

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30626fhpgp-u3c

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Product	Dealasa	Internal ROM (User ROM Area Without Block A, Block 1)		Interna (Block A,	Operating Ambient	
	Code	Package	Program and Erase Endurance	Temperature Range	Program and Erase Endurance	Temperature Range	Temperature
Flash memory	D3	Lead-	100	0°C to 60°C	100	0°C to 60°C	-40°C to 85°C
Version	D5	included					-20°C to 85°C
	D7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	D9					-20°C to 85°C	-20°C to 85°C
	U3	Lead-free	100		100	0°C to 60°C	-40°C to 85°C
	U5						-20°C to 85°C
	U7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	U9					-20°C to 85°C	-20°C to 85°C
ROM-less	D3	Lead-	-	-	-	-	-40°C to 85°C
version	D5	included					-20°C to 85°C
	U3	Lead-free	-	-	-	-	-40°C to 85°C
	U5						-20°C to 85°C

Table 1.8 Product Code of Flash Memory version and ROMless version for M16C/62P

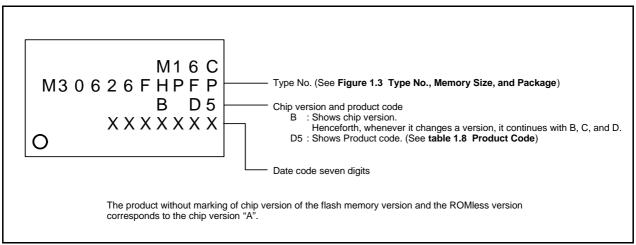


Figure 1.4 Marking Diagram of Flash Memory version and ROM-less version for M16C/62P (Top View)

Signal Name	Pin Name	I/O	Power	Description
5		Туре	Supply ⁽¹⁾	'
Main clock	XIN	I	VCC1	I/O pins for the main clock generation circuit. Connect a ceramic
input				resonator or crystal oscillator between XIN and XOUT ⁽³⁾ . To use
Main clock	XOUT	0	VCC1	the external clock, input the clock from XIN and leave XOUT open.
output	XON		1/004	
Sub clock input			VCC1	I/O pins for a sub clock oscillation circuit. Connect a crystal oscillator between XCIN and XCOUT ⁽³⁾ . To use the external clock,
Sub clock output	XCOUT	0	VCC1	input the clock from XCIN and leave XCOUT open.
BCLK output ⁽²⁾	BCLK	0	VCC2	Outputs the BCLK signal.
Clock output	CLKOUT	0	VCC2	The clock of the same cycle as fC, f8, or f32 is outputted.
INT interrupt	INTO to INT2	- U	VCC1	Input pins for the INT interrupt.
input				input pins for the INT interrupt.
	NT3 to INT5	I	VCC2	
NMI interrupt input	NMI	Ι	VCC1	Input pin for the NMI interrupt. Pin states can be read by the P8_5 bit in the P8 register.
Key input interrupt input	KI0 to KI3	Ι	VCC1	Input pins for the key input interrupt.
Timer A	TA0OUT to	I/O	VCC1	These are timer A0 to timer A4 I/O pins. (however, output of
	TA4OUT			TA0OUT for the N-channel open drain output.)
	TA0IN to TA4IN	Ι	VCC1	These are timer A0 to timer A4 input pins.
	ZP		VCC1	Input pin for the Z-phase.
Timer B	TB0IN to TB5IN	Ι	VCC1	These are timer B0 to timer B5 input pins.
Three-phase motor control output	U, <u>Ū,</u> V, ⊽, W, ₩	0	VCC1	These are Three-phase motor control output pins.
Serial interface	CTS0 CTS2	l	VCC1	These are send control input pins.
	RTS0 to RTS2	0	VCC1	These are receive control output pins.
	CLK0 to CLK4	I/O	VCC1	These are transfer clock I/O pins.
	RXD0 to RXD2	Ι	VCC1	These are serial data input pins.
	SIN3, SIN4	I	VCC1	These are serial data input pins.
	TXD0 to TXD2	0	VCC1	These are serial data output pins. (however, output of TXD2 for the N-channel open drain output.)
	SOUT3, SOUT4	0	VCC1	These are serial data output pins.
	CLKS1	0	VCC1	This is output pin for transfer clock output from multiple pins function.
I ² C mode	SDA0 to SDA2	I/O	VCC1	These are serial data I/O pins. (however, output of SDA2 for the N- channel open drain output.)
	SCL0 to SCL2	I/O	VCC1	These are transfer clock I/O pins. (however, output of SCL2 for the N-channel open drain output.)

Table 1.18	Pin Description (100-pin and 128-pin Version) (2)
------------	---

I : Input O : Output I/O : Input and output

NOTES:

- 1. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 2. This pin function in M16C/62PT cannot be used.
- 3. Ask the oscillator maker the oscillation characteristic.

Signal Name	Pin Name	I/O Type	Power Supply	Description
Power supply input	VCC1, VSS		-	Apply 2.7 to 5.5 V to the VCC1 pin and 0 V to the VSS pin. $^{(1, 2)}$
Analog power supply input	AVCC AVSS	l	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	Ι	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS (BYTE)	Ι	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode. As for the BYTE pin of the 80-pin versions, pull-up processing is performed within the microcomputer.
Main clock input	XIN	Ι	VCC1	I/O pins for the main clock generation circuit. Connect a ceramic resonator or crystal oscillator between XIN and XOUT ⁽³⁾ . To use
Main clock output	XOUT	0	VCC1	the external clock, input the clock from XIN and leave XOUT open.
Sub clock input	XCIN	Ι	VCC1	I/O pins for a sub clock oscillation circuit. Connect a crystal
Sub clock output	XCOUT	0	VCC1	oscillator between XCIN and XCOUT ⁽³⁾ . To use the external clock, input the clock from XCIN and leave XCOUT open.
Clock output	CLKOUT	0	VCC2	The clock of the same cycle as fC, f8, or f32 is outputted.
INT interrupt input	INT0 to INT2	I	VCC1	Input pins for the INT interrupt.
NMI interrupt input	NMI	Ι	VCC1	Input pin for the MMI interrupt.
Key input interrupt input	KI0 to KI3	I	VCC1	Input pins for the key input interrupt.
Timer A	TA0OUT, TA3OUT, TA4OUT	I/O	VCC1	These are Timer A0, Timer A3 and Timer A4 I/O pins. (however, output of TA0OUT for the N-channel open drain output.)
	TA0IN, TA3IN, TA4IN	Ι	VCC1	These are Timer A0, Timer A3 and Timer A4 input pins.
	ZP	I	VCC1	Input pin for the Z-phase.
Timer B	TB0IN, TB2IN to TB5IN	Ι	VCC1	These are Timer B0, Timer B2 to Timer B5 input pins.
Serial interface	CTS0 to CTS1	I	VCC1	These are send control input pins.
	RTS0 to RTS1	0	VCC1	These are receive control output pins.
	CLK0, CLK1, CLK3, CLK4	I/O	VCC1	These are transfer clock I/O pins.
	RXD0 to RXD2	Ι	VCC1	These are serial data input pins.
	SIN4	I	VCC1	This is serial data input pin.
	TXD0 to TXD2	0	VCC1	These are serial data output pins. (however, output of TXD2 for the N-channel open drain output.)
	SOUT3, SOUT4	0	VCC1	These are serial data output pins.
	CLKS1	0	VCC1	This is output pin for transfer clock output from multiple pins function.
I ² C mode	SDA0 to SDA2	I/O	VCC1	These are serial data I/O pins. (however, output of SDA2 for the N-channel open drain output.)
	SCL0 to SCL2	I/O	VCC1	These are transfer clock I/O pins. (however, output of SCL2 for the N-channel open drain output.)

Table 1.20	Pin Descrip	otion (80-pir	n Version)	(1) (1)

I : Input O : Output I/O : Input and output

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 pin.

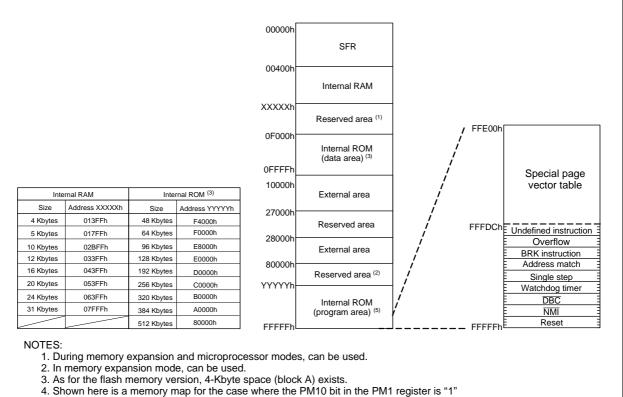
3. Ask the oscillator maker the oscillation characteristic.

3. Memory

Figure 3.1 is a Memory Map of the M16C/62P group. The address space extends the 1M bytes from address 00000h to FFFFFh.

The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 64-Kbyte internal ROM is allocated to the addresses from F0000h to FFFFFh.

As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.


The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 10-Kbyte internal RAM is allocated to the addresses from 00400h to 02BFFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SRF is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to the **M16C/60 and M16C/20 Series Software Manual**.

In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users. Use M16C/62P (80-pin version) and M16C/62PT in single-chip mode. The memory expansion and microprocessor modes cannot be used

RENESAS

and the PM13 bit in the PM1 register is "1"

5. When using the masked ROM version, write nothing to internal ROM area.

Address	Register	Symbol	After Reset
0080h			
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
to			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h			
01B3h	Flash Identification Register ⁽²⁾	FIDR	XXXXXX00b
01B5h	Flash Memory Control Register 1 ⁽²⁾	FMR1	0X00XX0Xb
01B6h		TWIRT	0,00,000
	Elash Momony Control Register 0 (2)	FMR0	0000001h
01B7h 01B8h	Flash Memory Control Register 0 ⁽²⁾ Address Match Interrupt Register 2	RMAD2	00000001b 00h
	Audress watch interrupt Register 2	RIVIADZ	
01B9h	4		00h
01BAh	Address Match Interrupt Enable Register 2		XXh
01BBh	Address Match Interrupt Enable Register 2	AIER2	XXXXXX00b
01BCh	Address Match Interrupt Register 3	RMAD3	00h
01BDh			00h
01BEh			XXh
01C0h			
to			
024Fh			
0250h			
0251h			
0252h			
0253h			
0254h			
0255h			
0256h			
0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	00000011b
025Fh			1
0260h			1
to			
032Fh			
0330h			1
0331h			
0332h			
0333h			
0334h			
0335h			
0336h			
0337h			
0338h			
0339h			
0339h 033Ah			
033An 033Bh			
033Ch			
033Dh			
033Dh 033Eh 033Fh			

SFR Information (3) ⁽¹⁾ Table 4.3

NOTES:

The blank areas are reserved and cannot be accessed by users.
 This register is included in the flash memory version.

X : Nothing is mapped to this bit

Address	Register	Symbol	After Reset
0380h	Count Start Flag	TABSR	00h
0381h	Clock Prescaler Reset Fag	CPSRF	0XXXXXXb
0382h	One-Shot Start Flag	ONSF	00h
0383h	Trigger Select Register	TRGSR	00h
0384h	Up-Down Flag	UDF	00h ⁽²⁾
0385h			
0386h	Timer A0 Register	TA0	XXh
0387h			XXh
0388h	Timer A1 Register	TA1	XXh
0389h			XXh
038Ah	Timer A2 Register	TA2	XXh
038Bh			XXh
038Ch	Timer A3 Register	TA3	XXh
038Dh	1		XXh
038Eh	Timer A4 Register	TA4	XXh
038Fh	1		XXh
0390h	Timer B0 Register	TB0	XXh
0391h			XXh
0392h	Timer B1 Register	TB1	XXh
0393h			XXh
0394h	Timer B2 Register	TB2	XXh
0395h			XXh
0396h	Timer A0 Mode Register	TAOMR	00h
0397h	Timer A1 Mode Register	TA1MR	00h
0398h	Timer A2 Mode Register	TA2MR	00h
0399h	Timer A3 Mode Register	TA3MR	00h
039Ah	Timer A4 Mode Register	TA4MR	00h
039Bh	Timer B0 Mode Register	TBOMR	00XX0000b
039Ch	Timer B1 Mode Register	TB1MR	00XX0000b
039Dh	Timer B2 Mode Register	TB2MR	00XX0000b
039Eh	Timer B2 Special Mode Register	TB2SC	XXXXXX00b
039Fh			
03A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
03A1h	UART0 Bit Rate Generator	U0BRG	XXh
03A2h	UART0 Transmit Buffer Register	UOTB	XXh
03A3h			XXh
03A4h	UART0 Transmit/Receive Control Register 0	UOCO	00001000b
03A5h	UART0 Transmit/Receive Control Register 1	U0C1	00XX0010b
03A6h	UART0 Receive Buffer Register	UORB	XXh
03A7h			XXh
03A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
03A9h	UART1 Bit Rate Generator	U1BRG	XXh
03AAh	UART1 Transmit Buffer Register	U1TB	XXh
03ABh		114.00	XXh
03ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
03ADh	UART1 Transmit/Receive Control Register 1	U1C1	00XX0010b
03AEh 03AFh	UART1 Receive Buffer Register	U1RB	XXh
03AFn 03B0h	UART Transmit/Receive Control Register 2	UCON	XXh X0000000b
03B0h 03B1h			4000000
03B1h 03B2h			
03B2h 03B3h			
03B3h 03B4h			
03B5h			
03B6h			
03B01			
	DMA0 Request Factor Select Register	DM0SL	00h
		DIVIOSE	001
03B8h			
03B8h 03B9h		DM1SI	00b
03B8h 03B9h 03BAh	DMA1 Request Factor Select Register	DM1SL	00h
03B8h 03B9h 03BAh 03BBh	DMA1 Request Factor Select Register		
03B8h 03B9h 03BAh 03BBh 03BCh		DM1SL CRCD	XXh
03B8h 03B9h 03BAh 03BBh	DMA1 Request Factor Select Register		

Table 4.5	SFR Information (5) ⁽¹⁾
-----------	------------------------------------

NOTES:

The blank areas are reserved and cannot be accessed by users.
 Bit 5 in the Up-down flag is "0" by reset. However, The values in these bits when read are indeterminate.

X : Nothing is mapped to this bit

Symbol	Parameter	Measuring Condition		Standard		Unit
Symbol	Falanielei	weasuring condition	Min.	Тур.	Max.	Unit
Vdet4	Low Voltage Detection Voltage (1)	Vcc1=0.8V to 5.5V	3.3	3.8	4.4	V
Vdet3	Reset Level Detection Voltage (1, 2)		2.2	2.8	3.6	V
Vdet4-Vdet3	Electric potential difference of Low Voltage Detection and Reset Level Detection		0.3			V
Vdet3s	Low Voltage Reset Retention Voltage				0.8	V
Vdet3r	Low Voltage Reset Release Voltage (3)		2.2	2.9	4.0	V

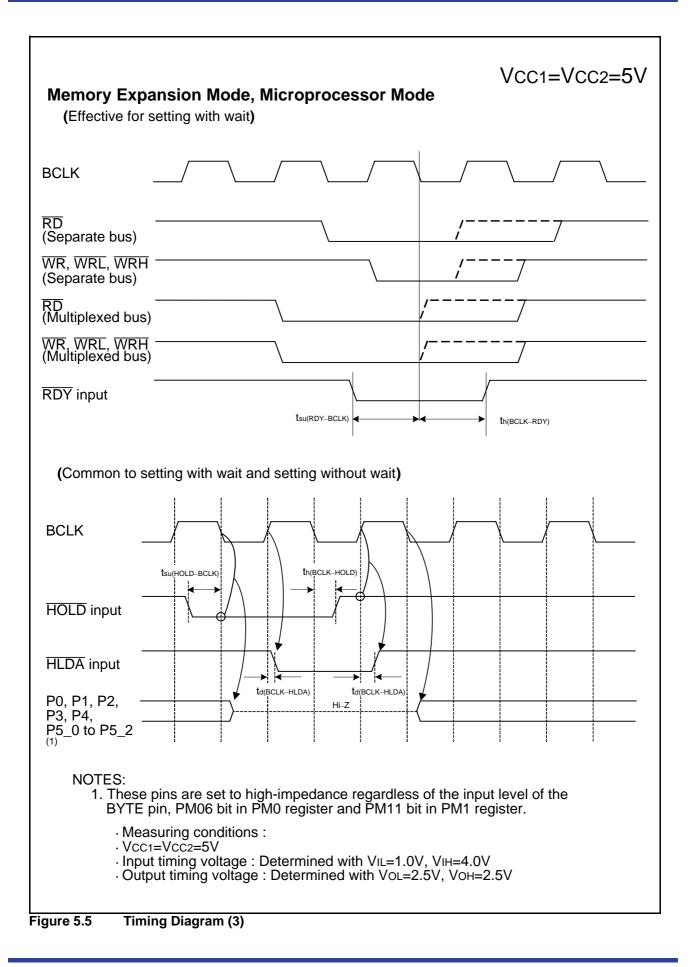
 Table 5.9
 Low Voltage Detection Circuit Electrical Characteristics

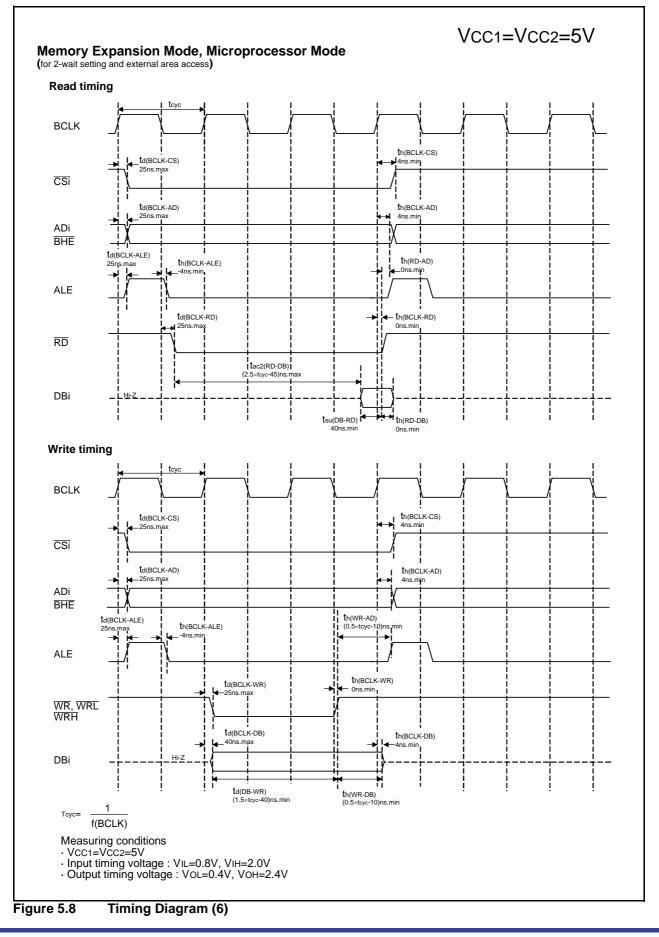
NOTES:

1. Vdet4 > Vdet3.

2. Where reset level detection voltage is less than 2.7 V, if the supply power voltage is greater than the reset level detection voltage, the microcomputer operates with $f(BCLK) \le 10MHz$.

3. Vdet3r > Vdet3 is not guaranteed.


4. The voltage detection circuit is designed to use when VCC1 is set to 5V.


Table 5.10 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring Condition		Standard		Unit
Symbol	Falanlelei	Measuring Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=2.7V to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μS
td(S-R)	Brown-out Detection Reset (Hardware Reset 2) Release Wait Time	VCC1=Vdet3r to 5.5V		6 (1)	20	ms
td(E-A)	Low Voltage Detection Circuit Operation Start Time	Vcc1=2.7V to 5.5V			20	μs

NOTES:

1. When Vcc1 = 5V.

Symbol	Doromot	Parameter		Measuring Condition Sta		Standard	b	Unit
Symbol	Falamen	ei	Ivieas		Min.	Тур.	Max.	Onit
Icc	Power Supply Current (Vcc1=Vcc2=2.7V to 3.6V)	In single-chip mode, the output	Mask ROM	f(BCLK)=10MHz No division		8		mA
	· · · · · · · · · · · · · · · · · · ·	pins are open and other pins are Vss		No division, On-chip oscillation		1		mA
			Flash Memory	f(BCLK)=10MHz, No division		8	13	mA
			,	No division, On-chip oscillation		1.8		mA
		Program	f(BCLK)=10MHz, VCC1=3.0V		12		mA	
			Flash Memory Erase	f(BCLK)=10MHz, VCC1=3.0V		22		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μA
			Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μA
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μA
				On-chip oscillation, Wait mode		45		μA
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		6.0		μΑ
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		1.8		μA
				Stop mode Topr =25°C		0.7	3.0	μΑ
Idet4	Low Voltage Detection Diss	sipation Current (4)				0.6	4	μΑ
Idet3	Reset Area Detection Dissi	pation Current (4)				0.4	2	μΑ

Table 5.31 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=10MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register

Idet3: VC26 bit in the VCR2 register

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.32 External Clock Input (XIN input)⁽¹⁾

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc	External Clock Input Cycle Time	(NOTE 2)		ns
tw(H)	External Clock Input HIGH Pulse Width	(NOTE 3)		ns
tw(L)	External Clock Input LOW Pulse Width	(NOTE 3)		ns
tr	External Clock Rise Time		(NOTE 4)	ns
tr	External Clock Fall Time		(NOTE 4)	ns

NOTES:

- 1. The condition is Vcc1=Vcc2=2.7 to 3.0V.
- 2. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times Vcc_2 - 44}$$
 [ns]

3. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times \text{Vcc1} - 44} \times 0.4 \text{ [ns]}$$

4. Calculated according to the Vcc1 voltage as follows: $-10 \times Vcc1 + 45$ [ns]

Table 5.33 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Star	Standard		
	Parameter	Min.	Max.	Unit	
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns	
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns	
tac3(RD-DB)	Data Input Access Time (when accessing multiplex bus area)		(NOTE 3)	ns	
tsu(DB-RD)	Data Input Setup Time	50		ns	
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns	
tsu(HOLD-BCLK)	HOLD Input Setup Time	50		ns	
th(RD-DB)	Data Input Hold Time	0		ns	
th(BCLK-RDY)	RDY Input Hold Time	0		ns	
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns]$$
 n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

RENESAS

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns]$$
 n is "2" for 2-wait setting, "3" for 3-wait setting.

VCC1=VCC2=3V

Switching Characteristics

.

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.48	Memory Expansion and Microprocessor Modes (for 2- to 3-wait setting, external area
	access and multiplex bus selection)

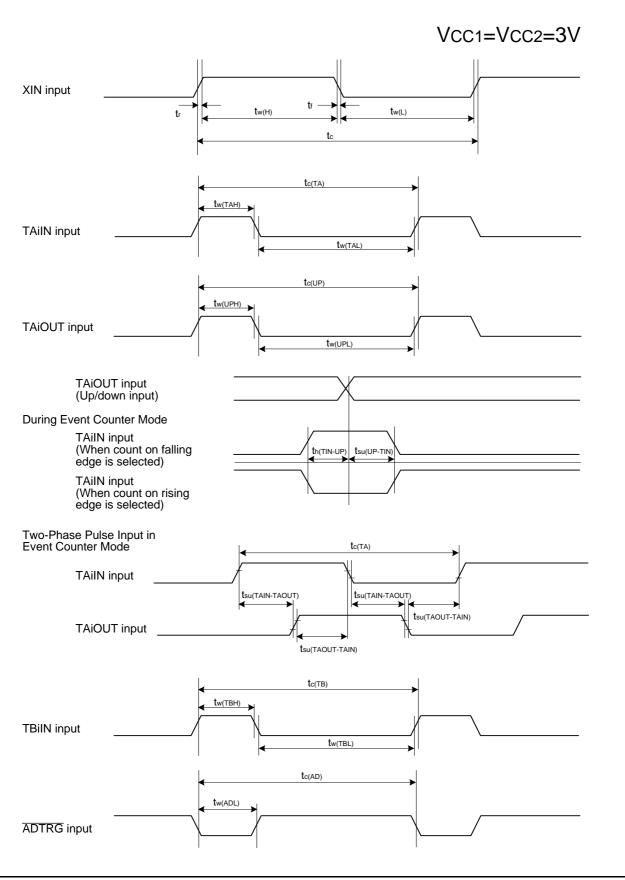
Symbol	Parameter		Stan	dard	Unit
Symbol	Parameter	IEIEI		Max.	
td(BCLK-AD)	Address Output Delay Time			50	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		(NOTE 1)		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip Select Output Delay Time			50	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
th(RD-CS)	Chip Select Output Hold Time (in relation to RD)		(NOTE 1)		ns
th(WR-CS)	Chip Select Output Hold Time (in relation to WR)		(NOTE 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time			40	ns
th(BCLK-RD)	RD Signal Output Hold Time		0		ns
td(BCLK-WR)	WR Signal Output Delay Time			40	ns
th(BCLK-WR)	WR Signal Output Hold Time	See	0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)	Figure 5.12		50	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK)		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns
td(BCLK-ALE)	ALE Signal Output Delay Time (in relation to BCLK)			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (in relation to BCLK)		-4		ns
td(AD-ALE)	ALE Signal Output Delay Time (in relation to Address)		(NOTE 3)		ns
th(AD-ALE)	ALE Signal Output Hold Time (in relation to Address)		(NOTE 4)		ns
td(AD-RD)	RD Signal Output Delay From the End of Address		0		ns
td(AD-WR)	WR Signal Output Delay From the End of Address		0		ns
tdz(RD-AD)	Address Output Floating Start Time			8	ns

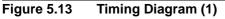
n is "2" for 2-wait setting, "3" for 3-wait setting.

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$


2. Calculated according to the BCLK frequency as follows:


$$\frac{0.5 \times 10^9}{f(BCLK)} - 50[ns]$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(\text{BCLK})} - 40[\text{ns}]$$

4. Calculated according to the BCLK frequency as follows:

RENESAS

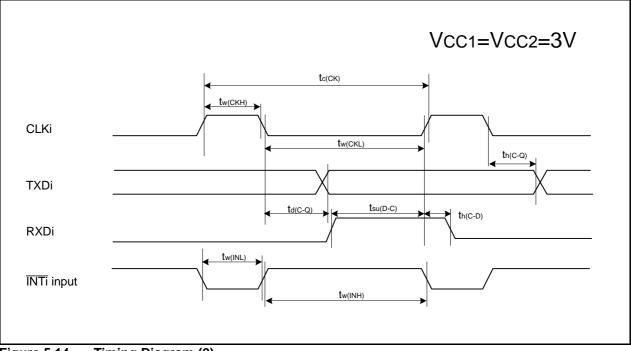
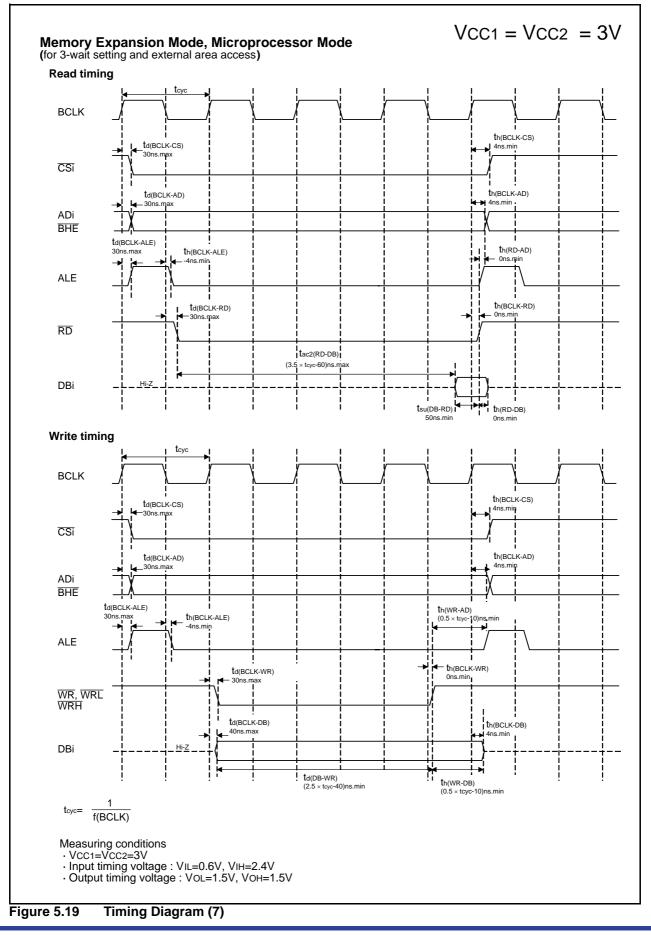



Figure 5.14 Timing Diagram (2)

Symbol	Parameter			Unit		
Symbol			Min.	Тур.	Max.	Unit
-	Program and Erase Endurance ⁽³⁾		100			cycle
-	Word Program Time (Vcc1=5.0V)			25	200	μS
-	Lock Bit Program Time			25	200	μS
-	Block Erase Time	4-Kbyte block	4	0.3	4	S
-	(Vcc1=5.0V)	8-Kbyte block		0.3	4	S
-		32-Kbyte block		0.5	4	S
-		64-Kbyte block		0.8	4	S
-	Erase All Unlocked Blocks Time (2)				4×n	S
tPS	Flash Memory Circuit Stabilization Wait Time	e			15	μS
-	Data Hold Time ⁽⁵⁾		20			year

Table 5.53 Flash Memory Version Electrical Characteristics (1) for 100 cycle products (B, U)

Table 5.54Flash Memory Version Electrical Characteristics (6) for 10,000 cycle products (B7, U7)(Block A and Block 1 (7))

Symbol	Parameter			Unit		
Symbol	Faranielei		Min.	Тур.	Max.	Unit
-	Program and Erase Endurance ^(3, 8, 9)		10,000 (4)			cycle
-	Word Program Time (Vcc1=5.0V)			25		μS
-	Lock Bit Program Time			25		μS
_	Block Erase Time (Vcc1=5.0V)	4-Kbyte block	4	0.3		S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μS
-	Data Hold Time ⁽⁵⁾		20			year

NOTES:

- 1. Referenced to Vcc1=4.5 to 5.5V at $T_{opr} = 0$ to 60 °C unless otherwise specified.
- 2. n denotes the number of block erases.

 Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times. For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)

- 4. Maximum number of E/W cycles for which operation is guaranteed.
- 5. Ta (ambient temperature)=55 °C. As to the data hold time except Ta=55 °C, please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor.
- 6. Referenced to Vcc1 = 4.5 to 5.5V at Topr = −40 to 85 °C (B7, U7 (T version)) / −40 to 125 °C (B7, U7 (V version)) unless otherwise specified.
- 7. Table 5.54 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.53.
- 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to track the total number of times erasure is used.
- 9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase command at least three times until erase error disappears.
- 10. Set the PM17 bit in the PM1 register to "1" (wait state) when executing more than 100 times rewrites (B7 and U7).
- 11. Customers desiring E/W failure rate information should contact their Renesas technical support representative.

Table 5.55Flash Memory Version Program/Erase Voltage and Read Operation Voltage
Characteristics (at Topr = 0 to 60 °C(B, U), Topr = -40 to 85 °C (B7, U7 (T version)) / -40
to 125 °C (B7, U7 (V version))

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC1 = 5.0 V \pm 0.5 V$	Vcc1=4.0 to 5.5 V

VCC1=VCC2=5V

Symbol	Parameter		Measuring Condition	Standard			Unit	
,				modeuring contaition	Min.	Тур.	Max.	Onic
Vон	HIGH Output Voltage ⁽²⁾	P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P1	P10_0 to P10_7,	IOH=-5mA	Vcc1-2.0		Vcc1	v
	P0_0 to P0_7, P1_0 to P1_7, P2_0 P3_0 to P3_7, P4_0 to P4_7, P5_0 P12_0 to P12_7, P13_0 to P13_7		7, P5_0 to P5_7,	IOH=-5mA	Vcc2-2.0		Vcc2	
Vон	HIGH Output Voltage ⁽²⁾	P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P1	P10_0 to P10_7,	ОН=-200μА	Vcc1-0.3		Vcc1	v
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	', P5_0 to P5_7,	ЮН=-200μА	Vcc2-0.3		Vcc2	
Vон	HIGH Outpu	t Voltage XOUT	HIGHPOWER	IOH=-1mA	Vcc1-2.0		VCC1	V
			LOWPOWER	IOH=-0.5mA	Vcc1-2.0		VCC1	v
	HIGH Outpu	t Voltage XCOUT	HIGHPOWER	With no load applied		2.5		v
			LOWPOWER	With no load applied		1.6		v
Vol	LOW Output Voltage ⁽²⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P1	P10 0 to P10 7,	IOL=5mA			2.0	v
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7,	IOL=5mA			2.0	V
Vol	LOW Output Voltage ⁽²⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P1	P10_0 to P10_7,	IOL=200μA			0.45	v
	P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P12_0 to P12_7, P13_0 to P13	7, P5_0 to P5_7,	IOL=200μA			0.45	V	
Vol	LOW Output	t Voltage XOUT	HIGHPOWER	IOL=1mA			2.0	
			LOWPOWER	IOL=0.5mA			2.0	V
	LOW Output	t Voltage XCOUT	HIGHPOWER	With no load applied		0		
			LOWPOWER	With no load applied		0		V
Vt+-Vt-	Hysteresis	HOLD, RDY, TA0IN to TA4I INT0 to INT5, NMI, ADTRG, TA0OUT to TA4OUT, KI0 to SCL0 to SCL2, SDA0 to SD.	CTS0 to CTS2, CLK0 to CLK4, KI3, RXD0 to RXD2,		0.2		1.0	V
Vt+-Vt-	Hysteresis	RESET			0.2		2.5	V
Ін	HIGH Input Current ⁽²⁾		P12_7, P13_0 to P13_7,	VI=5V			5.0	μΑ
lı.	LOW Input Current ⁽²⁾		12_7, P13_0 to P13_7,	VI=0V			-5.0	μΑ
Rpullup	Pull-Up Resistance (2)	P4_0 to P4_7, P5_0 to P5_7	, P2_0 to P2_7, P3_0 to P3_7, , P6_0 to P6_7, P7_2 to P7_7, P9_0 to P9_7, P10_0 to P10_7, 12_7, P13_0 to P13_7,	VI=0V	30	50	170	kΩ
Rfxin	Feedback R	esistance XIN				1.5		MΩ
Rfxcin	Feedback R	esistance XCIN				15		MΩ
Vram	RAM Retent	ion Voltage		At stop mode	2.0			V

Table 5.57 Electrical Characteristics (1) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.0 to 5.5V, Vss = 0V at Topr = -40 to 85°C / -40 to 125°C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85°C, V version =-40 to 125°C.
2. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -40 to 85° C (T version) / -40 to 125° C (V version) unless otherwise specified)

Table 5.60 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter		Standard		
Symbol	Falanlelei	Min.	Max.	Unit	
tc(TA)	TAiIN Input Cycle Time	100		ns	
tw(TAH)	TAIIN Input HIGH Pulse Width	40		ns	
tw(TAL)	TAIIN Input LOW Pulse Width	40		ns	

Table 5.61 Timer A Input (Gating Input in Timer Mode)

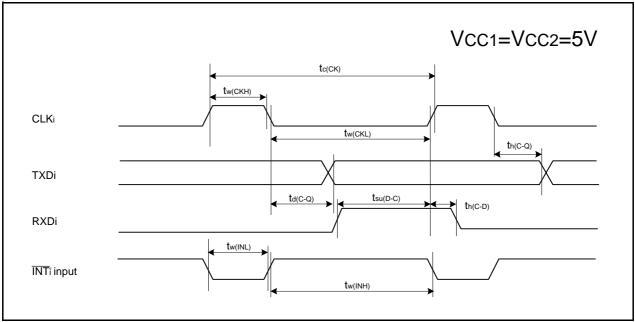
Symbol	bol Parameter		Standard		
Symbol	Falanelei	Min.	Max.	Unit	
tc(TA)	TAilN Input Cycle Time	400		ns	
tw(TAH)	TAilN Input HIGH Pulse Width	200		ns	
tw(TAL)	TAiIN Input LOW Pulse Width	200		ns	

Table 5.62 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(TA)	TAiIN Input Cycle Time	200		ns
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns

Table 5.63 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter		Standard		
Symbol	Symbol Parameter	Min.	Max.	Unit	
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns	
tw(TAL)	TAiIN Input LOW Pulse Width	100		ns	


Table 5.64 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

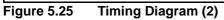

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(UP)	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns

Table 5.65 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

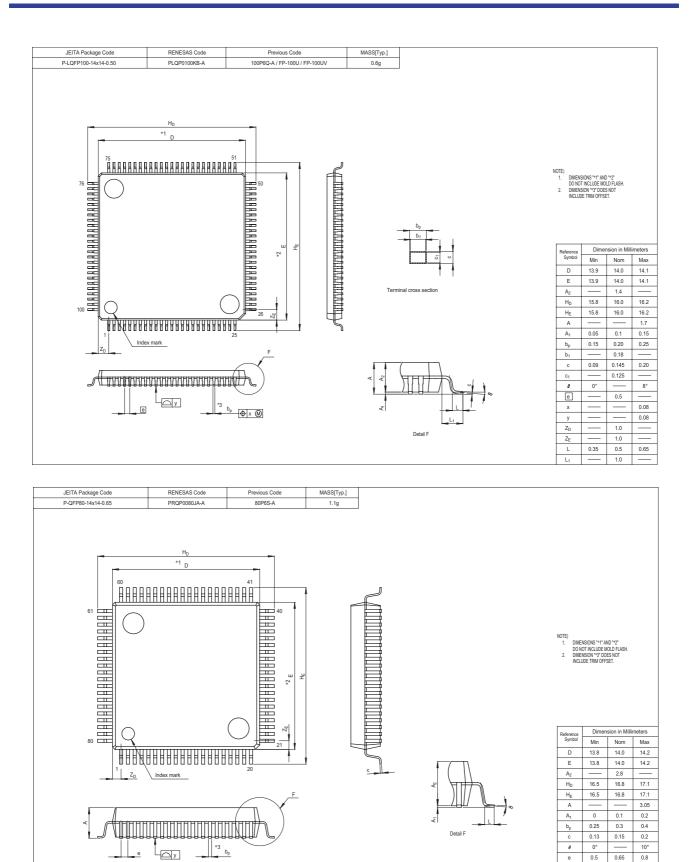
Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(TA)	TAiIN Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAiIN Input Setup Time	200		ns

RENESAS

е 0.5 0.65 0.8

у

 Z_{D}


 Z_{E}

L

0.4 0.6 0.10

0.8

0.825 0.825

е

RENESAS