

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	113
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LFQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30625fgpgp-u3c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1.3 Block Diagram

Figure 1.1 is a M16C/62P Group (M16C/62P, M16C/62PT) 128-pin and 100-pin version Block Diagram, Figure 1.2 is a M16C/62P Group (M16C/62P, M16C/62PT) 80-pin version Block Diagram.

1.5 Pin Configuration

Figures 1.6 to 1.9 show the Pin Configuration (Top View).

Figure 1.6 Pin Configuration (Top View)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
51		P3_0					
52		P2_7				AN2_7	
53		P2_6				AN2_6	
54		P2_5				AN2_5	
55		P2_4				AN2_4	
56		P2_3				AN2_3	
57		P2_2				AN2_2	
58		P2_1				AN2_1	
59		P2_0				AN2_0	
60		P0_7				AN0_7	
61		P0_6				AN0_6	
62		P0_5				AN0_5	
63		P0_4				AN0_4	
64		P0_3				AN0_3	
65		P0_2				AN0_2	
66		P0_1				AN0_1	
67		P0_0				AN0_0	
68		P10_7	KI3			AN7	
69		P10_6	KI2			AN6	
70		P10_5	KI1			AN5	
71		P10_4	KI0			AN4	
72		P10_3				AN3	
73		P10_2				AN2	
74		P10_1				AN1	
75	AVSS						
76		P10_0				AN0	
77	VREF						
78	AVCC						
79		P9_7			SIN4	ADTRG	
80		P9_6			SOUT4	ANEX1	

 Table 1.16
 Pin Characteristics for 80-Pin Package (2)

Signal Name	Pin Name	I/O Type	Power Supply	Description		
Power supply input	VCC1, VSS	I	_	Apply 2.7 to 5.5 V to the VCC1 pin and 0 V to the VSS pin. $(1, 2)$		
Analog power supply input	AVCC AVSS	Ι	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.		
Reset input	RESET	I	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.		
CNVSS	CNVSS (BYTE)	Ι	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode. As for the BYTE pin of the 80-pin versions, pull-up processing is performed within the microcomputer.		
Main clock input	XIN	Ι	VCC1	I/O pins for the main clock generation circuit. Connect a cerar resonator or crystal oscillator between XIN and XOUT ⁽³⁾ . To u		
Main clock output	XOUT	0	VCC1	the external clock, input the clock from XIN and leave XOUT open.		
Sub clock input	XCIN	Ι	VCC1	I/O pins for a sub clock oscillation circuit. Connect a crystal		
Sub clock output	XCOUT	0	VCC1	oscillator between XCIN and XCOUT ⁽³⁾ . To use the external clock, input the clock from XCIN and leave XCOUT open.		
Clock output	CLKOUT	0	VCC2	The clock of the same cycle as fC, f8, or f32 is outputted.		
INT interrupt input	INT0 to INT2	Ι	VCC1	Input pins for the \overline{INT} interrupt.		
NMI interrupt input	NMI	Ι	VCC1	Input pin for the $\overline{\text{NMI}}$ interrupt.		
Key input interrupt input	KI0 to KI3	I	VCC1	Input pins for the key input interrupt.		
Timer A	TA0OUT, TA3OUT, TA4OUT	I/O	VCC1	These are Timer A0, Timer A3 and Timer A4 I/O pins. (however, output of TA0OUT for the N-channel open drain output.)		
	TAOIN, TA3IN, TA4IN	Ι	VCC1	These are Timer A0, Timer A3 and Timer A4 input pins.		
	ZP	Ι	VCC1	Input pin for the Z-phase.		
Timer B	TB0IN, TB2IN to TB5IN	Ι	VCC1	These are Timer B0, Timer B2 to Timer B5 input pins.		
Serial interface	CTS0 to CTS1	Ι	VCC1	These are send control input pins.		
	RTS0 to RTS1	0	VCC1	These are receive control output pins.		
	CLK0, CLK1, CLK3, CLK4	I/O	VCC1	These are transfer clock I/O pins.		
	RXD0 to RXD2	Ι	VCC1	These are serial data input pins.		
	SIN4	Ι	VCC1	This is serial data input pin.		
	TXD0 to TXD2	0	VCC1	These are serial data output pins. (however, output of TXD2 for the N-channel open drain output.)		
	SOUT3, SOUT4	0	VCC1	These are serial data output pins.		
	CLKS1	0	VCC1	This is output pin for transfer clock output from multiple pins function.		
I ² C mode	SDA0 to SDA2	I/O	VCC1	These are serial data I/O pins. (however, output of SDA2 for the N-channel open drain output.)		
	SCL0 to SCL2	I/O	VCC1	These are transfer clock I/O pins. (however, output of SCL2 for the N-channel open drain output.)		

Table 1.20	Pin Descri	ption (80-i	oin Version) (1) (1)
					/ ` /

I : Input O : Output I/O : Input and output

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 pin.

3. Ask the oscillator maker the oscillation characteristic.

Table 4.2	SFR Information	1 (2) (1)
-----------	-----------------	----------------	----

Address	Register	Symbol	After Reset
0040h			
0041h			
0042h			
0043h			
0044h	INT3 Interrupt Control Register	INT3IC	XX00X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXXX000b
0046h	Timer B4 Interrupt Control Register, UART1 BUS Collision Detection Interrupt Control Register	TB4IC, U1BCNIC	XXXXX000b
0047h	Timer B3 Interrupt Control Register, UART0 BUS Collision Detection Interrupt Control Register	TB3IC, U0BCNIC	XXXXX000b
0048h	SI/O4 Interrupt Control Register, INT5 Interrupt Control Register	S4IC, INT5IC	XX00X000b
0049h	SI/O3 Interrupt Control Register, INT4 Interrupt Control Register	S3IC, INT4IC	XX00X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXXX000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXXX000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timer A0 Interrupt Control Register	TAOIC	XXXXX000b
0056h	Timer A1 Interrupt Control Register	TATIC	XXXXX000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXXX000b
0058h	Timer A3 Interrupt Control Register	TA3IC	
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXXXUUUD
005An	Timer BU Interrupt Control Register	TBUIC	XXXXXUUUD
005Dh	Timer B1 Interrupt Control Register	TENC	XXXXX000D
00501	LINTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	INTO Interrupt Control Register		XX00X000b
005Eh	INT2 Interrupt Control Register	INT2IC	XX00X000b
0051 H		1111210	770070000
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			
0072h			
0073h			
007411			
00750			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh			
007Fh			

NOTES: 1. The blank areas are reserved and cannot be accessed by users.

X : Nothing is mapped to this bit

Cumbal	Derometer			Linit		
Symbol					Max.	Unit
VCC1, VCC2	Supply Voltage (Vcc1 ≥ Vcc2)	2.7	5.0	5.5	V
AVcc	Analog Supply V	/oltage		Vcc1		V
Vss	Supply Voltage			0		V
AVss	Analog Supply V	/oltage		0		V
Viн	HIGH Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7,	0.8Vcc2		Vcc2	V
	Voltage	P12_0 to P12_7, P13_0 to P13_7				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.8Vcc2		Vcc2	V
		(during single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.5Vcc2		Vcc2	V
		(data input during memory expansion and microprocessor mode)				
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7,	0.8Vcc1		Vcc1	V
		P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1,				
		XIN, RESET, CNVSS, BYTE				
		P7_0, P7_1	0.8Vcc1		6.5	V
VIL	LOW Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7,	0		0.2Vcc2	V
	Voltage	P12_0 to P12_7, P13_0 to P13_7				
	-	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2Vcc2	V
		(during single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16Vcc2	V
		(data input during memory expansion and microprocessor mode)				
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7,	0		0.2Vcc	V
		P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1,				
		XIN, RESET, CNVSS, BYTE				
IOH(peak)	HIGH Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1				
IOH(avg)	HIGH Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-5.0	mA
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1				
IOL(peak)	LOW Peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			10.0	mA
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1				
IOL(avg)	LOW Average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			5.0	mA
	Output Current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1				

 Table 5.2
 Recommended Operating Conditions (1) ⁽¹⁾

NOTES:

1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.

2. The Average Output Current is the mean value within 100ms.

3. The total IOL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be 80mA max. The total IOL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P14_0, and P14_1 must be -40mA max. Set Average Output Current to 1/2 of peak. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40mA max.

As for 80-pin version, the total IOL(peak) for all ports and IOH(peak) must be 80mA. max. due to one Vcc and one Vss.

4. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Symbol	Deremeter	Doromotor		Standard			
Symbol	Falameter			Тур.	Max.	Unit	
f(XIN)	Main Clock Input Oscillation Frequency ⁽²⁾	VCC1=3.0V to 5.5V	0		16	MHz	
		VCC1=2.7V to 3.0V	0		20×Vcc1	MHz	
					-44		
f(XCIN)	Sub-Clock Oscillation Frequency			32.768	50	kHz	
f(Ring)	On-chip Oscillation Frequency			1	2	MHz	
f(PLL)	PLL Clock Oscillation Frequency ⁽²⁾	VCC1=3.0V to 5.5V	10		24	MHz	
		VCC1=2.7V to 3.0V	10		46.67×Vcc1	MHz	
					-116		
f(BCLK)	CPU Operation Clock		0		24	MHz	
ts∪(PLL)	PLL Frequency Synthesizer Stabilization	VCC1=5.5V			20	ms	
	Wait Time	VCC1=3.0V			50	ms	

 Table 5.3
 Recommended Operating Conditions (2) ⁽¹⁾

NOTES:

1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.

2. Relationship between main clock oscillation frequency, and supply voltage.

PLL clock oscillation frequency

Quarter	Denemator			Manager	Standard			Linit
Symbol		Parameter		Measuring Condition	Min.	Тур.	Max.	Unit
Vон	HIGH Output Voltage ⁽³⁾	P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, IOH=-5mA P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1		IOH=-5mA	Vcc1-2.0		Vcc1	V
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7, 13_7	IOH=-5mA ⁽²⁾	Vcc2-2.0		Vcc2	v
Vон	HIGH Output Voltage ⁽³⁾	P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P14	′, P8_0 to P8_4, P10_0 to P10_7, 4_1	ОН=-200μА	Vcc1-0.3		Vcc1	V
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7, 113_7	IOH=-200µA ⁽²⁾	Vcc2-0.3		Vcc2	v
Vон	HIGH Outpu	t Voltage XOUT	HIGHPOWER	IOH=-1mA	Vcc1-2.0		Vcc1	V
			LOWPOWER	IOH=-0.5mA	Vcc1-2.0		Vcc1	v
	HIGH Outpu	t Voltage XCOUT	HIGHPOWER	With no load applied		2.5		V
			LOWPOWER	With no load applied		1.6		v
Vol	LOW Output Voltage ⁽³⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P14	′, P8_0 to P8_4, P10_0 to P10_7, 4_1	IOL=5mA			2.0	V
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7, 13_7	IOL=5mA ⁽²⁾			2.0	v
Vol	LOW Output Voltage ⁽³⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, F P11_0 to P11_7, P14_0, P14	7, P8_0 to P8_4, P10_0 to P10_7, 4_1	IOL=200μA			0.45	
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7, 13_7	IOL=200µA ⁽²⁾			0.45	V
Vol	LOW Output	Voltage XOUT	HIGHPOWER	IOL=1mA			2.0	
			LOWPOWER	IOL=0.5mA			2.0	V
	LOW Output	Voltage XCOUT	HIGHPOWER	With no load applied		0		
			LOWPOWER	With no load applied		0		v
Vt+-Vt-	Hysteresis	HOLD, RDY, TAOIN to TA4IN INTO to INT5, NMI, ADTRG, (TAOOUT to TA4OUT, KIO to SCL0 to SCL2, SDA0 to SDA	N, TB0IN to TB5IN, CTS0 to CTS2, CLK0 to CLK4, KI3, RXD0 to RXD2, A2, SIN3, SIN4		0.2		1.0	v
VT+-VT-	Hysteresis	RESET			0.2		2.5	V
Ін	HIGH Input Current ⁽³⁾	P0_0 to P0_7, P1_0 to P1_7, P4_0 to P4_7, P5_0 to P5_7, P8_0 to P8_7, P9_0 to P9_7 P11_0 to P11_7, P12_0 to P P14_0, P14_1, XIN, RESET,	P2_0 to P2_7, P3_0 to P3_7, P6_0 to P6_7, P7_0 to P7_7, 7, P10_0 to P10_7, 12_7, P13_0 to P13_7, , CNVSS, BYTE	VI=5V			5.0	μΑ
lı.	LOW Input Current ⁽³⁾	P0_0 to P0_7, P1_0 to P1_7, P4_0 to P4_7, P5_0 to P5_7, P8_0 to P8_7, P9_0 to P9_7 P11_0 to P11_7,P12_0 to P11_0, P14_0, P14_1, XIN, RESET	P2_0 to P2_7, P3_0 to P3_7, P6_0 to P6_7, P7_0 to P7_7, , P10_0 to P10_7, 12_7, P13_0 to P13_7, , CNVSS, BYTE	VI=0V			-5.0	μΑ
Rpullup	Pull-Up Resistance	P0_0 to P0_7, P1_0 to P1_7, P4_0 to P4_7, P5_0 to P5_7 P8_0 to P8_4, P8_6, P8_7, F P11_0 to P11_7, P12_0 to P P14_0, P14_1	P2_0 to P2_7, P3_0 to P3_7, , P6_0 to P6_7, P7_2 to P7_7, P9_0 to P9_7, P10_0 to P10_7, 12_7, P13_0 to P13_7,	VI=0V	30	50	170	kΩ
Rfxin	Feedback R	esistance XIN				1.5	l	MΩ
RfxCIN	Feedback R	esistance XCIN				15		MΩ
VRAM	RAM Retent	RAM Retention Voltage		At stop mode	2.0			V

Table 5.11 Electrical Characteristics (1) (1)

NOTES: 1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=24MHz unless otherwise

specified. 2. Where the product is used at Vcc1 = 5 V and Vcc2 = 3 V, refer to the 3 V version value for the pin specified value on Vcc2 port side.

3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.27	Memory Expansion and Microprocessor Modes (for setting with no wait)

Symbol	Barametar		Stan	dard	Unit
Symbol	Farameter		Min.	Max.	
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	rigure 5.2	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾]	(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time]		40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} = 40[ns] \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1k Ω X ln(1-0.2Vcc2 / Vcc2)

 $t = -30 \text{ F } \times 1 \text{ K} \Omega \times 1 \text{ m} (1 - 0.2 \text{ VCC})$

= 6.7ns.

Figure 5.2 Ports P0 to P14 Measurement Circuit

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.28	Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting and external
	area access)

Symbol	Deremeter		Standard		Lloit
Symbol	Falameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0.00	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	- I iguic 0.2	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)x10^9}{f(\text{BCLK})} - 40[\text{ns}]$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. (BCLK) is 12.5MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{x10}^9}{f(\text{BCLK})} - 10[\text{ns}]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / VCc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is

> $t = -30pF X 1k\Omega X In(1-0.2Vcc2 / Vcc2)$ = 6.7ns.

Figure 5.15 Timing Diagram (3)

Symbol	mbol Parameter Measuring Condition		Standard			Unit		
Cymbol	T aramete			vicasuling contaition	Min.	Тур.	Max.	Onit
-	Resolution		Vref=V	CC1			10	Bits
INL	Integral Non-Linearity Error	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
		8bit	Vref=V	/cc1=5V			±2	LSB
_	Absolute Accuracy	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
		8bit	Vref=V	/cc1=5V			±2	LSB
_	Tolerance Level Impedar	nce				3		kΩ
DNL	Differential Non-Linearity	Error					±1	LSB
_	Offset Error						±3	LSB
_	Gain Error						±3	LSB
RLADDER	Ladder Resistance		Vref=V	CC1	10		40	kΩ
tCONV	10-bit Conversion Time, Function Available	Sample & Hold	Vref=V	/cc1=5V, φAD=12MHz	2.75			μs
tCONV	8-bit Conversion Time, S Function Available	ample & Hold	Vref=V	/cc1=5V, φAD=12MHz	2.33			μs
tSAMP	Sampling Time				0.25			μs
VREF	Reference Voltage				2.0		VCC1	V
VIA	Analog Input Voltage				0		VREF	V

Table 5.51 A/D Conversion Characteristics	(1)
---	----	---

NOTES:

1. Referenced to Vcc1=AVcc=VREF=4.0 to 5.5V, Vss=AVss=0V at T_{opr} = -40 to 85° C / -40 to 125° C unless otherwise specified. T version = -40 to 85° C, V version = -40 to 125° C

2. ϕ AD frequency must be 12 MHz or less.

 When sample & hold is disabled, φAD frequency must be 250 kHz or more, in addition to the limitation in Note 2. When sample & hold is enabled, φAD frequency must be 1MHz or more, in addition to the limitation in Note 2.

Table 5.52 D/A Conversion Characteristics (Table 5.52	D/A Conversion Characteristics (1
---	------------	-----------------------------------

Symbol	Deremeter	Measuring Condition Min.	Standard	Linit		
	Faranielei		Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
ts∪	Setup Time				3	μS
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to Vcc1=VREF=4.0 to 5.5V, Vss=AVss=0V at Topr = -40 to 85°C / -40 to 125°C unless otherwise specified. T version = -40 to 85°C, V version = -40 to 125°C

 This applies when using one D/A converter, with the D/A register for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, when D/A register contents are not "00h", the IVREF will flow even if Vref id disconnected by the A/D control register.

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -40 to 85° C (T version) / -40 to 125° C (V version) unless otherwise specified)

Table 5.60 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Lloit
	Falametei	Min.	Max.	Max.
tc(TA)	TAilN Input Cycle Time	100		ns
tw(TAH)	TAilN Input HIGH Pulse Width	40		ns
tw(TAL)	TAilN Input LOW Pulse Width	40		ns

Table 5.61 Timer A Input (Gating Input in Timer Mode)

Symbol	Paramotor	Stan	Standard Min. Max.	Lloit
	Falanetei	Min.		Offic
tc(TA)	TAilN Input Cycle Time	400		ns
tw(TAH)	TAilN Input HIGH Pulse Width	200		ns
tw(TAL)	TAIIN Input LOW Pulse Width	200		ns

Table 5.62 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard		Linit	
	Falantelei	Min.	Max.	Offic	
tc(TA)	TAIIN Input Cycle Time	200		ns	
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns	
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns	

Table 5.63 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Deromotor	Stan	dard	Lipit
Symbol	Farameter	Min.	Max.	Onit
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns

Table 5.64 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Paramatar	Standard	Lloit	
	Falameter	Min.	Max.	Onit
tc(UP)	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns

Table 5.65 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard		Linit
	Falameter	Min.	Max.	lax.
tc(TA)	TAilN Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAilN Input Setup Time	200		ns

Timing Requirements

(VCC1 = VCC2 = 5V, Vss = 0V, at Topr = -40 to 85° C (T version) / -40 to 125° C (V version) unless otherwise specified)

Table 5.66	Timer B Input (Counter Input in Event Counter Mode)
------------	---

Symbol	Parameter	Standard		Linit
		Min.	Max.	Onit
tc(TB)	TBiIN Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	40		ns
tc(TB)	TBiIN Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	80		ns

Table 5.67 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Lipit
		Min.	Max.	Onit
tc(TB)	TBilN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 5.68 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Lipit
		Min.	Max.	Onit
tc(TB)	TBiIN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 5.69 A/D Trigger Input

Symbol	Parameter	Standard		Linit
		Min.	Max.	Onit
tc(AD)	ADTRG Input Cycle Time	1000		ns
tw(ADL)	ADTRG input LOW Pulse Width	125		ns

Table 5.70 Serial Interface

Symbol	Parameter	Standard		Linit
		Min.	Max.	Offic
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input HIGH Pulse Width	100		ns
tw(CKL)	CLKi Input LOW Pulse Width	100		ns
td(C-Q)	TXDi Output Delay Time		80	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	70		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 5.71 External Interrupt INTi Input

Symbol	Parameter	Standard		Linit
		Min.	Max.	Onic
tw(INH)	INTi Input HIGH Pulse Width	250		ns
tw(INL)	INTi Input LOW Pulse Width	250		ns

е 0.5 0.65 0.8

у

 Z_{D}

 Z_{E}

L

0.4 0.6 0.10

0.8

0.825 0.825

е