

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30626fjpgp-u5c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

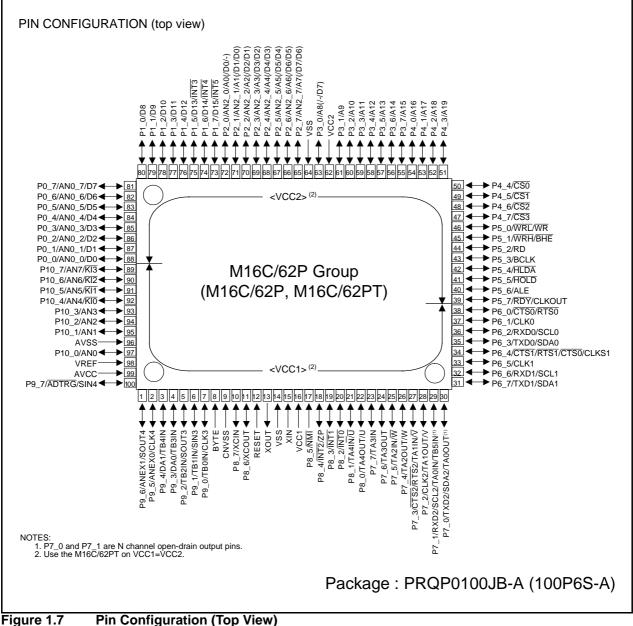
As of Dec. 2005

			-	-		
Туре No.		ROM Capacity	RAM Capacity	Package Type ⁽¹⁾	Re	emarks
M3062CM6V-XXXFP	(P)	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM	V Version
M3062CM6V-XXXGP	(P)			PLQP0100KB-A	version	(High reliability
M3062EM6V-XXXGP	(P)			PRQP0080JA-A		125°C version)
M3062CM8V-XXXFP	(P)	64 Kbytes	4 Kbytes	PRQP0100JB-A		
M3062CM8V-XXXGP	(P)			PLQP0100KB-A		
M3062EM8V-XXXGP	(P)			PRQP0080JA-A		
M3062CMAV-XXXFP	(P)	96 Kbytes	5 Kbytes	PRQP0100JB-A		
M3062CMAV-XXXGP	(P)			PLQP0100KB-A		
M3062EMAV-XXXGP	(P)			PRQP0080JA-A		
M3062AMCV-XXXFP	(D)	128 Kbytes	10 Kbytes	PRQP0100JB-A		
M3062AMCV-XXXGP	(D)			PLQP0100KB-A		
M3062BMCV-XXXGP	(P)			PRQP0080JA-A		
M3062AFCVFP	(D)	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	Flash	
M3062AFCVGP	(D)			PLQP0100KB-A	memory	
M3062BFCVGP	(P)			PRQP0080JA-A	version ⁽²⁾	
M3062JFHVFP	(P)	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A		
M3062JFHVGP	(P)			PLQP0100KB-A		

Table 1.7 Product List (4) (V version (M16C/62PT))

(D): Under development

(P): Under planning


NOTES:

1. The old package type numbers of each package type are as follows.

PLQP0128KB-A : 128P6Q-A, PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A,

PRQP0080JA-A : 80P6S-A

2. In the flash memory version, there is 4K bytes area (block A).

Pin Configuration (Top View)

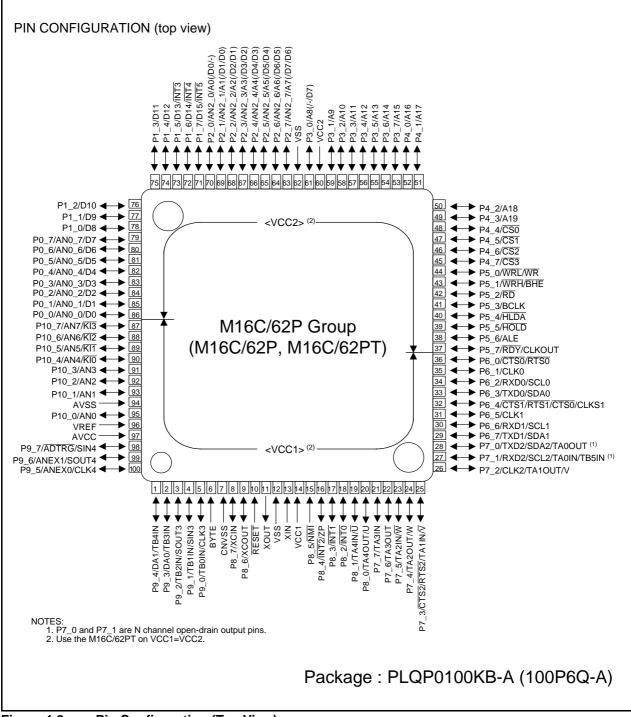
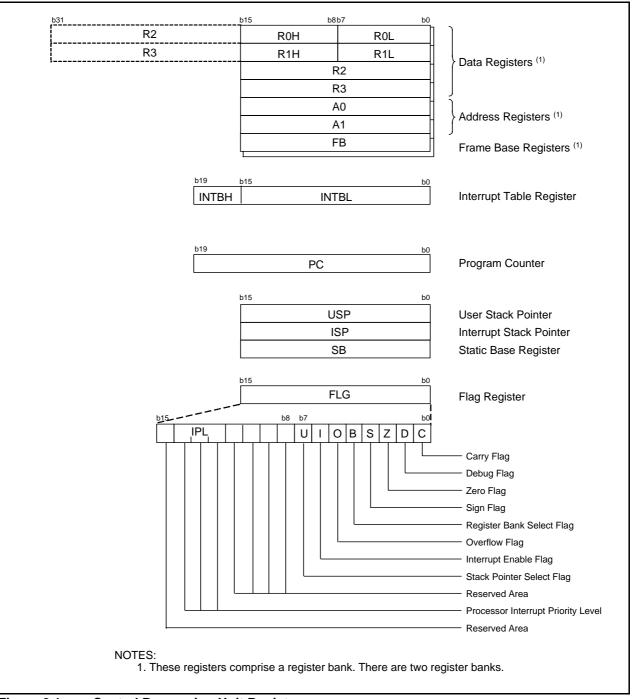



Figure 1.8 Pin Configuration (Top View)

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

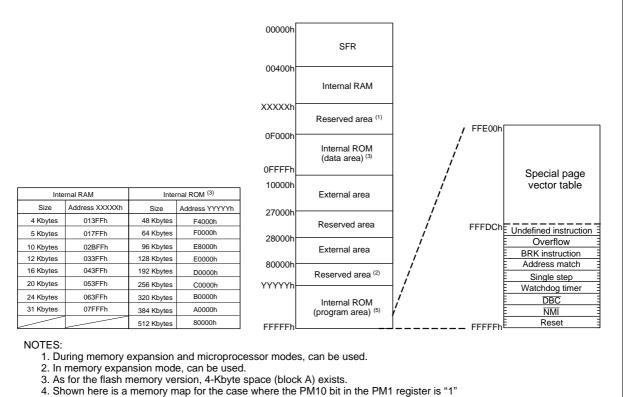
The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

3. Memory

Figure 3.1 is a Memory Map of the M16C/62P group. The address space extends the 1M bytes from address 00000h to FFFFFh.

The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 64-Kbyte internal ROM is allocated to the addresses from F0000h to FFFFFh.

As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.


The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 10-Kbyte internal RAM is allocated to the addresses from 00400h to 02BFFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SRF is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to the **M16C/60 and M16C/20 Series Software Manual**.

In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users. Use M16C/62P (80-pin version) and M16C/62PT in single-chip mode. The memory expansion and microprocessor modes cannot be used

RENESAS

and the PM13 bit in the PM1 register is "1"

5. When using the masked ROM version, write nothing to internal ROM area.

Table 4.2	SFR Information ((2) ⁽¹⁾
-----------	-------------------	----------------------------

Address	Register	Symbol	After Reset
0040h			
0041h			
0042h			
0043h			
0044h	INT3 Interrupt Control Register	INT3IC	XX00X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXXX000b
0046h	Timer B4 Interrupt Control Register, UART1 BUS Collision Detection Interrupt Control Register	TB4IC, U1BCNIC	XXXXX000b
0047h	Timer B3 Interrupt Control Register, UART0 BUS Collision Detection Interrupt Control Register	TB3IC, U0BCNIC	XXXXX000b
0048h	SI/O4 Interrupt Control Register, INT5 Interrupt Control Register	S4IC, INT5IC	XX00X000b
0049h	SI/O3 Interrupt Control Register, INT4 Interrupt Control Register	S3IC, INT4IC	XX00X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXXX000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXXX000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
0051h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timer A0 Interrupt Control Register	TAOIC	XXXXX000b
0055h	Timer A1 Interrupt Control Register	TAIIC	XXXXX000b
0050n 0057h	Timer A2 Interrupt Control Register	TATIC	XXXXX000b
0057h 0058h	Timer A3 Interrupt Control Register	TA3IC	XXXXX000b
0058h 0059h		TASIC	
	Timer A4 Interrupt Control Register		XXXXX000b XXXXX000b
005Ah	Timer B0 Interrupt Control Register	TBOIC	
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXXX000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXXX000b
005Dh	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00X000b
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch		1	
006Dh		1	
006Eh		1	
006Fh			
0070h			
0070h			
0072h		1	
0072h		1	
0073h 0074h			
007411 0075h			
0075h			
0076h		-	
		+	-
0078h			
0079h			
007Ah		1	
007Bh			
007Ch			
007Dh			
007Eh			
007Eh			

NOTES: 1. The blank areas are reserved and cannot be accessed by users.

X : Nothing is mapped to this bit

Cumple al		Devenueter		Standar	d	الما ا
Symbol		Parameter	Min.	Тур.	Max.	Unit
VCC1, VCC2	Supply Voltage ((Vcc1 ≥ Vcc2)	2.7	5.0	5.5	V
AVcc	Analog Supply V	/oltage		Vcc1		V
Vss	Supply Voltage	•		0		V
AVss	Analog Supply V	/oltage		0		V
Vih	HIGH Input Voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7	0.8Vcc2		Vcc2	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0.8Vcc2		Vcc2	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0.5Vcc2		Vcc2	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE	0.8Vcc1		Vcc1	V
		P7_0, P7_1	0.8Vcc1		6.5	V
VIL	LOW Input Voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7	0		0.2Vcc2	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	to P1_7, P2_0 to P2_7, P3_0 0.2	0.2Vcc2	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0		0.16Vcc2	V
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE	0		Vcc2 Vcc2 Vcc1 6.5 0.2Vcc2 0.2Vcc2	V
IOH(peak)	HIGH Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1			-10.0	mA
IOH(avg)	HIGH Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1			-5.0	mA
IOL(peak)	LOW Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1			10.0	mA
IOL(avg)	LOW Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1			5.0	mA

 Table 5.2
 Recommended Operating Conditions (1) ⁽¹⁾

NOTES:

- 1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.
- 2. The Average Output Current is the mean value within 100ms.
- 3. The total IOL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be 80mA max. The total IOL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be –40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be –40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be –40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be –40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be –40mA max. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P14_0, and P14_1 must be –40mA max. Set Average Output Current to 1/2 of peak. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be –40mA max.
 - As for 80-pin version, the total IOL(peak) for all ports and IOH(peak) must be 80mA. max. due to one Vcc and one Vss.
- 4. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Symbol	Parameter	Measuring Condition		Standard		Unit
Symbol	Falanielei	weasuring condition	Min.	. Typ. Max.	Unit	
Vdet4	Low Voltage Detection Voltage (1)	Vcc1=0.8V to 5.5V	3.3	3.8	4.4	V
Vdet3	Reset Level Detection Voltage (1, 2)		2.2	2.8	3.6	V
Vdet4-Vdet3	Electric potential difference of Low Voltage Detection and Reset Level Detection		0.3			V
Vdet3s	Low Voltage Reset Retention Voltage				0.8	V
Vdet3r	Low Voltage Reset Release Voltage (3)		2.2	2.9	4.0	V

 Table 5.9
 Low Voltage Detection Circuit Electrical Characteristics

NOTES:

1. Vdet4 > Vdet3.

2. Where reset level detection voltage is less than 2.7 V, if the supply power voltage is greater than the reset level detection voltage, the microcomputer operates with $f(BCLK) \le 10MHz$.

3. Vdet3r > Vdet3 is not guaranteed.

4. The voltage detection circuit is designed to use when VCC1 is set to 5V.

Table 5.10 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring Condition		Standard		Unit
Symbol	Falanlelei	Measuring Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=2.7V to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μS
td(S-R)	Brown-out Detection Reset (Hardware Reset 2) Release Wait Time	VCC1=Vdet3r to 5.5V		6 (1)	20	ms
td(E-A)	Low Voltage Detection Circuit Operation Start Time	Vcc1=2.7V to 5.5V			20	μs

NOTES:

1. When Vcc1 = 5V.

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.13 External Clock Input (XIN input) (1)

Symbol	Parameter	Stan	Idard	Unit
Symbol	Falametei	Min.	Max.	Offic
tc	External Clock Input Cycle Time	62.5		ns
ťw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

NOTES:

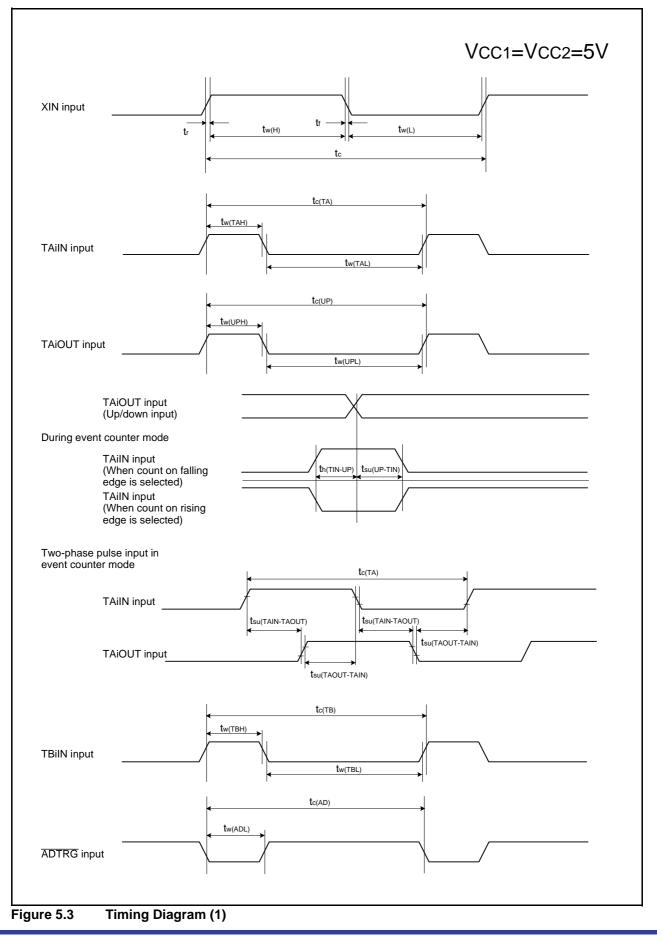
1. The condition is Vcc1=Vcc2=3.0 to 5.0V.

Table 5.14 Memory Expansion Mode and Microprocessor Mode

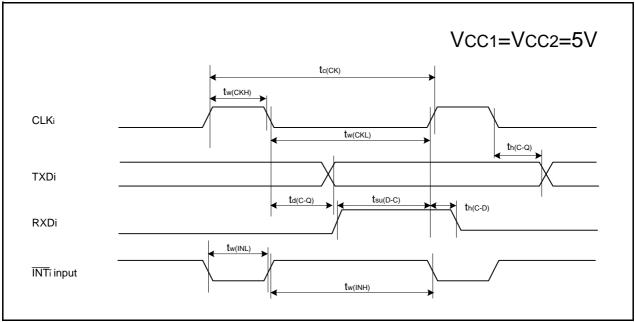
Symbol	Parameter	Standard		Standard		Unit	
Symbol	Falametei	Min.	Max.	Unit			
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns			
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns			
tac3(RD-DB)	Data Input Access Time (when accessing multiplex bus area)		(NOTE 3)	ns			
tsu(DB-RD)	Data Input Setup Time	40		ns			
tsu(RDY-BCLK)	RDY Input Setup Time	30		ns			
tsu(HOLD-BCLK)	HOLD Input Setup Time	40		ns			
th(RD-DB)	Data Input Hold Time	0		ns			
th(BCLK-RDY)	RDY Input Hold Time	0		ns			
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns			

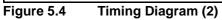
NOTES:

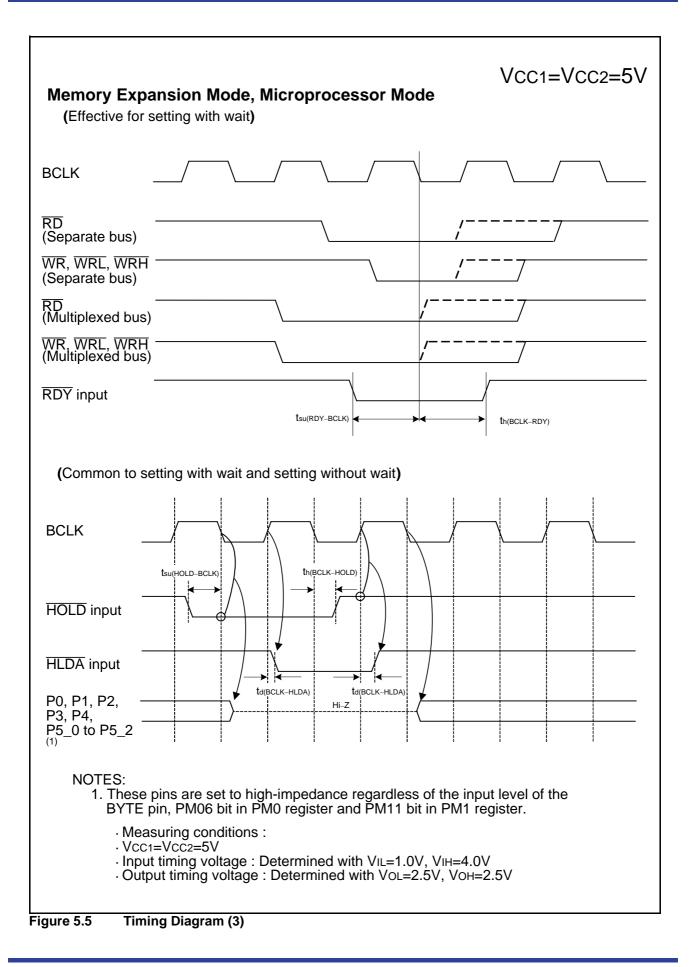
1. Calculated according to the BCLK frequency as follows:

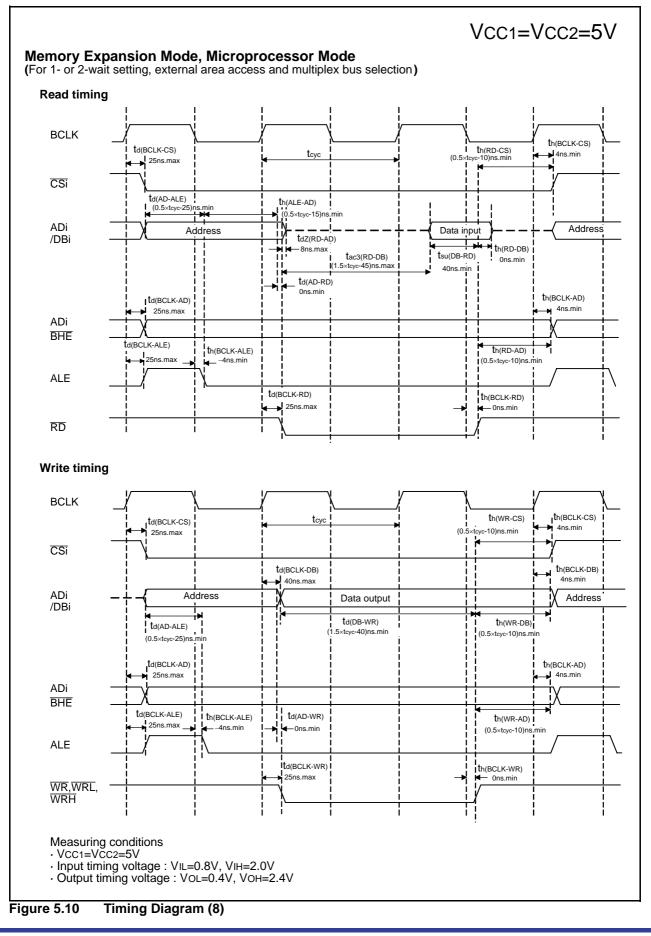

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45[ns]$$

2. Calculated according to the BCLK frequency as follows:


$$\frac{(n-0.5)x10^9}{f(BCLK)} - 45[ns]$$
n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting


3. Calculated according to the BCLK frequency as follows:


$$\frac{(n-0.5)x10^9}{f(BCLK)} - 45[ns]$$
 n is "2" for 2-wait setting, "3" for 3-wait setting.



RENESAS

RENESAS

Symbol	Paramet	or	Maaa	uring Condition	;	Standard	b	Unit
Symbol	Falamet	ei	Ivieas		Min.	Тур.	Max.	Onit
Icc	Power Supply Current (Vcc1=Vcc2=2.7V to 3.6V)	In single-chip mode, the output	Mask ROM	f(BCLK)=10MHz No division		8	11	mA
	· · · · · · · · · · · · · · · · · · ·	pins are open and other pins are Vss		No division, On-chip oscillation		1	Max.	mA
			Flash Memory	f(BCLK)=10MHz, No division		8	13	mA
			,	No division, On-chip oscillation		1.8		mA
			Flash Memory Program	f(BCLK)=10MHz, VCC1=3.0V		12		mA
			Flash Memory Erase	f(BCLK)=10MHz, VCC1=3.0V		22		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μA
			Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μA
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μA
				On-chip oscillation, Wait mode		45		μA
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		6.0		μΑ
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		1.8		μA
				Stop mode Topr =25°C		0.7	3.0	μA
Idet4	Low Voltage Detection Diss	sipation Current (4)				0.6	4	μΑ
Idet3	Reset Area Detection Dissi	pation Current (4)				0.4	2	μΑ

Table 5.31 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=10MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register

Idet3: VC26 bit in the VCR2 register

VCC1=VCC2=3V

Switching Characteristics

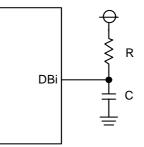
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.46	Memory Expansion and Microprocessor Modes (for setting with no wait)
	· · · · · · · · · · · · · · · · · · ·

Currente e l	Deveryeter		Stan	dard	Linit
Symbol	Parameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.12		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	Figure 5.12	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) (3)		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:


$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns] \qquad \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR X \ln (1 - VoL / Vcc2)$ by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

t = -30pF X 1k Ω X In(1-0.2Vcc2 / Vcc2)

= 6.7ns.

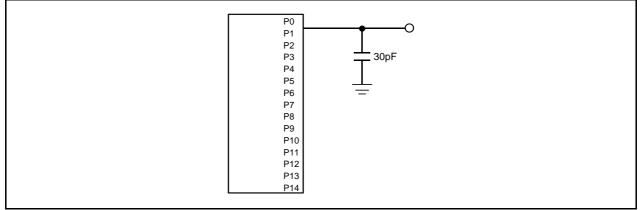


Figure 5.12 Ports P0 to P14 Measurement Circuit

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

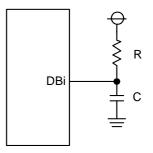
Table 5.47	Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting and external
	area access)

Symbol	Deremeter	Stan	dard	Unit	
Symbol	Parameter	Min.	Max.	Unit	
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.12		30	ns
th(BCLK-RD)	RD Signal Output Hold Time		0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)x10^9}{f(\text{BCLK})} - 40[\text{ns}]$


n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. (BCLK) is 12.5MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{x10}^9}{f(\text{BCLK})} - 10[\text{ns}]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / VCc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is

> $t = -30pF X 1k\Omega X ln(1-0.2Vcc2 / Vcc2)$ = 6.7ns.

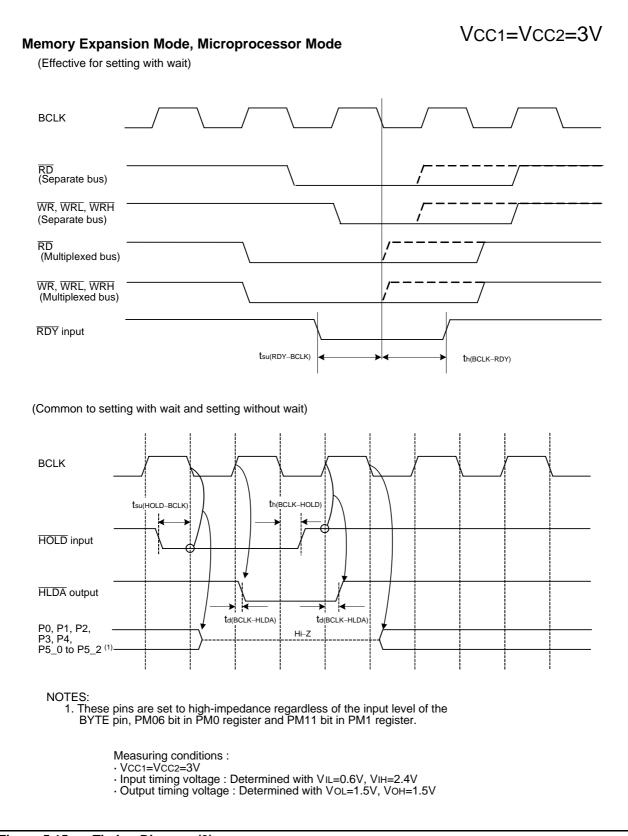


Figure 5.15 Timing Diagram (3)

Symbol	Parameter	Measuring Condition		Unit			
Symbol	Falanetei	measuring Condition	Min.	Тур.	Max.	Unit	
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=4.0V to 5.5V			2	ms	
td(R-S)	STOP Release Time				150	μS	
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs	

Table 5.56	Power Supply Circuit Timing Characteristics	
------------	---	--

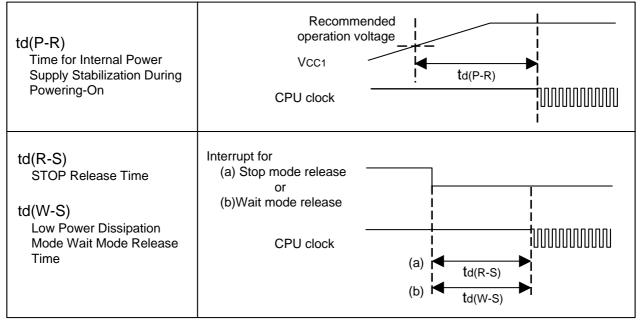


Figure 5.22 Power Supply Circuit Timing Diagram

VCC1=VCC2=5V

Symbol	Parameter			Measuring Condition	Standard			Unit	
,			modeuring contaition	Min.	Тур.	Max.	01110		
Vон	HIGH Output Voltage ⁽²⁾	P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P14	IOH=-5mA	Vcc1-2.0		Vcc1	v		
	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7			IOH=-5mA	Vcc2-2.0		Vcc2		
VOH HIGH Output Voltage ⁽²⁾		P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P14	P10_0 to P10_7,	ОН=-200μА	Vcc1-0.3		Vcc1	N	
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	', P5_0 to P5_7,	Юн=-200µА	Vcc2-0.3		Vcc2		
Vон	HIGH Outpu	t Voltage XOUT	HIGHPOWER	IOH=-1mA	Vcc1-2.0		VCC1	V	
			LOWPOWER	IOH=-0.5mA	Vcc1-2.0		VCC1	v	
	HIGH Outpu	t Voltage XCOUT	HIGHPOWER	With no load applied		2.5			
			LOWPOWER	With no load applied		1.6		V	
Vol	LOW Output Voltage ⁽²⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P14	P10 0 to P10 7,	IOL=5mA			2.0	v	
. chage		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7,	IOL=5mA			2.0		
C	LOW Output Voltage ⁽²⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P14	P10_0 to P10_7,	IOL=200μA			0.45	v	
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P5_0 to P5_7,	IOL=200μA			0.45		
Vol	LOW Output	Voltage XOUT	HIGHPOWER	IOL=1mA			2.0		
			LOWPOWER	IOL=0.5mA			2.0	V	
	LOW Output	Voltage XCOUT	HIGHPOWER	With no load applied		0			
			LOWPOWER	With no load applied		0		V	
Vt+-Vt-	Hysteresis	HOLD, RDY, TA0IN to TA4I INT0 to INT5, NMI, ADTRG, TA0OUT to TA4OUT, KI0 to SCL0 to SCL2, SDA0 to SD		0.2		1.0	V		
Vt+-Vt-	Hysteresis				0.2		2.5	V	
Ін	HIGH Input Current ⁽²⁾	P0_0 to P0_7, P1_0 to P1_7 P4_0 to P4_7, P5_0 to P5_7 P8_0 to P8_7, P9_0 to P9_ P11_0 to P11_7, P12_0 to P P14_0, P14_1, XIN, RESET	VI=5V			5.0	μΑ		
lıL	LOW Input Current ⁽²⁾	P0_0 to P0_7, P1_0 to P1_7 P4_0 to P4_7, P5_0 to P5_7 P8_0 to P8_7, P9_0 to P9_7 P11_0 to P11_7, P12_0 to P P14_0, P14_1, XIN, RESET	VI=0V			-5.0	μA		
Rpullup	Pull-Up Resistance (2)	P0_0 to P0_7, P1_0 to P1_7 P4_0 to P4_7, P5_0 to P5_7 P8_0 to P8_4, P8_6, P8_7, I P11_0 to P11_7, P12_0 to P P14_0, P14_1	VI=0V	30	50	170	kΩ		
Rfxin	Feedback R	esistance XIN				1.5		MΩ	
Rfxcin	Feedback Resistance XCIN					15		MΩ	
Vram	RAM Retent	ion Voltage	At stop mode	2.0			V		

Table 5.57 Electrical Characteristics (1) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.0 to 5.5V, Vss = 0V at Topr = -40 to 85°C / -40 to 125°C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85°C, V version =-40 to 125°C.
2. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

REVISION HISTORY M16C/62P Group (M16C/62P, M16C/62PT) Hardware M						
Rev. Date			Description			
TXCV.	Date	Page		Summary		
		33	Table 5.4 A	-D Conversion Characteristics is revised.		
			Table 5.5 D	-A Conversion Characteristics revised.		
		34,74	Table 5.6 to	5.7 and table 5.54 to 5.55 are revised.		
		36	Table 5.11	is revised.		
		38,55	Table 5.14	and 5.33 HLDA output deley time is deleted.		
		41	Figure 5.1 i	s partly revised.		
		41-43,	Table 5.27	to 5.29 and table 5.46 to 48 HLDA output deley time is added.		
		58-60				
		44	Figure 5.2	Timing Diagram (1) XIN input is added.		
		47-48	Figure 5.5 t	to 5.6 Read timing $DB \rightarrow DBi$		
		49-50	Figure 5.7 t	to 5.8 Write timing $DB \rightarrow DBi$		
		52	Figure 5.10			
		53	Table 5.30			
		58	-	is partly revised.		
		61	-	Timing Diagram (1) XIN input is added.		
		64-65	0	to 5.16 Read timing $DB \rightarrow DBi$		
		66-67	-	to 5.18 Write timing $DB \rightarrow DBi$		
		69	Figure 5.20			
		70-85		haracteristics (M16C/62PT) is added.		
2.10	Nov 07, 2003	8-9 23	Table 1.5 to Table 3.1 is	o 1.7 Product List is partly revised. Note 1 is deleted. s revised.		
		71	Table 5.50			
		72	Table 5.51			
2.11	Jan 06, 2004	16		$VCC1 VCC2 \rightarrow VCC1 > VCC2$		
		17-18		to 1.11 NOTE 1 VCC1 VCC2 \rightarrow VCC1 > VCC2		
		31		Power Supply Ripple Allowable Frequency Unit MHz \rightarrow kHz		
		12		nd Figure 1.5 are added.		
2.30	Sep 01, 2004	18, 20		to 1.13 are revised.		
		19,21		to 1.14 are revised.		
		24	-	s partly revised.		
		05	Note 3 is ad			
		25	Note 6 is ad			
		33	Table 5.3 is			
		34		able 5.4 is added.		
		34 35		5.6 is partly revised.		
		- 30	5 Table 5.8 is revised. Table 5.9 is revised.			
		37	37 Table 5.11 is revised.			
		57				