

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30626fjpfp-u5c

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

As of Dec. 2005

Type No.		ROM Capacity	RAM Capacity	Package Type (1)	Re	marks
M3062CM6T-XXXFP	(D)	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM	T Version
M3062CM6T-XXXGP	(D)			PLQP0100KB-A	version	(High reliability
M3062EM6T-XXXGP	(P)			PRQP0080JA-A		85°C version)
M3062CM8T-XXXFP	(D)	64 Kbytes	4 Kbytes	PRQP0100JB-A		
M3062CM8T-XXXGP	(D)			PLQP0100KB-A		
M3062EM8T-XXXGP	(P)			PRQP0080JA-A		
M3062CMAT-XXXFP	(D)	96 Kbytes	5 Kbytes	PRQP0100JB-A		
M3062CMAT-XXXGP	(D)			PLQP0100KB-A		
M3062EMAT-XXXGP	(P)			PRQP0080JA-A		
M3062AMCT-XXXFP	(D)	128 Kbytes	10 Kbytes	PRQP0100JB-A		
M3062AMCT-XXXGP	(D)			PLQP0100KB-A		
M3062BMCT-XXXGP	(P)			PRQP0080JA-A		
M3062CF8TFP	(D)	64 K+4 Kbytes	4 Kbytes	PRQP0100JB-A	Flash	
M3062CF8TGP				PLQP0100KB-A	memory	
M3062AFCTFP	(D)	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	version ⁽²⁾	
M3062AFCTGP	(D)			PLQP0100KB-A		
M3062BFCTGP	(P)			PRQP0080JA-A		
M3062JFHTFP	(D)	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A		
M3062JFHTGP	(D)			PLQP0100KB-A		

Table 1.6 Product List (3) (T version (M16C/62PT))

(D): Under development

(P): Under planning

NOTES:

- The old package type numbers of each package type are as follows. PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A, PRQP0080JA-A : 80P6S-A
- 2. In the flash memory version, there is 4K bytes area (block A).

As of Dec. 2005

Type No.		ROM Capacity	RAM Capacity	Package Type ⁽¹⁾	Re	emarks
M3062CM6V-XXXFP	(P)	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM	V Version
M3062CM6V-XXXGP	(P)			PLQP0100KB-A	version	(High reliability
M3062EM6V-XXXGP	(P)			PRQP0080JA-A		125°C version)
M3062CM8V-XXXFP	(P)	64 Kbytes	4 Kbytes	PRQP0100JB-A		
M3062CM8V-XXXGP	(P)			PLQP0100KB-A		
M3062EM8V-XXXGP	(P)			PRQP0080JA-A		
M3062CMAV-XXXFP	(P)	96 Kbytes	5 Kbytes	PRQP0100JB-A		
M3062CMAV-XXXGP	(P)			PLQP0100KB-A		
M3062EMAV-XXXGP	(P)			PRQP0080JA-A		
M3062AMCV-XXXFP	(D)	128 Kbytes	10 Kbytes	PRQP0100JB-A		
M3062AMCV-XXXGP	(D)			PLQP0100KB-A		
M3062BMCV-XXXGP	(P)			PRQP0080JA-A		
M3062AFCVFP	(D)	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	Flash	
M3062AFCVGP	(D)			PLQP0100KB-A	memory	
M3062BFCVGP	(P)			PRQP0080JA-A	version ⁽²⁾	
M3062JFHVFP	(P)	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A	1	
M3062JFHVGP	(P)			PLQP0100KB-A		

Table 1.7 Product List (4) (V version (M16C/62PT))

(D): Under development

(P): Under planning

NOTES:

1. The old package type numbers of each package type are as follows.

PLQP0128KB-A : 128P6Q-A, PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A,

PRQP0080JA-A : 80P6S-A

2. In the flash memory version, there is 4K bytes area (block A).

Pin	No.	0 (I D)	D (T D.			
FP	GP	Control Pin	Port	Interrupt Pin	Limer Pin	UART Pin	Analog Pin	Bus Control Pin
1	99		P9_6			SOUT4	ANEX1	
2	100		P9_5			CLK4	ANEX0	
3	1		P9_4		TB4IN		DA1	
4	2		P9 3		TB3IN		DA0	
5	3		 P9_2		TB2IN	SOUT3		
6	4		P9_1		TB1IN	SIN3		
7	5		P9_0		TBOIN	CLK3		
8	6	BYTE						
9	7	CNVSS						
10	8	XCIN	P8_7					
11	9	XCOUT	P8_6					
12	10	RESET						
13	11	XOUT						
14	12	VSS						
15	13	XIN						
16	14	VCC1						
17	15		P8_5	NMI				
18	16		P8_4	INT2	ZP			
19	17		P8_3	INT1				
20	18		P8 2	INT0				
21	19		P8 1		TA4IN/U			
22	20		P8 0		TA4OUT/U			
23	21		P7 7		TA3IN			
24	22		_ P7_6		TA3OUT			
25	23		P7 5		TA2IN/W			
26	24		P7_4		TA2OUT/W			
27	25		P7 3		TA1IN/V	CTS2/RTS2		
28	26		P7_2		TA1OUT/V	CLK2		
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2		
30	28		P7_0		TA0OUT	TXD2/SDA2		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6_4			CTS1/RTS1/CTS0/CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6_2			RXD0/SCL0		
37	35		P6_1			CLK0		
38	36		P6_0			CTS0/RTS0		
39	37		P5_7					RDY/CLKOUT
40	38		P5_6	1				ALE
41	39		P5_5	1				
42	40		P5_4	1				
43	41		P5_3					BCLK
44	42		P5 2	1				
45	43		D5 1					
40	11							
40	44		P1 7					
4/	45		P4_/					0.53
48	46		P4_6		l			CS2
49	47		P4_5					CS1
50	48		P4_4					CS0

 Table 1.13
 Pin Characteristics for 100-Pin Package (1)

RENESAS

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
51		P3_0					
52		P2_7				AN2_7	
53		P2_6				AN2_6	
54		P2_5				AN2_5	
55		P2_4				AN2_4	
56		P2_3				AN2_3	
57		P2_2				AN2_2	
58		P2_1				AN2_1	
59		P2_0				AN2_0	
60		P0_7				AN0_7	
61		P0_6				AN0_6	
62		P0_5				AN0_5	
63		P0_4				AN0_4	
64		P0_3				AN0_3	
65		P0_2				AN0_2	
66		P0_1				AN0_1	
67		P0_0				AN0_0	
68		P10_7	KI3			AN7	
69		P10_6	KI2			AN6	
70		P10_5	KI1			AN5	
71		P10_4	KI0			AN4	
72		P10_3				AN3	
73		P10_2				AN2	
74		P10_1				AN1	
75	AVSS						
76		P10_0				AN0	
77	VREF						
78	AVCC						
79		P9_7			SIN4	ADTRG	
80		P9_6			SOUT4	ANEX1	

 Table 1.16
 Pin Characteristics for 80-Pin Package (2)

1.6 Pin Description

Signal Name	Pin Name	I/O	Power	Description
		Туре	Supply ⁽³⁾	
Power supply input	VCC1,VCC2 VSS	Ι	-	Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is that VCC1 \geq VCC2. ^(1, 2)
Analog power supply input	AVCC AVSS	Ι	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	Ι	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS	Ι	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode.
External data bus width select input	BYTE	Ι	VCC1	Switches the data bus in external memory space. The data bus is 16 bits long when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it to either one. Connect this pin to VSS when an single-chip mode.
Bus control pins ⁽⁴⁾	D0 to D7	I/O	VCC2	Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.
	D8 to D15	I/O	VCC2	Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus.
	A0 to A19	0	VCC2	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A0 to A7) by timesharing when external 8-bit data bus are set as the multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A1 to A8) by timesharing when external 16-bit data bus are set as the multiplexed bus.
	CS0 to CS3	0	VCC2	Output $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ signals. $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are chip-select signals to specify an external space.
	WRL/WR WRH/BHE RD	0	VCC2	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR can be switched by program. • WRL, WRH and RD are selected The WRL signal becomes "L" by writing data to an even address in an external memory space. The WRH signal becomes "L" by writing data to an odd address in an external memory space. The RD pin signal becomes "L" by reading data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. The RD signal becomes "L" by reading data in an external memory space. The BHE signal becomes "L" by accessing an odd address. Select WR, BHE and RD for an external 8-bit data bus.
	ALE	0	VCC2	ALE is a signal to latch the address.
	HOLD	Ι	VCC2	While the HOLD pin is held "L", the microcomputer is placed in a hold state.
	HLDA	0	VCC2	In a hold state, HLDA outputs a "L" signal.
	RDY	Ι	VCC2	While applying a "L" signal to the $\overline{\text{RDY}}$ pin, the microcomputer is placed in a wait state.

Table 1.17Pin Description (100-pin and 128-pin Version) (1)

I : Input O : Output I/O : Input and output

Power Supply : Power supplies which relate to the external bus pins are separated as VCC2, thus they can be interfaced using the different voltage as VCC1.

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 and VCC2 pins. Also the apply condition is that VCC1 = VCC2.

- 3. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 4. Bus control pins in M16C/62PT cannot be used.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

M16C/62P Group (M16C/62P, M16C/62PT)

Figure 5.1 Power Supply Circuit Timing Diagram

Symbol	Parameter		Measuring Condition		Standard			Unit
Symbol	T aramet	51	Measuring Condition		Min.	Тур.	Max.	Onit
Icc	Power Supply Current (Vcc1=Vcc2=4.0V to 5.5V)	In single-chip mode, the output	Mask ROM	f(BCLK)=24MHz No division, PLL operation		14	20	mA
	· · · · · ·	pins are open and other pins are Vss		No division, On-chip oscillation		1		mA
		Flash Memorv	f(BCLK)=24MHz, No division, PLL operation		18	27	mA	
			No division, On-chip oscillation		1.8		mA	
		Flash Memory Program	f(BCLK)=10MHz, VCC1=5.0V		15		mA	
	Flash Memory Erase	f(BCLK)=10MHz, VCC1=5.0V		25		mA		
		Mask ROM Flash Memory	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μΑ	
			f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μΑ	
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μΑ
				On-chip oscillation, Wait mode		50		μΑ
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5		μΑ
			f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0		μΑ	
			Stop mode Topr =25°C		0.8	3.0	μA	
Idet4	Low Voltage Detection Diss	sipation Current ⁽⁴⁾				0.7	4	μA
Idet3	Reset Area Detection Dissi	pation Current ⁽⁴⁾				1.2	8	μΑ

Table 5.12 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=24MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register

Idet3: VC26 bit in the VCR2 register

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.27	Memory Expansion and Microprocessor Modes (for setting with no wait)

Symbol	Barametar		Stan	dard	Lloit
Symbol	Farameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	rigure 5.2	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾]	(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time]		40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} = 40[ns] \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1k Ω X ln(1-0.2Vcc2 / Vcc2)

 $t = -30 \text{ F } \times 1 \text{ K} \Omega \times 1 \text{ m} (1 - 0.2 \text{ VCC})$

= 6.7ns.

Figure 5.2 Ports P0 to P14 Measurement Circuit

RENESAS

VCC1=VCC2=3V

Switching Characteristics

.

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.48	Memory Expansion and Microprocessor Modes (for 2- to 3-wait setting, external area
	access and multiplex bus selection)

Symbol	Paramotor		Stan	dard	LInit	
Symbol	Symbol Parameter		Min.	Max.	Onit	
td(BCLK-AD)	Address Output Delay Time			50	ns	
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns	
th(RD-AD)	Address Output Hold Time (in relation to RD)		(NOTE 1)		ns	
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 1)		ns	
td(BCLK-CS)	Chip Select Output Delay Time			50	ns	
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns	
th(RD-CS)	Chip Select Output Hold Time (in relation to RD)		(NOTE 1)		ns	
th(WR-CS)	Chip Select Output Hold Time (in relation to WR)		(NOTE 1)		ns	
td(BCLK-RD)	RD Signal Output Delay Time			40	ns	
th(BCLK-RD)	RD Signal Output Hold Time		0		ns	
td(BCLK-WR)	WR Signal Output Delay Time			40	ns	
th(BCLK-WR)	WR Signal Output Hold Time	See	0		ns	
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)	Figure 5.12		50	ns	
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK)		4		ns	
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 2)		ns	
th(WR-DB)	Data Output Hold Time (in relation to WR)		(NOTE 1)		ns	
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns	
td(BCLK-ALE)	ALE Signal Output Delay Time (in relation to BCLK)			25	ns	
th(BCLK-ALE)	ALE Signal Output Hold Time (in relation to BCLK)		-4		ns	
td(AD-ALE)	ALE Signal Output Delay Time (in relation to Address)		(NOTE 3)		ns	
th(AD-ALE)	ALE Signal Output Hold Time (in relation to Address)		(NOTE 4)		ns	
td(AD-RD)	RD Signal Output Delay From the End of Address		0		ns	
td(AD-WR)	WR Signal Output Delay From the End of Address		0		ns	
tdz(RD-AD)	Address Output Floating Start Time			8	ns	

n is "2" for 2-wait setting, "3" for 3-wait setting.

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 50[ns]$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns]$$

4. Calculated according to the BCLK frequency as follows:

RENESAS

Figure 5.14 Timing Diagram (2)

Cumbol		Deremeter			Linit		
Symbol		Parameter	Falanielei		Тур.	Max.	Unit
VCC1, VCC2	Supply Voltage (VCC1 = VCC2)		4.0	5.0	5.5	V
AVcc	Analog Supply V	oltage			Vcc1		V
Vss	Supply Voltage				0		V
AVss	Analog Supply V	oltage			0		V
Viн	HIGH Input Voltage ⁽⁴⁾	P3_1 to P3_7, P4_0 to P4_7, F P12_0 to P12_7, P13_0 to P13	25_0 to P5_7, 8_7	0.8Vcc2		Vcc2	V
	Ū	P0_0 to P0_7, P1_0 to P1_7, F (during single-chip mode)	P2_0 to P2_7, P3_0	0.8Vcc2		Vcc2	V
		P6_0 to P6_7, P7_2 to P7_7, F P10_ <u>0 to P10_7, P11_0 to P11</u> XIN, RESET, CNVSS, BYTE	P8_0 to P8_7, P9_0 to P9_7, _7, P14_0, P14_1,	0.8Vcc1		Vcc1	V
		P7_0, P7_1		0.8Vcc1		6.5	V
VIL	LOW Input Voltage (4)	P3_1 to P3_7, P4_0 to P4_7, F P12_0 to P12_7, P13_0 to P13	25_0 to P5_7, 8_7	0		0.2Vcc2	V
		P0_0 to P0_7, P1_0 to P1_7, F (during single-chip mode)	P2_0 to P2_7, P3_0	0		0.2Vcc2	V
		P6_0 to P6_7, P7_0 to P7_7, F P10_ <u>0 to P10_7, P11_0 to P11</u> XIN, RESET, CNVSS, BYTE	P8_0 to P8_7, P9_0 to P9_7, _7, P14_0, P14_1,	0		0.2Vcc	V
IOH(peak)	HIGH Peak Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7 P12_0 to P12_7 P13_0 to P13_7 P14_0 P14_1			-10.0	mA
IOH(avg)	HIGH Average Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12_	P2_0 to P2_7, P3_0 to P3_7, P6_0 to P6_7, P7_2 to P7_7, _0 to P9_7, P10_0 to P10_7, _7, P13_0 to P13_7, P14_0, P14_1			-5.0	mA
IOL(peak)	LOW Peak Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12_	P2_0 to P2_7, P3_0 to P3_7, P6_0 to P6_7, P7_0 to P7_7, _0 to P9_7, P10_0 to P10_7, _7, P13_0 to P13_7, P14_0, P14_1			10.0	mA
IOL(avg)	LOW Average Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12_	P2_0 to P2_7, P3_0 to P3_7, P6_0 to P6_7, P7_0 to P7_7, _0 to P9_7, P10_0 to P10_7, _7, P13_0 to P13_7, P14_0, P14_1			5.0	mA
f(XIN)	Main Clock Input	Oscillation Frequency	VCC1=4.0V to 5.5V	0		16	MHz
f(XCIN)	Sub-Clock Oscilla	ation Frequency			32.768	50	kHz
f(Ring)	On-chip Oscillation	on Frequency		0.5	1	2	MHz
f(PLL)	PLL Clock Oscilla	ation Frequency	VCC1=4.0V to 5.5V	10		24	MHz
f(BCLK)	CPU Operation C	Clock		0		24	MHz
tsu(PLL)	PLL Frequency S Wait Time	Synthesizer Stabilization	VCC1=5.5V			20	ms

 Table 5.50
 Recommended Operating Conditions (1) ⁽¹⁾

NOTES:

1. Referenced to Vcc1 = Vcc2 = 4.7 to 5.5V at Topr = -40 to 85° C / -40 to 125° C unless otherwise specified.

T version = -40 to 85 °C, V version = -40 to 125 °C.

2. The Average Output Current is the mean value within 100ms.

3. The total IOL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10 P1, P14_0 and P14_1 must be 80mA max. The total IOL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40mA max.

As for 80-pin version, the total IOL(peak) for all ports and IOH(peak) must be 80mA. max. due to one Vcc and one Vss.

4. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Symbol	Parameter	Moosuring Condition		Linit		
Symbol	Falametei	Measuring Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=4.0V to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

Table 5.56	Power Supply Circuit Timing Characteristic	s
		_

Figure 5.22 Power Supply Circuit Timing Diagram

Unit

mΑ mΑ mΑ mΑ

mΑ

mΑ

μA

μΑ

μA

μΑ

μA

μΑ

μA μA μA

Symbol	Doromotor		Macouring Condition		Standard		
Symbol	Falaillet	Parameter Measuring Condition			Min.	Тур.	Max.
Icc	Power Supply Current (Vcc1=Vcc2=4.0V to 5.5V)	In single-chip mode, the output	Mask ROM	f(BCLK)=24MHz No division, PLL operation		14	20
		pins are open and other pins are Vss	n and e Vss	No division, On-chip oscillation		1	
			Flash Memory	f(BCLK)=24MHz, No division, PLL operation		18	27
				No division, On-chip oscillation		1.8	
			Flash Memory Program	f(BCLK)=10MHz, Vcc1=5.0V		15	
			Flash Memory Erase	f(BCLK)=10MHz, Vcc1=5.0V		25	
		Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		
		Flash Memor	Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25	
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420	
				On-chip oscillation, Wait mode		50	
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5	
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0	
				Stop mode Topr =25°C		2.0	6.0
				Stop mode Topr =85°C			20
				Stop mode Topr =125°C			TBD

Table 5.58 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.0 to 5.5V, Vss = 0V at Topr = -40 to 85°C / -40 to 125°C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85°C, V version =-40 to 125°C.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.

VCC1=VCC2=5V

Switching Characteristics $(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -40 to 85^{\circ}C (T version) / -40 to 125^{\circ}C (V version) unless otherwise specified)$

Figure 5.23 Ports P0 to P10 Measurement Circuit

REVISION HISTORY

M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual

Rev.	Date	Description			
		Page	Summary		
1.10	May 28, 2003	1	Applications are partly revised.		
		2	Table 1.1.1 is partly revised.		
		4-5	Table 1.1.2 and 1.1.3 is partly revised.		
			"Note 1" is partly revised.		
		22	Table 1.5.3 is partly revised.		
		23	Table 1.5.5 is partly revised.		
			Table 1.5.6 is added.		
		24	Table 1.5.9 is partly revised.		
		30	Notes 1 and 2 in Table 1.5.26 is partly revised.		
		31	Notes 1 in Table 1.5.27 is partly revised.		
		30-31	Note 3 is added to "Data output hold time (refers to BCLK)" in Table 1.5.26 and 1.5.27.		
		32	Note 4 is added to "th(ALE-AD)" in Table 1.5.28.		
		30-32	Switching Characteristics is partly revised.		
		36-39	th(WR-AD) and th(WR-DB) in Figure 1.5.5 to 1.5.8 is partly revised.		
		40-41	th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.9 to		
			1.5.10 is partly revised.		
		42	Note 2 is added to Table 1.5.29.		
		47	Notes 1 and 2 in Table 1.5.45 is partly revised.		
		48	Notes 1 in Table 1.5.46 is partly revised.		
		47-48	Note 3 is added to "Data output hold time (refers to BCLK)" in Table		
			1.5.45 and 1.5.46.		
		49	Note 4 is added to "th(ALE-AD)" in Table 1.5.47.		
		47-48	Switching Characteristics is partly revised.		
		53-56	th(WR-AD) and th(WR-DB) in Figure 1.5.15 to 1.5.18 is partly revised.		
		57-56	1.5.20 is partly revised.		
2.00	Oct 29, 2003	-	Since high reliability version is added, a group name is revised. M16C/62 Group (M16C/62P) \rightarrow M16C/62 Group (M16C/62PT)		
		2-4	Table 1.1 to 1.3 are revised. Note 3 is partly revised.		
		2-4	Table 1.1 to 1.3 are revised.		
			Note 3 is partly revised.		
		6	Figure 1.2 Note5 is deleted.		
		7-9	Table 1.4 to 1.7 Product List is partly revised.		
		11	Table 1.8 and Figure 1.4 are added.		
		12-15	Figure 1.5 to 1.9 ZP is added.		
		17,19	Table 1.10 and 1.12 ZP is added to timer A.		
		18,20	Table 1.11 and 1.13 VCC1 is added to VREF.		
		30	Table 5.1 is revised.		
		31-32	Table 5.2 and 5.3 are revised.		