

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30626fjpgp-u3c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

	Product	Dockogo	Internal ROM (User ROM Area Without Block A, Block 1)		Internal ROM (Block A, Block 1)		Operating Ambient
	Code	Package	Program and Erase Endurance	Temperature Range	Program and Erase Endurance	Temperature Range	Temperature
Flash memory	D3	Lead-	100	0°C to 60°C	100	0°C to 60°C	-40°C to 85°C
Version	D5	included					-20°C to 85°C
	D7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	D9					-20°C to 85°C	-20°C to 85°C
	U3	Lead-free	100		100	0°C to 60°C	-40°C to 85°C
	U5						-20°C to 85°C
	U7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	U9					-20°C to 85°C	-20°C to 85°C
ROM-less	D3	Lead-	-	-	-	-	-40°C to 85°C
version	D5	included					-20°C to 85°C
	U3	Lead-free	-	-	-	-	-40°C to 85°C
	U5						-20°C to 85°C

Table 1.8 Product Code of Flash Memory version and ROMless version for M16C/62P

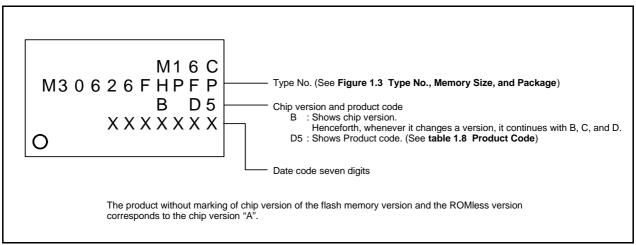


Figure 1.4 Marking Diagram of Flash Memory version and ROM-less version for M16C/62P (Top View)

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

Table 4.4 SFR Informa	ation (4) ⁽¹⁾	
-----------------------	--------------------------	--

Address	Register	Symbol	After Reset
0340h	Timer B3, 4, 5 Count Start Flag	Symbol TBSR	000XXXXb
0341h	Timer B3, 4, 5 Count Start hag	TBOR	000/////
0342h	Timer A1-1 Register	TA11	XXh
0343h			XXh
0344h	Timer A2-1 Register	TA21	XXh
0345h			XXh
0346h	Timer A4-1 Register	TA41	XXh
0347h	- ř		XXh
0348h	Three-Phase PWM Control Register 0	INVC0	00h
0349h	Three-Phase PWM Control Register 1	INVC1	00h
034Ah	Three-Phase Output Buffer Register 0	IDB0	00h
034Bh	Three-Phase Output Buffer Register 1	IDB1	00h
034Ch	Dead Time Timer	DTT	XXh
034Dh	Timer B2 Interrupt Occurrence Frequency Set Counter	ICTB2	XXh
034Eh			
034Fh			
0350h	Timer B3 Register	TB3	XXh
0351h			XXh
0352h	Timer B4 Register	TB4	XXh
0353h	Timer DF Degister	TDC	XXh
0354h 0355h	Timer B5 Register	TB5	XXh XXh
0355h 0356h			^^!!
0356h 0357h			
0358h			
0359h			
035Ah			
035Bh	Timer B3 Mode Register	TB3MR	00XX0000b
035Ch	Timer B4 Mode Register	TB4MR	00XX0000b
035Dh	Timer B5 Mode Register	TB5MR	00XX0000b
035Eh	Interrupt Factor Select Register 2	IFSR2A	00XXXXXb
035Fh	Interrupt Factor Select Register	IFSR	00h
0360h	SI/O3 Transmit/Receive Register	S3TRR	XXh
0361h			
0362h	SI/O3 Control Register	S3C	0100000b
0363h	SI/O3 Bit Rate Generator	S3BRG	XXh
0364h	SI/O4 Transmit/Receive Register	S4TRR	XXh
0365h			
0366h	SI/O4 Control Register	S4C	0100000b
0367h	SI/O4 Bit Rate Generator	S4BRG	XXh
0368h			
0369h			
036Ah			
036Bh			
036Ch	UARTO Special Mode Register 4	U0SMR4	00h
036Dh	UARTO Special Mode Register 3	U0SMR3	000X0X0Xb
036Eh	UARTO Special Mode Register 2	U0SMR2	X000000b
036Fh 0370h	UART0 Special Mode Register UART1 Special Mode Register 4	U0SMR U1SMR4	X000000b 00h
0370h	UART1 Special Mode Register 4 UART1 Special Mode Register 3	U1SMR4 U1SMR3	000X0X0Xb
0371h 0372h	UART1 Special Mode Register 3	U1SMR3	X000000b
0372h	UART1 Special Mode Register	U1SMR2	X000000b
0374h	UART2 Special Mode Register 4	U2SMR4	00h
0374n	UART2 Special Mode Register 3	U2SMR4	000X0X0Xb
0376h	UART2 Special Mode Register 3	U2SMR2	X000000b
0377h	UART2 Special Mode Register	U2SMR	X000000b
0378h	UART2 Transmit/Receive Mode Register	U2MR	00h
0379h	UART2 Bit Rate Generator	U2BRG	XXh
037Ah	UART2 Transmit Buffer Register	U2TB	XXh
037Bh			XXh
037Ch	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
037Dh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
037Eh	UART2 Receive Buffer Register	U2RB	XXh

NOTES: 1. The blank areas are reserved and cannot be accessed by users.

 ${\sf X}$: Nothing is mapped to this bit

Symbol	Parame	tor		Measuring Condition		Standard		Unit	
Symbol	i aiaine				Min.	Тур.	Max.	Onit	
-	Resolution		Vref=V				10	Bits	
INL	Integral Non-Linearity Error	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB	
				External operation amp connection mode			±7	LSB	
			VREF= VCC1= 3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±5	LSB	
				External operation amp connection mode			±7	LSB	
		8bit	Vref=V	/cc1=5V, 3.3V			±2	LSB	
_	Absolute Accuracy	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB	
				External operation amp connection mode			±7	LSB	
			VREF= VCC1 =3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±5	LSB	
				External operation amp connection mode			±7	LSB	
		8bit	Vref=V	/cc1=5V, 3.3V			±2	LSB	
-	Tolerance Level Impeda	ince				3		kΩ	
DNL	Differential Non-Linearit	y Error					±1	LSB	
-	Offset Error						±3	LSB	
-	Gain Error						±3	LSB	
RLADDER	Ladder Resistance		Vref=V	/cc1	10		40	kΩ	
tCONV	10-bit Conversion Time, Available	10-bit Conversion Time, Sample & Hold Available		/cc1=5V, ∳AD=12MHz	2.75			μS	
tCONV	8-bit Conversion Time, S Available	Sample & Hold	Vref=V	/cc1=5V, ∳AD=12MHz	2.33			μS	
t SAMP	Sampling Time				0.25			μs	
Vref	Reference Voltage				2.0		Vcc1	V	
VIA	Analog Input Voltage				0		Vref	V	

NOTES:

1. Referenced to Vcc1=AVcc=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.

2. If Vcc1 > Vcc2, do not use AN0_0 to AN0_7 and AN2_0 to AN2_7 as analog input pins.

3. ϕ AD frequency must be 12 MHz or less. And divide the fAD if Vcc1 is less than 4.0V, and ϕ AD frequency into 10 MHz or less.

4. When sample & hold is disabled, ϕAD frequency must be 250 kHz or more, in addition to the limitation in Note 3.

When sample & hold is enabled, ϕAD frequency must be 1MHz or more, in addition to the limitation in Note 3.

Symbol	Parameter	Measuring Condition		Standard	Unit	
Symbol	Falanielei	weasuring condition	Min.	Тур.	Max.	Unit
Vdet4	Low Voltage Detection Voltage (1)	Vcc1=0.8V to 5.5V	3.3	3.8	4.4	V
Vdet3	Reset Level Detection Voltage (1, 2)		2.2	2.8	3.6	V
Vdet4-Vdet3	Electric potential difference of Low Voltage Detection and Reset Level Detection		0.3			V
Vdet3s	Low Voltage Reset Retention Voltage				0.8	V
Vdet3r	Low Voltage Reset Release Voltage (3)		2.2	2.9	4.0	V

 Table 5.9
 Low Voltage Detection Circuit Electrical Characteristics

NOTES:

1. Vdet4 > Vdet3.

2. Where reset level detection voltage is less than 2.7 V, if the supply power voltage is greater than the reset level detection voltage, the microcomputer operates with $f(BCLK) \le 10MHz$.

3. Vdet3r > Vdet3 is not guaranteed.

4. The voltage detection circuit is designed to use when VCC1 is set to 5V.

Table 5.10 Power Supply Circuit Timing Characteristics

Symbol	bol Parameter Measuri		Standard			Unit	
Symbol	Falanlelei	Measuring Condition	Min.	Тур.	Max.	Unit	
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=2.7V to 5.5V			2	ms	
td(R-S)	STOP Release Time				150	μS	
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μS	
td(S-R)	Brown-out Detection Reset (Hardware Reset 2) Release Wait Time	VCC1=Vdet3r to 5.5V		6 (1)	20	ms	
td(E-A)	Low Voltage Detection Circuit Operation Start Time	Vcc1=2.7V to 5.5V			20	μs	

NOTES:

1. When Vcc1 = 5V.

M16C/62P Group (M16C/62P, M16C/62PT)

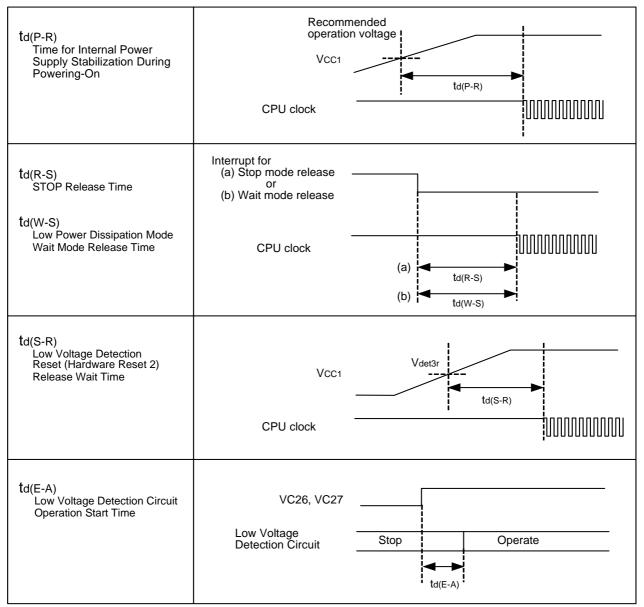


Figure 5.1 Power Supply Circuit Timing Diagram

Symbol	Parameter			Measuring Condition	Standard			Unit
Symbol		Falameter		Measuring Condition	Min.	Тур.	Max.	Unit
Vон	HIGH Output Voltage ⁽³⁾	P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, I P11_0 to P11_7, P14_0, P14	P10_0 to P10_7,	IOH=-5mA	Vcc1-2.0		Vcc1	v
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P5_0 to P5_7,	IOH=-5mA ⁽²⁾	Vcc2-2.0		Vcc2	
Vон	HIGH Output Voltage ⁽³⁾	P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, I P11_0 to P11_7, P14_0, P14	P10_0 to P10_7,	ОН=-200μА	Vcc1-0.3		Vcc1	
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	', P5_0 to P5_7,	IOH=-200µA ⁽²⁾	Vcc2-0.3		Vcc2	
Vон	HIGH Outpu	t Voltage XOUT	HIGHPOWER	IOH=-1mA	Vcc1-2.0		VCC1	V
			LOWPOWER	IOH=-0.5mA	Vcc1-2.0		VCC1	V
	HIGH Outpu	t Voltage XCOUT	HIGHPOWER	With no load applied		2.5		
			LOWPOWER	With no load applied		1.6		V
Vol	LOW Output Voltage ⁽³⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, I P11_0 to P11_7, P14_0, P14	P10 0 to P10 7,	IOL=5mA			2.0	
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7,	IOL=5mA (2)			2.0	V
Vol	LOW Output Voltage ⁽³⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, I P11_0 to P11_7, P14_0, P14	7, P8_0 to P8_4, P10_0 to P10_7,	IOL=200µА			0.45	
	Ŭ	P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7,	IOL=200µA ⁽²⁾			0.45	V
Vol	LOW Output		HIGHPOWER	IOL=1mA			2.0	
			LOWPOWER	IOL=0.5mA			2.0	V
	LOW Output	t Voltage XCOUT	HIGHPOWER	With no load applied		0		.,
			LOWPOWER	With no load applied		0		V
Vt+-Vt-	Hysteresis	HOLD, RDY, TAOIN to TA4II INTO to INT5, NMI, ADTRG, I TAOOUT to TA4OUT, KIO to SCL0 to SCL2, SDA0 to SD/	CTS0 to CTS2, CLK0 to CLK4, KI3, RXD0 to RXD2,		0.2		1.0	v
VT+-VT-	Hysteresis	RESET	, ,		0.2		2.5	V
Ін	HIGH Input Current ⁽³⁾		12_7, P13_0 to P13_7,	VI=5V			5.0	μΑ
lıL	LOW Input Current ⁽³⁾		12_7, P13_0 to P13_7,	VI=0V			-5.0	μΑ
Rpullup	Pull-Up Resistance (3)	P4_0 to P4_7, P5_0 to P5_7	, P2_0 to P2_7, P3_0 to P3_7, , P6_0 to P6_7, P7_2 to P7_7, P9_0 to P9_7, P10_0 to P10_7, 12_7, P13_0 to P13_7,	VI=0V	30	50	170	kΩ
Rfxin	Feedback R	esistance XIN				1.5	l	MΩ
Rfxcin	Feedback R	esistance XCIN				15	l	MΩ
Vram	RAM Retent	ion Voltage		At stop mode	2.0			V

Table 5.11 Electrical Characteristics (1) (1)

NOTES: 1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=24MHz unless otherwise

specified. 2. Where the product is used at Vcc1 = 5 V and Vcc2 = 3 V, refer to the 3 V version value for the pin specified value on Vcc2 port side.

3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.15 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Farameter	Min. Max. 100	Offic	
tc(TA)	TAilN Input Cycle Time	100		ns
tw(TAH)	TAilN Input HIGH Pulse Width	40		ns
tw(TAL)	TAIIN Input LOW Pulse Width	40		ns

Table 5.16 Timer A Input (Gating Input in Timer Mode)

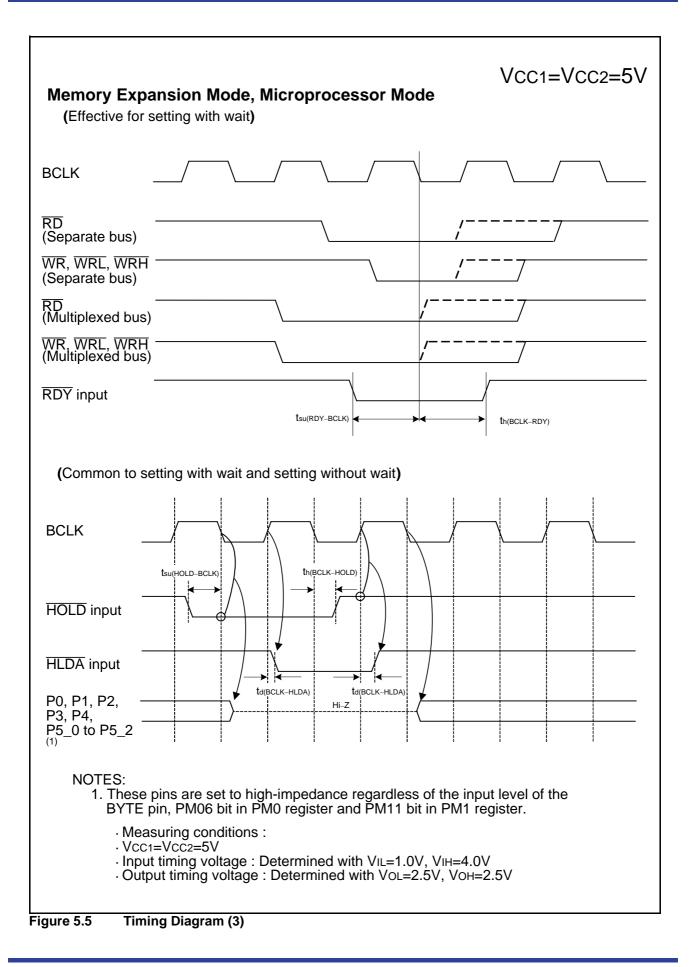
Symbol	Parameter	Stan	Unit	
Symbol	Farameter	Min.	Max.	Unit
tc(TA)	TAilN Input Cycle Time	400		ns
tw(TAH)	TAilN Input HIGH Pulse Width	200		ns
tw(TAL)	TAiIN Input LOW Pulse Width	200		ns

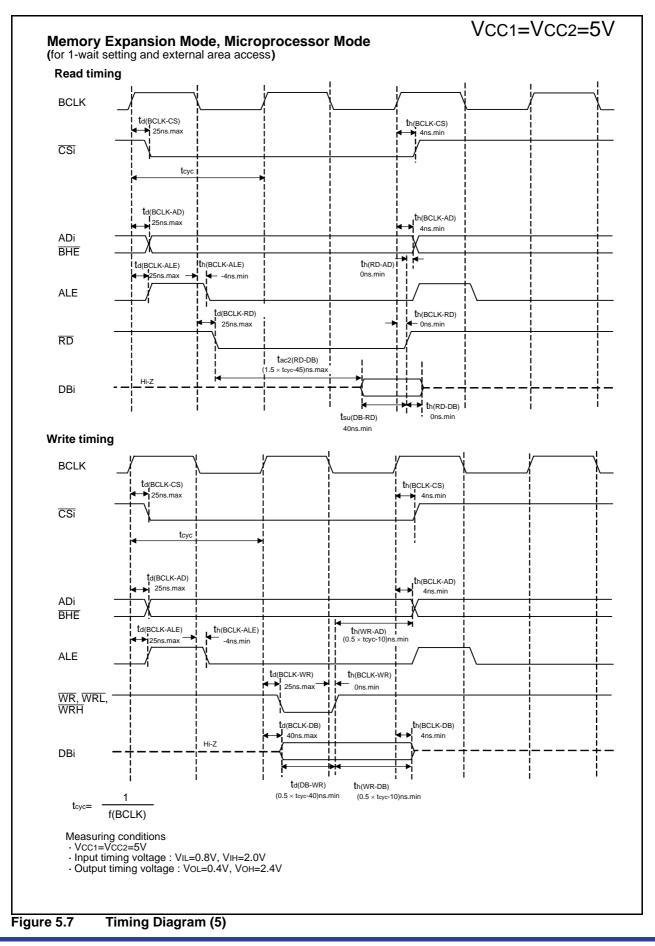
Table 5.17 Timer A Input (External Trigger Input in One-shot Timer Mode)

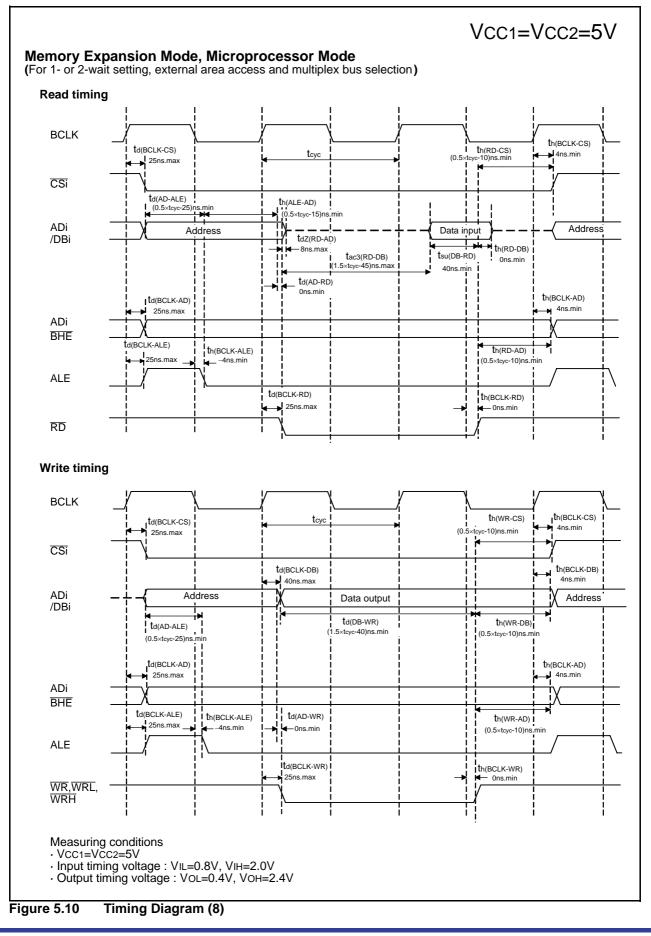
Symbol	Parameter	Stan	Unit	
Symbol	Farameter	Min.	Max.	Unit
tc(TA)	TAiIN Input Cycle Time	200		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns
tw(TAL)	TAilN Input LOW Pulse Width	100		ns

Table 5.18 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	Unit	
	Farameter	Min.	Max.	Unit
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns


Table 5.19 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)


Symbol	Parameter	Stan	Unit	
	Falametei	Min.	Max.	Onit
tc(UP)	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns


Table 5.20 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
	Falantelei	Min.	Max.	Offic
tc(TA)	TAiIN Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAilN Input Setup Time	200		ns

RENESAS

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

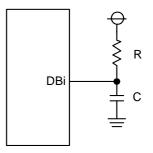
Table 5.47	Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting and external
	area access)

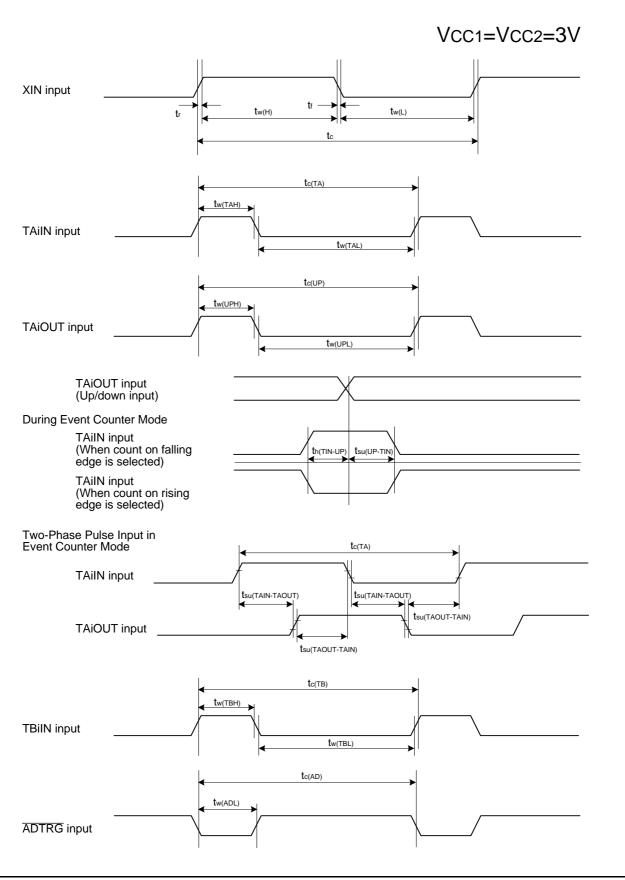
Symbol	Deremeter		Stan	Unit	
Symbol	Parameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.12		30	ns
th(BCLK-RD)	RD Signal Output Hold Time		0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

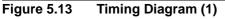
NOTES:

1. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)x10^9}{f(\text{BCLK})} - 40[\text{ns}]$


n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. (BCLK) is 12.5MHz or less.


2. Calculated according to the BCLK frequency as follows:


$$\frac{0.5 \text{x10}^9}{f(\text{BCLK})} - 10[\text{ns}]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / VCc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is

> $t = -30pF X 1k\Omega X ln(1-0.2Vcc2 / Vcc2)$ = 6.7ns.

RENESAS

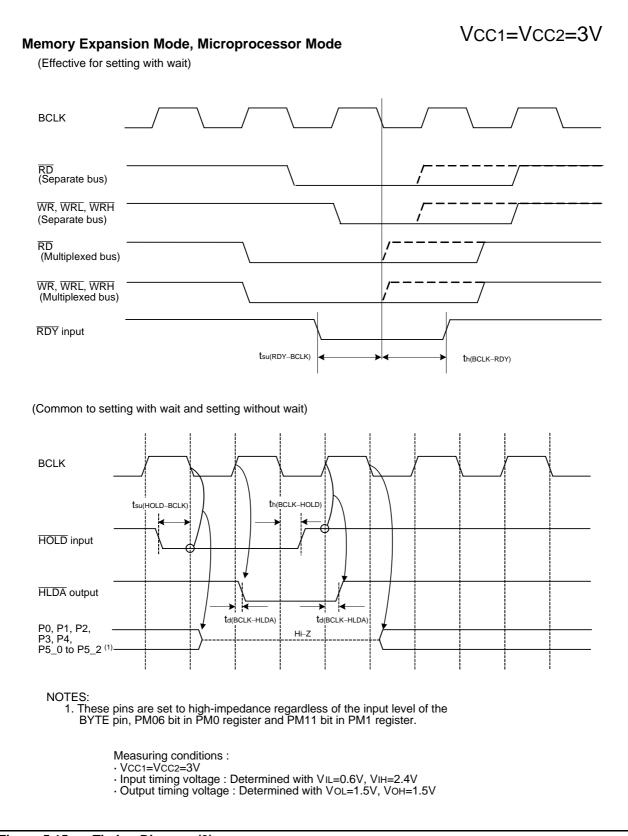
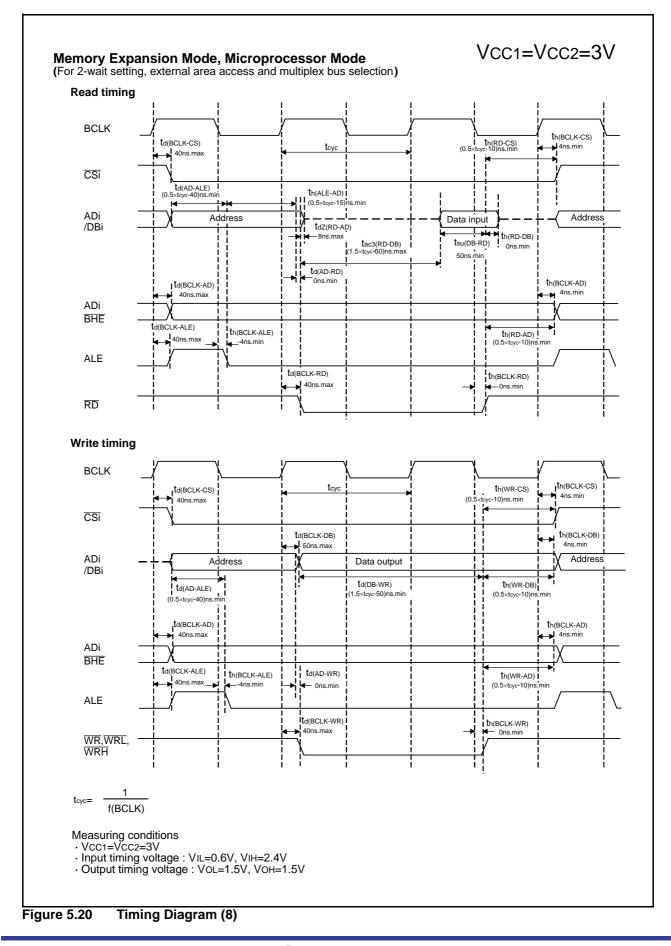



Figure 5.15 Timing Diagram (3)

Sumbol		Demonster		Standa		ł	Link
Symbol		Parameter			Тур.	Max.	Unit
VCC1, VCC2	Supply Voltage (VCC1 = VCC2)		4.0	5.0	5.5	V
AVcc	Analog Supply V	/oltage			VCC1		V
Vss	Supply Voltage				0		V
AVss	Analog Supply V	/oltage			0		V
Viн	HIGH Input Voltage (4)	P3_1 to P3_7, P4_0 to P4_7, P P12_0 to P12_7, P13_0 to P13		0.8Vcc2		VCC2	V
	, and the second s	P0_0 to P0_7, P1_0 to P1_7, F (during single-chip mode)	P2_0 to P2_7, P3_0	0.8Vcc2		Vcc2	V
		P6_0 to P6_7, P7_2 to P7_7, F P10_0 to P10_7, P11_0 to P11 XIN, RESET, CNVSS, BYTE		0.8Vcc1		Vcc1	V
		P7_0, P7_1		0.8Vcc1		6.5	V
VIL	LOW Input Voltage (4)	P3_1 to P3_7, P4_0 to P4_7, P P12_0 to P12_7, P13_0 to P13		0		0.2Vcc2	V
	, and the second s	P0_0 to P0_7, P1_0 to P1_7, F (during single-chip mode)	P2_0 to P2_7, P3_0	0		0.2Vcc2	V
		P6_0 to P6_7, P7_0 to P7_7, F P10_ <u>0 to P10_7, P11_0 to P11</u> XIN, RESET, CNVSS, BYTE		0		0.2Vcc	V
IOH(peak)	HIGH Peak Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12	P6_0 to P6_7, P7_2 to P7_7,			-10.0	mA
IOH(avg)	HIGH Average Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12	P6_0 to P6_7, P7_2 to P7_7,			-5.0	mA
IOL(peak)	LOW Peak Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12	P6_0 to P6_7, P7_0 to P7_7,			10.0	mA
IOL(avg)	LOW Average Output Current (4)	P0_0 to P0_7, P1_0 to P1_7, F P4_0 to P4_7, P5_0 to P5_7, F P8_0 to P8_4, P8_6, P8_7, P9 P11_0 to P11_7, P12_0 to P12	P6_0 to P6_7, P7_0 to P7_7,			5.0	mA
f(XIN)	Main Clock Input	t Oscillation Frequency	VCC1=4.0V to 5.5V	0		16	MHz
f(XCIN)	Sub-Clock Oscill	Oscillation Frequency			32.768	50	kHz
f(Ring)	On-chip Oscillati	ion Frequency		0.5	1	2	MHz
f(PLL)	PLL Clock Oscill	ation Frequency				24	MHz
f(BCLK)	CPU Operation	Clock		0		24	MHz
ts∪(PLL)	PLL Frequency S Wait Time	Synthesizer Stabilization	VCC1=5.5V			20	ms

 Table 5.50
 Recommended Operating Conditions (1) ⁽¹⁾

NOTES:

1. Referenced to Vcc1 = Vcc2 = 4.7 to 5.5V at Topr = -40 to 85° C / -40 to 125° C unless otherwise specified.

T version = -40 to 85 °C, V version = -40 to 125 °C.

2. The Average Output Current is the mean value within 100ms.

3. The total IOL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10 P1, P14_0 and P14_1 must be 80mA max. The total IOL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40mA max.

As for 80-pin version, the total IOL(peak) for all ports and IOH(peak) must be 80mA. max. due to one Vcc and one Vss.

4. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

RENESAS

Symbol		Parameter	r	Measuring Condition	Standard			Unit
,				modeuring contaition	Min.	Тур.	Max.	01110
Vон	Output P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, Voltage ⁽²⁾ P11_0 to P11_7, P14_0, P14_1		IOH=-5mA	Vcc1-2.0		Vcc1	v	
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P5_0 to P5_7,	IOH=-5mA	Vcc2-2.0		Vcc2	
VOH HIGH Output Voltage (2		P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P14	P10_0 to P10_7,	ОН=-200μА	Vcc1-0.3		Vcc1	v
	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, IC P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		Юн=-200µА	Vcc2-0.3		Vcc2	V	
Vон	HIGH Outpu	t Voltage XOUT	HIGHPOWER	IOH=-1mA	Vcc1-2.0		VCC1	V
			LOWPOWER	IOH=-0.5mA	Vcc1-2.0		VCC1	v
	HIGH Outpu	t Voltage XCOUT	HIGHPOWER	With no load applied		2.5		v
			LOWPOWER	With no load applied		1.6		v
Vol	LOW Output Voltage ⁽²⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P14	P10 0 to P10 7,	IOL=5mA			2.0	v
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7,	IOL=5mA			2.0	
Vol	LOW Output Voltage ⁽²⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P14	P10_0 to P10_7,	IOL=200μA			0.45	v
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P5_0 to P5_7,	IOL=200μA			0.45	
Vol	LOW Output	Voltage XOUT	HIGHPOWER	IOL=1mA			2.0	
			LOWPOWER	IOL=0.5mA			2.0	V
	LOW Output	t Voltage XCOUT	HIGHPOWER	With no load applied		0		
			LOWPOWER	With no load applied		0		V
Vt+-Vt-	Hysteresis	HOLD, RDY, TA0IN to TA4II INT0 to INT5, NMI, ADTRG, TA0OUT to TA4OUT, KI0 to SCL0 to SCL2, SDA0 to SD	CTS0 to CTS2, CLK0 to CLK4, KI3, RXD0 to RXD2,		0.2		1.0	V
Vt+-Vt-	Hysteresis	RESET			0.2		2.5	V
Ін	HIGH Input Current ⁽²⁾		P12_7, P13_0 to P13_7,	VI=5V			5.0	μΑ
lı.	LOW Input Current ⁽²⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,		VI=0V			-5.0	μA
Rpullup	Pull-Up Resistance (2)	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1		VI=0V	30	50	170	kΩ
Rfxin	Feedback R	esistance XIN				1.5		MΩ
Rfxcin	Feedback R	esistance XCIN				15		MΩ
Vram	RAM Retent	ion Voltage		At stop mode	2.0			V

Table 5.57 Electrical Characteristics (1) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.0 to 5.5V, Vss = 0V at Topr = -40 to 85°C / -40 to 125°C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85°C, V version =-40 to 125°C.
2. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Timing Requirements

(Vcc1 = Vcc2 = 5V, Vss = 0V, at Topr = -40 to 85°C (T version) / -40 to 125°C (V version) unless otherwise specified)

Symbol	Parameter	Stan	dard	Unit
	Falametei		Max.	Offic
tc	External Clock Input Cycle Time	62.5		ns
tw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. vithout notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials. including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nome page (ntp://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> 2-796-3115, Fax: <82> 2-796-2145

Renesas Technology Malaysia Sdn. Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .3.0

http://www.renesas.com