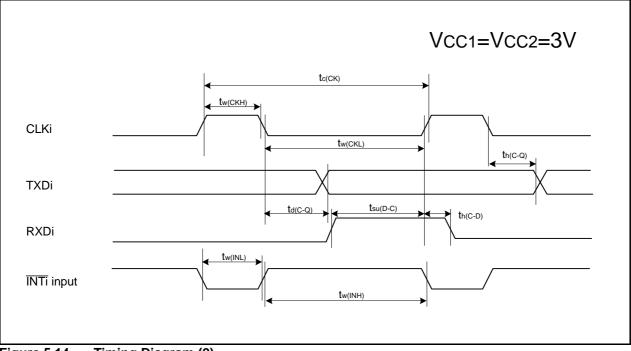
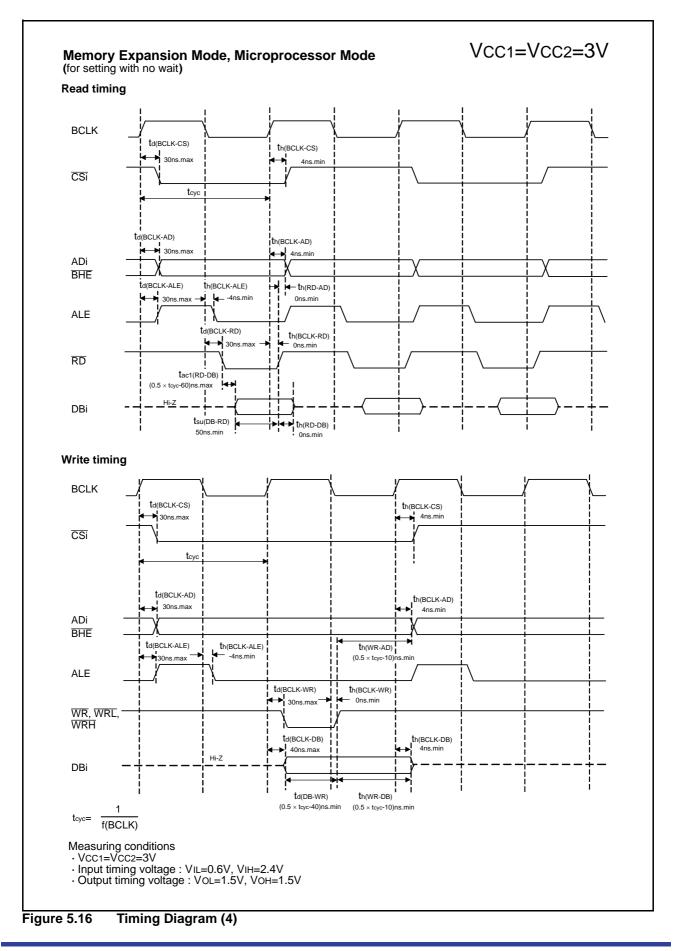



Figure 5.14 Timing Diagram (2)

Symbol	Parameter			Standard		Unit	
Symbol	Farameter		Min. Typ. Max		Max.		
-	Program and Erase Endurance (3)		100			cycle	
-	Word Program Time (Vcc1=5.0V)			25	200	μS	
-	Lock Bit Program Time			25	200	μS	
-	Block Erase Time	4-Kbyte block	4	0.3	4	S	
-	(Vcc1=5.0V)	8-Kbyte block		0.3	4	S	
-		32-Kbyte block		0.5	4	S	
-		64-Kbyte block		0.8	4	S	
-	Erase All Unlocked Blocks Time (2)				4×n	S	
tPS	Flash Memory Circuit Stabilization Wait Time	e			15	μS	
-	Data Hold Time ⁽⁵⁾		20			year	

Table 5.53 Flash Memory Version Electrical Characteristics (1) for 100 cycle products (B, U)

Table 5.54Flash Memory Version Electrical Characteristics (6) for 10,000 cycle products (B7, U7)(Block A and Block 1 (7))

Symbol	Parameter			Standard	Unit	
Symbol	Faranielei		Min.	Тур.	Max.	Unit
-	Program and Erase Endurance (3, 8, 9)		10,000 (4)			cycle
-	Word Program Time (Vcc1=5.0V)			25		μS
-	Lock Bit Program Time			25		μS
_	Block Erase Time (Vcc1=5.0V)	4-Kbyte block	4	0.3		S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μS
-	Data Hold Time ⁽⁵⁾		20			year

NOTES:

- 1. Referenced to Vcc1=4.5 to 5.5V at $T_{opr} = 0$ to 60 °C unless otherwise specified.
- 2. n denotes the number of block erases.

 Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times. For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)

- 4. Maximum number of E/W cycles for which operation is guaranteed.
- 5. Ta (ambient temperature)=55 °C. As to the data hold time except Ta=55 °C, please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor.
- 6. Referenced to Vcc1 = 4.5 to 5.5V at Topr = −40 to 85 °C (B7, U7 (T version)) / −40 to 125 °C (B7, U7 (V version)) unless otherwise specified.
- 7. Table 5.54 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.53.
- 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to track the total number of times erasure is used.
- 9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase command at least three times until erase error disappears.
- 10. Set the PM17 bit in the PM1 register to "1" (wait state) when executing more than 100 times rewrites (B7 and U7).
- 11. Customers desiring E/W failure rate information should contact their Renesas technical support representative.

Table 5.55Flash Memory Version Program/Erase Voltage and Read Operation Voltage
Characteristics (at Topr = 0 to 60 °C(B, U), Topr = -40 to 85 °C (B7, U7 (T version)) / -40
to 125 °C (B7, U7 (V version))

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC1 = 5.0 V \pm 0.5 V$	Vcc1=4.0 to 5.5 V

Symbol	Parameter	Measuring Condition	Standard			Unit
	Falanetei		Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=4.0V to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

Table 5.56	Power Supply Circuit Timing Characteristics	
------------	---	--

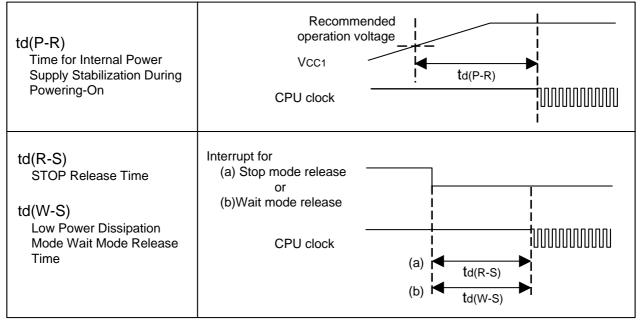


Figure 5.22 Power Supply Circuit Timing Diagram

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -40 to 85° C (T version) / -40 to 125° C (V version) unless otherwise specified)

Table 5.60 Timer A Input (Counter Input in Event Counter Mode)

Symbol Parameter	Parameter	Stan	dard	Unit
	Min.	Max.	Offic	
tc(TA)	TAiIN Input Cycle Time	100		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	40		ns
tw(TAL)	TAIIN Input LOW Pulse Width	40		ns

Table 5.61 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Farameter	Min. Max.	Unit	
tc(TA)	TAilN Input Cycle Time	400		ns
tw(TAH)	TAilN Input HIGH Pulse Width	200		ns
tw(TAL)	TAiIN Input LOW Pulse Width	200		ns

Table 5.62 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Falanetei	Min. Max.	Offic	
tc(TA)	TAiIN Input Cycle Time	200		ns
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns

Table 5.63 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol Parameter -	Derometer	Standard		Unit
	Min.	Max.	Unit	
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAiIN Input LOW Pulse Width	100		ns

Table 5.64 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Standard	Unit	
	Falallelel	Min.	Max.	Unit
tc(UP)	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns

Table 5.65 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol Parameter	Paramotor	Stan	ndard	Unit
	Falantelei	Min. Max.	Onit	
tc(TA)	TAIIN Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAiIN Input Setup Time	200		ns

VCC1=VCC2=5V

Switching Characteristics $(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -40 to 85^{\circ}C (T version) / -40 to 125^{\circ}C (V version) unless otherwise specified)$

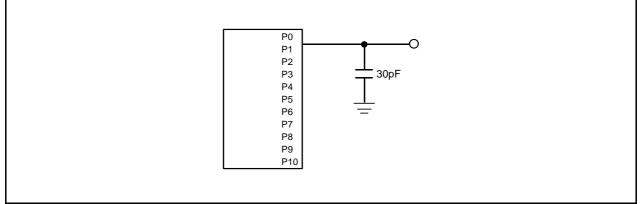
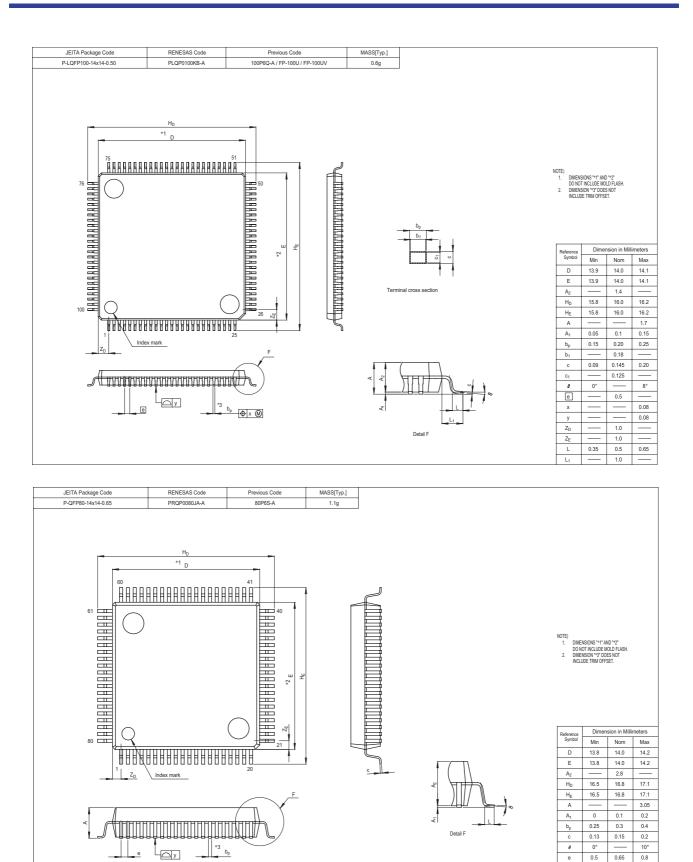


Figure 5.23 Ports P0 to P10 Measurement Circuit

е 0.5 0.65 0.8

у

 Z_{D}


 Z_{E}

L

0.4 0.6 0.10

0.8

0.825 0.825

е

REVISION HISTORY

M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual

	.		Description
Rev.	Date	Page	Summary
1.10	May 28, 2003	1	Applications are partly revised.
		2	Table 1.1.1 is partly revised.
		4-5	Table 1.1.2 and 1.1.3 is partly revised.
			"Note 1" is partly revised.
		22	Table 1.5.3 is partly revised.
		23	Table 1.5.5 is partly revised.
			Table 1.5.6 is added.
		24	Table 1.5.9 is partly revised.
		30	Notes 1 and 2 in Table 1.5.26 is partly revised.
		31	Notes 1 in Table 1.5.27 is partly revised.
		30-31	Note 3 is added to "Data output hold time (refers to BCLK)" in Table 1.5.26 and 1.5.27.
		32	Note 4 is added to "th(ALE-AD)" in Table 1.5.28.
		30-32	Switching Characteristics is partly revised.
		36-39	th(WR-AD) and th(WR-DB) in Figure 1.5.5 to 1.5.8 is partly revised.
		40-41	th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.9 to
		10	1.5.10 is partly revised.
		42	Note 2 is added to Table 1.5.29.
		47	Notes 1 and 2 in Table 1.5.45 is partly revised.
		48	Notes 1 in Table 1.5.46 is partly revised.
		47-48	Note 3 is added to "Data output hold time (refers to BCLK)" in Table
			1.5.45 and 1.5.46.
		49	Note 4 is added to "th(ALE-AD)" in Table 1.5.47.
		47-48	Switching Characteristics is partly revised.
			th(WR-AD) and th(WR-DB) in Figure 1.5.15 to 1.5.18 is partly revised. th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.19 to
		57-50	1.5.20 is partly revised.
2.00	Oct 29, 2003	-	Since high reliability version is added, a group name is revised. M16C/62 Group (M16C/62P) \rightarrow M16C/62 Group (M16C/62P, M16C/62PT)
		2-4	Table 1.1 to 1.3 are revised. Note 3 is partly revised.
		2-4	Table 1.1 to 1.3 are revised.
			Note 3 is partly revised.
		6	Figure 1.2 Note5 is deleted.
		7-9	Table 1.4 to 1.7 Product List is partly revised.
		11	Table 1.8 and Figure 1.4 are added.
		12-15	Figure 1.5 to 1.9 ZP is added. Table 1.10 and 1.12 ZP is added to timer A.
		17,19	
		18,20 30	Table 1.11 and 1.13 VCC1 is added to VREF.
		31-32	Table 5.1 is revised.
		01-02	Table 5.2 and 5.3 are revised.