

This william with the same of the same of

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30626fhpgpu5c-yr

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M16C/62P Group (M16C/62P, M16C/62PT) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0001-0241 Rev.2.41 Jan 10, 2006

1. Overview

The M16C/62P Group (M16C/62P, M16C/62PT) of single-chip microcomputers are built using the high performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 80-pin, 100-pin and 128-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.

1.1 Applications

Audio, cameras, television, home appliance, office/communications/portable/industrial equipment, automobile, etc

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

RENESAS

Table 1.3 Performance Outline of M16C/62P Group (M16C/62P, M16C/62PT)(80-pin version)

	Item	Performance					
		M16C/62P	M16C/62PT ⁽⁴⁾				
CPU	Number of Basic Instructions	91 instructions	W1700/021 1 ()				
0.0	Minimum Instruction	41.7ns(f(BCLK)=24MHz, VCC1=3.3 to 5.5V)	41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5.5V)				
	Execution Time	100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)					
	Operating Mode	Single-chip mode					
	Address Space	1 Mbyte					
	Memory Capacity	See Table 1.4 to 1.7 Product List	st				
Peripheral	Port	Input/Output: 70 pins, Input: 1 pin					
Function	Multifunction Timer	Timer A: 16 bits x 5 channels (Time Timer B: 16 bits x 6 channels (Time					
	Serial Interface	2 channels Clock synchronous, UART, I ² C bus ⁽¹⁾ , IEBus ⁽²⁾ 1 channel Clock synchronous, I ² C bus ⁽¹⁾ , IEBus ⁽²⁾ 2 channels Clock synchronous (1 channel is only transmission)					
	A/D Converter	10-bit A/D converter: 1 circuit, 26 ch	annels				
	D/A Converter	8 bits x 2 channels					
	DMAC	2 channels					
	CRC Calculation Circuit	CCITT-CRC					
	Watchdog Timer	15 bits x 1 channel (with prescaler)					
	Interrupt	Internal: 29 sources, External: 5 sources, Software: 4 sources, Priority level: 7 levels					
	Clock Generation Circuit	4 circuits Main clock generation circuit (*), Subclock generation circuit (*), On-chip oscillator, PLL synthesizer (*)Equipped with a built-in feedback resistor.					
	Oscillation Stop Detection Function	Stop detection of main clock oscillat	ion, re-oscillation detection function				
	Voltage Detection Circuit		Absent				
Electric Characteristics	Supply Voltage	VCC1=3.0 to 5.5 V, (f(BCLK=24MHz) VCC1=2.7 to 5.5 V, (f(BCLK=10MHz)	VCC1=4.0 to 5.5V, (f(BCLK=24MHz)				
	Power Consumption	14 mA (VCC1=5V, f(BCLK)=24MHz) 8 mA (VCC1=3V, f(BCLK)=10MHz) 1.8μA (VCC1=3V, f(XCIN)=32kHz, wait mode) 0.7μA (VCC1=3V, stop mode)	14 mA (VCC1=5V, f(BCLK)=24MHz) 2.0μA (VCC1=5V, f(XCIN)=32kHz, wait mode) 0.8μA (VCC1=5V, stop mode)				
Flash memory	Program/Erase Supply Voltage	3.3 ± 0.3V or 5.0 ± 0.5V	5.0 ± 0.5V				
version	Program and Erase Endurance	100 times (all area) or 1,000 times (user ROM area without block A and block 1) / 10,000 times (block A, block 1) (3)					
Operating Amb	ent Temperature	-20 to 85°C, -40 to 85°C (3) T version : -40 to 85°C V version : -40 to 125°C					
Package		80-pin plastic mold QFP					

NOTES:

- 1. I²C bus is a registered trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.
- 3. See **Table 1.8 and 1.9 Product Code** for the program and erase endurance, and operating ambient temperature.
 - In addition 1,000 times/10,000 times are under development as of Jul., 2005. Please inquire about a release schedule.
- 4. All options are on request basis.

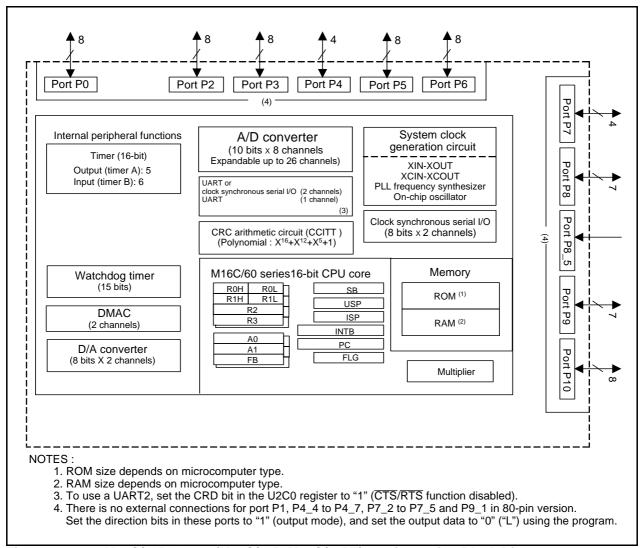


Figure 1.2 M16C/62P Group (M16C/62P, M16C/62PT) 80-pin version Block Diagram

1.4 Product List

Table 1.4 to 1.7 list the product list, Figure 1.3 shows the Type No., Memory Size, and Package, Table 1.8 lists the Product Code of Flash Memory version and ROMless version for M16C/62P, and Table 1.9 lists the Product Code of Flash Memory version for M16C/62PT. Figure 1.4 shows the Marking Diagram of Flash Memory version and ROM-less version for M16C/62P (Top View), and Figure 1.5 shows the Marking Diagram of Flash Memory version for M16C/62PT (Top View) at the time of ROM order.

Table 1.4 Product List (1) (M16C/62P)

As of Dec. 2005

Type No.	ROM Capacity	RAM Capacity	Package Type (1)	Remarks
M30622M6P-XXXFP	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM version
M30622M6P-XXXGP			PLQP0100KB-A	
M30622M8P-XXXFP	64 Kbytes	4 Kbytes	PRQP0100JB-A	
M30622M8P-XXXGP			PLQP0100KB-A	
M30623M8P-XXXGP			PRQP0080JA-A	
M30622MAP-XXXFP	96 Kbytes	5 Kbytes	PRQP0100JB-A	
M30622MAP-XXXGP			PLQP0100KB-A	
M30623MAP-XXXGP			PRQP0080JA-A	
M30620MCP-XXXFP	128 Kbytes	10 Kbytes	PRQP0100JB-A	
M30620MCP-XXXGP			PLQP0100KB-A	
M30621MCP-XXXGP			PRQP0080JA-A	
M30622MEP-XXXFP	192 Kbytes	12 Kbytes	PRQP0100JB-A	
M30622MEP-XXXGP			PLQP0100KB-A	
M30623MEP-XXXGP			PLQP0128KB-A	
M30622MGP-XXXFP	256 Kbytes	12 Kbytes	PRQP0100JB-A	
M30622MGP-XXXGP			PLQP0100KB-A	
M30623MGP-XXXGP			PLQP0128KB-A	
M30624MGP-XXXFP		20 Kbytes	PRQP0100JB-A	
M30624MGP-XXXGP			PLQP0100KB-A	
M30625MGP-XXXGP			PLQP0128KB-A	
M30622MWP-XXXFP	320 Kbytes	16 Kbytes	PRQP0100JB-A	
M30622MWP-XXXGP			PLQP0100KB-A	
M30623MWP-XXXGP			PLQP0128KB-A	
M30624MWP-XXXFP		24 Kbytes	PRQP0100JB-A	
M30624MWP-XXXGP			PLQP0100KB-A	
M30625MWP-XXXGP			PLQP0128KB-A	
M30626MWP-XXXFP		31 Kbytes	PRQP0100JB-A	
M30626MWP-XXXGP			PLQP0100KB-A	
M30627MWP-XXXGP			PLQP0128KB-A	

(D): Under development

NOTES:

1. The old package type numbers of each package type are as follows.

PLQP0128KB-A: 128P6Q-A, PRQP0100JB-A: 100P6S-A, PLQP0100KB-A: 100P6Q-A, PRQP0080JA-A: 80P6S-A

Table 1.10 Pin Characteristics for 128-Pin Package (1)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pi
1	VREF						
2	AVCC						
3		P9_7			SIN4	ADTRG	
4		P9_6			SOUT4	ANEX1	
5		P9_5			CLK4	ANEX0	
6		P9_4		TB4IN		DA1	
7		P9_3		TB3IN		DA0	
8		P9_2		TB2IN	SOUT3		
9		P9_1		TB1IN	SIN3		
10		P9_0		TB0IN	CLK3		
11		P14_1					
12		P14_0					
13	BYTE						
14	CNVSS						
15	XCIN	P8_7					
16	XCOUT	P8_6					
17	RESET						
18	XOUT						
19	VSS						
20	XIN						
21	VCC1						
22		P8_5	NMI				
23		P8_4	ĪNT2	ZP			
24		P8_3	ĪNT1				
25		P8_2	ĪNT0				
26		P8_1		TA4IN/U			
27		P8_0		TA4IIV/U			
28		P7_7		TA3IN			
29		P7_6		TA3OUT			
30				TA2IN/W			
31		P7_5 P7_4		TA2IIV/W			
32		1			OTOO/DTOO		
		P7_3		TA1IN/V	CTS2/RTS2 CLK2		
33		P7_2		TA1OUT/V TA0IN/TB5IN	RXD2/SCL2		
34 35		P7_1 P7_0		TAUIN/TB5IN	TXD2/SDA2		
36				140001	TXD1/SDA1		
37	VCC1	P6_7	+		ואסטווסטאו	+	
38	V 00 1	P6_6			RXD1/SCL1		
39	VSS	. 0_0			TOOL I	+	
40	1.00	P6_5			CLK1	+	
41		P6_4			CTS1/RTS1/CTS0/CLKS1	+	
42		P6_4 P6_3	+		TXD0/SDA0	+	
43		P6_2			RXD0/SCL0		
44		P6_1			CLK0		
45					CTS0/RTS0		
		P6_0			C130/K130	+	
46		P13_7					
47		P13_6			<u> </u>	+	
48		P13_5				+	
49		P13_4				+	==-
50		P5_7					RDY/CLKOUT

1.6 Pin Description

Table 1.17 Pin Description (100-pin and 128-pin Version) (1)

Signal Name	Pin Name	I/O Type	Power Supply ⁽³⁾	Description
Power supply input	VCC1,VCC2 VSS	I	-	Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is that VCC1 ≥ VCC2. (1, 2)
Analog power supply input	AVCC AVSS	I	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS	I	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode.
External data bus width select input	BYTE	I	VCC1	Switches the data bus in external memory space. The data bus is 16 bits long when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it to either one. Connect this pin to VSS when an single-chip mode.
Bus control pins (4)	D0 to D7	I/O	VCC2	Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.
	D8 to D15	1/0	VCC2	Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus.
	A0 to A19	0	VCC2	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A0 to A7) by timesharing when external 8-bit data bus are set as the multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A1 to A8) by timesharing when external 16-bit data bus are set as the multiplexed bus.
	CS0 to CS3	0	VCC2	Output $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ signals. $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are chip-select signals to specify an external space.
	WRL/WR WRH/BHE RD	0	VCC2	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR can be switched by program. • WRL, WRH and RD are selected The WRL signal becomes "L" by writing data to an even address in an external memory space.
				The WRH signal becomes "L" by writing data to an odd address in an external memory space. The RD pin signal becomes "L" by reading data in an external
				memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. The RD signal becomes "L" by reading data in an external memory space. The BHE signal becomes "L" by accessing an odd address. Select WR, BHE and RD for an external 8-bit data bus.
	ALE	0	VCC2	ALE is a signal to latch the address.
	HOLD	I	VCC2	While the HOLD pin is held "L", the microcomputer is placed in a hold state.
	HLDA	0	VCC2	In a hold state, HLDA outputs a "L" signal.
	RDY	I	VCC2	While applying a "L" signal to the RDY pin, the microcomputer is placed in a wait state.

I : Input O : Output I/O : Input and output

Power Supply: Power supplies which relate to the external bus pins are separated as VCC2, thus they can be interfaced using the different voltage as VCC1.

NOTES:

- 1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.
- 2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 and VCC2 pins. Also the apply condition is that VCC1 = VCC2.
- 3. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 4. Bus control pins in M16C/62PT cannot be used.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

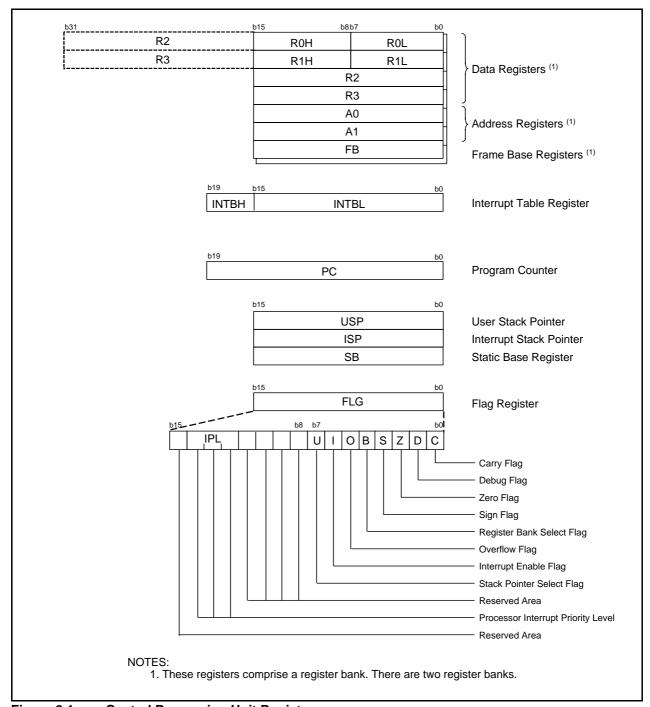


Figure 2.1 Central Processing Unit Register

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers.

R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.28 Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting and external area access)

Symbol	Parameter		Stan	dard	Unit	
Syrribor	Falanetei		Min.	Max.		
td(BCLK-AD)	Address Output Delay Time			25	ns	
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns	
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns	
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns	
td(BCLK-CS)	Chip Select Output Delay Time			25	ns	
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns	
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns	
th(BCLK-ALE)	ALE Signal Output Hold Time		-4		ns	
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns	
th(BCLK-RD)	RD Signal Output Hold Time	r igure 3.2	0		ns	
td(BCLK-WR)	WR Signal Output Delay Time			25	ns	
th(BCLK-WR)	WR Signal Output Hold Time		0		ns	
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns	
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		4		ns	
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns	
th(WR-DB)	Data Output Hold Time (in relation to WR)(3)		(NOTE 2)		ns	
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(\text{BCLK})} - 40[\text{ns}] \qquad \begin{array}{l} \text{n is "1" for 1-wait setting, "2" for 2-wait setting} \\ \text{and "3" for 3-wait setting.} \\ \text{(BCLK) is 12.5MHz or less.} \end{array}$$

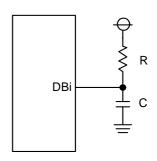
2. Calculated according to the BCLK frequency as follows:

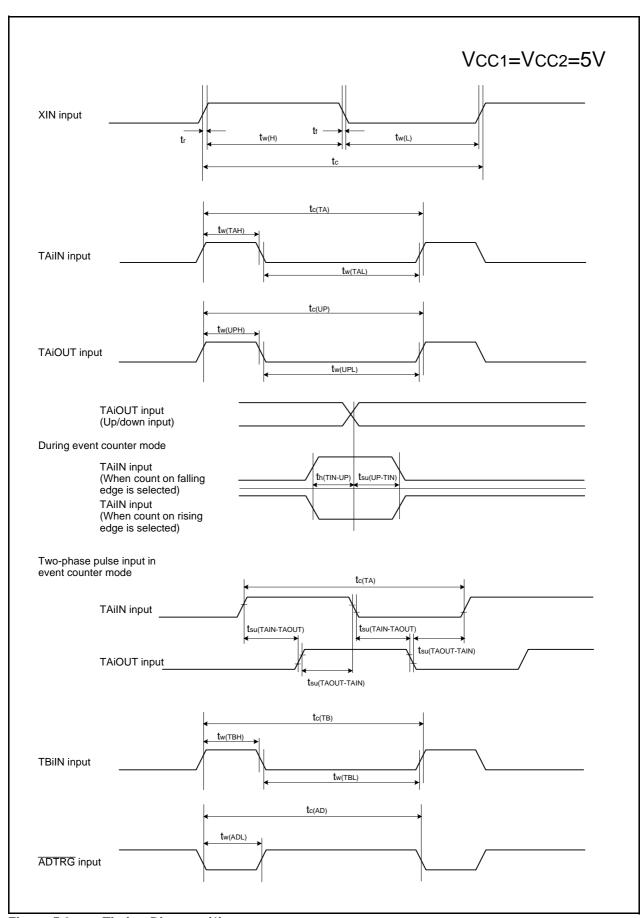
$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in


$$t = -CR X In (1-VoL / Vcc2)$$


by a circuit of the right figure.

For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X In(1-0.2Vcc2 / Vcc2)$$

= 6.7 ns.

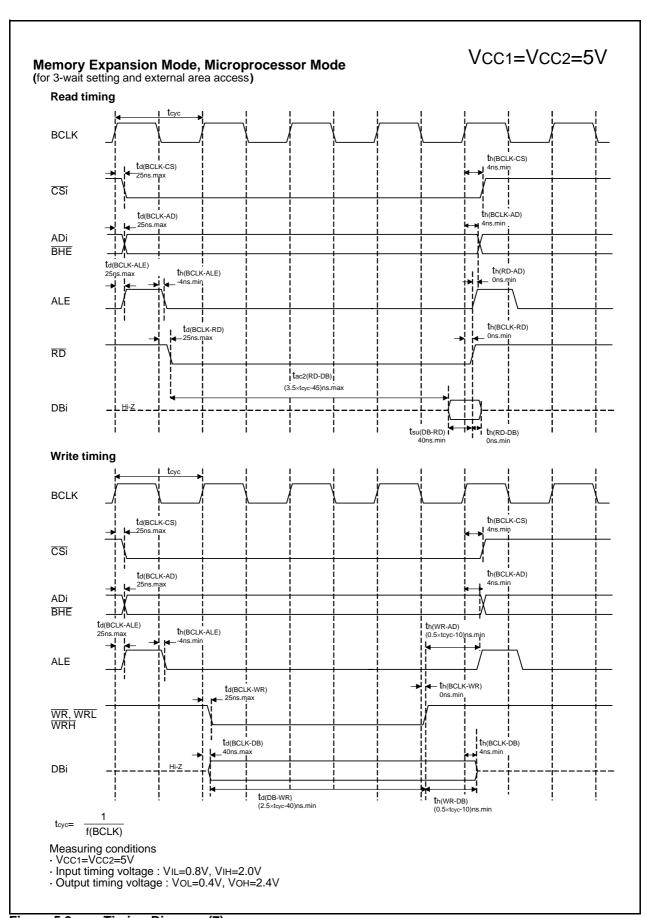


Figure 5.9 Timing Diagram (7)

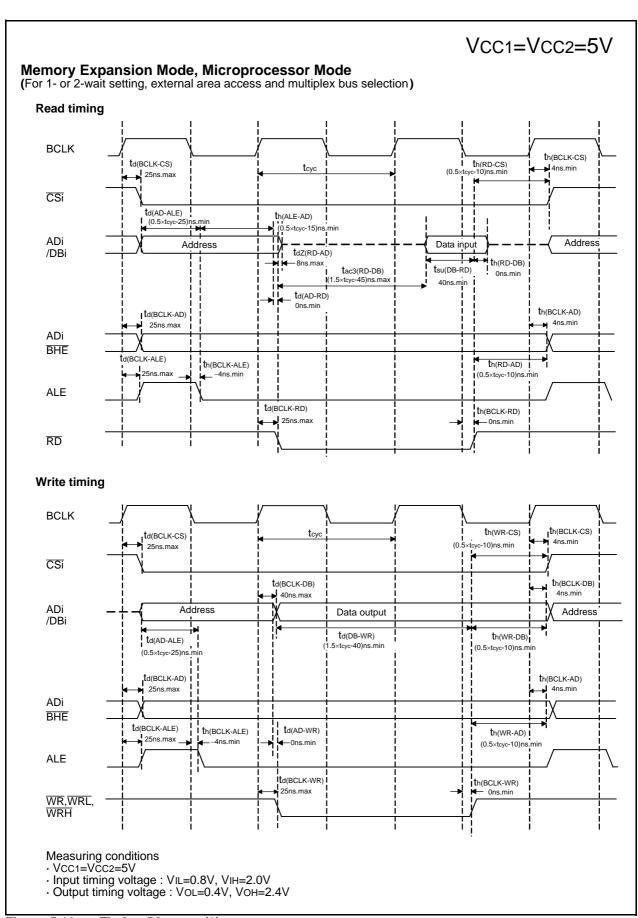


Figure 5.10 Timing Diagram (8)

Table 5.31 Electrical Characteristics (2) (1)

Cumbal	Parameter		Measuring Condition		Standard			Unit					
Symbol	Paramet	eı	ivieas	suring Condition	Min.	Тур.	Max.	Unit					
Icc	Power Supply Current (Vcc1=Vcc2=2.7V to 3.6V)	In single-chip mode, the output	Mask ROM	f(BCLK)=10MHz No division		8	11	mA					
	,	pins are open and other pins are Vss		No division, On-chip oscillation		1		mA					
			Flash Memory	f(BCLK)=10MHz, No division		8	13	mA					
			,	No division, On-chip oscillation		1.8		mA					
			Flash Memory Program	f(BCLK)=10MHz, VCC1=3.0V		12		mA					
		E M	Flash Memory Erase	f(BCLK)=10MHz, VCC1=3.0V		22		mA					
								Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μА
						Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μА		
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μА					
				On-chip oscillation, Wait mode		45		μА					
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		6.0		μА					
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		1.8		μА					
				Stop mode Topr =25°C		0.7	3.0	μА					
Idet4	Low Voltage Detection Diss	sipation Current (4)				0.6	4	μА					
Idet3	Reset Area Detection Dissi	pation Current (4)				0.4	2	μА					

- NOTES:

 1. Referenced to Vcc1=Vcc2=2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=10MHz unless otherwise specified.

 2. With one timer operated using fC32.

 3. This indicates the memory in which the program to be executed exists.

 4. Idea is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register Idet3: VC26 bit in the VCR2 register

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.32 External Clock Input (XIN input)(1)

Symbol	Parameter	Stan	Unit	
	Faiametei	Min.	Max.	Offic
tc	External Clock Input Cycle Time	(NOTE 2)		ns
tw(H)	External Clock Input HIGH Pulse Width	(NOTE 3)		ns
tw(L)	External Clock Input LOW Pulse Width	(NOTE 3)		ns
tr	External Clock Rise Time		(NOTE 4)	ns
tf	External Clock Fall Time		(NOTE 4)	ns

NOTES:

- 1. The condition is Vcc1=Vcc2=2.7 to 3.0V.
- 2. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times V \text{CC2} - 44} \text{ [ns]}$$

3. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times V\text{CC1} - 44} \times 0.4 \text{ [ns]}$$

4. Calculated according to the Vcc1 voltage as follows:

$$-10 \times Vcc1 + 45 [ns]$$

Table 5.33 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Star	Standard		
	Parameter	Min.	Max.	Unit	
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns	
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns	
tac3(RD-DB)	Data Input Access Time (when accessing multiplex bus area)		(NOTE 3)	ns	
tsu(DB-RD)	Data Input Setup Time	50		ns	
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns	
tsu(HOLD-BCLK)	HOLD Input Setup Time	50		ns	
th(RD-DB)	Data Input Hold Time	0		ns	
th(BCLK-RDY)	RDY Input Hold Time	0		ns	
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5x10^9}{f(BCLK)} - 60[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)}-60[ns] \qquad \text{n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

Page 67 of 96

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns] \qquad \text{n is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Table 5.58 Electrical Characteristics (2) (1)

Symbol	Parameter		Measuring Condition		Standard			Unit												
Symbol	Paramet	еі	ivieas	Measuring Condition		Min. Typ. Max.		Offic												
Icc	Power Supply Current (Vcc1=Vcc2=4.0V to 5.5V)	In single-chip mode, the output	Mask ROM	f(BCLK)=24MHz No division, PLL operation		14	20	mA												
	,	pins are open and other pins are Vss		No division, On-chip oscillation		1		mA												
			Flash Memory	f(BCLK)=24MHz, No division, PLL operation		18	27	mA												
				No division, On-chip oscillation		1.8		mA												
			Flash Memory Program	f(BCLK)=10MHz, Vcc1=5.0V		15		mA												
			Flash Memory Erase	f(BCLK)=10MHz, Vcc1=5.0V		25		mA												
															Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μА
											Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μА				
						f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μА										
									On-chip oscillation, Wait mode		50		μА							
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5		μА												
								f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0		μА								
				Stop mode Topr =25°C		2.0	6.0	μА												
					Stop mode Topr =85°C			20	μА											
				Stop mode Topr =125°C			TBD	μА												

NOTES:

1. Referenced to Vcc1=Vcc2=4.0 to 5.5V, Vss = 0V at Topr = -40 to 85°C / -40 to 125°C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85°C, V version = -40 to 125°C.

2. With one timer operated using fC32.

3. This indicates the memory in which the program to be executed exists.

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, Vss = 0V, at T_{opr} = -40 to 85°C (T version) / -40 to 125°C (V version) unless otherwise specified)

Table 5.59 External Clock Input (XIN input)

Symbol	Parameter	Stan	Unit	
	Faianietei	Min.	Max.	UTIIL
tc	External Clock Input Cycle Time	62.5		ns
tw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, Vss = 0V, at T_{opr} = -40 to 85°C (T version) / -40 to 125°C (V version) unless otherwise specified)

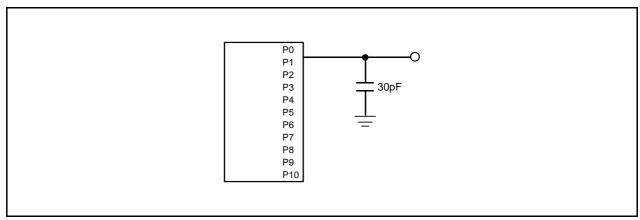
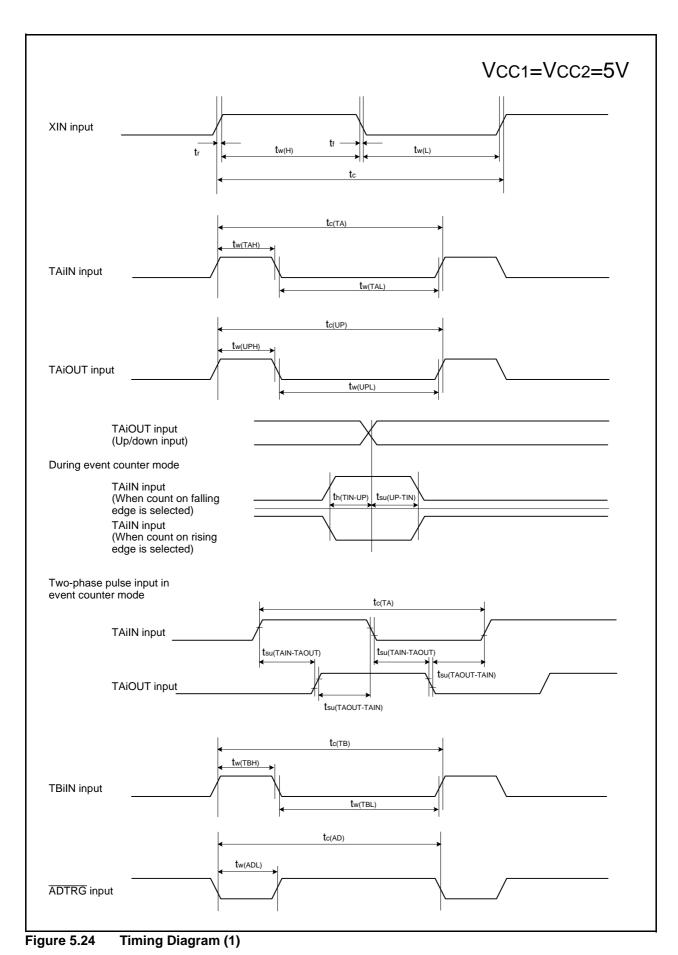



Figure 5.23 Ports P0 to P10 Measurement Circuit

RENESAS

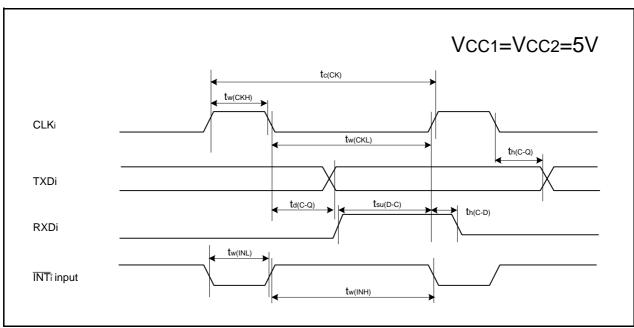


Figure 5.25 Timing Diagram (2)