

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30626fjpgp-u7c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

M16C/62P Group (M16C/62P, M16C/62PT) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0001-0241 Rev.2.41 Jan 10, 2006

1. Overview

The M16C/62P Group (M16C/62P, M16C/62PT) of single-chip microcomputers are built using the high performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 80-pin, 100-pin and 128-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.

1.1 Applications

Audio, cameras, television, home appliance, office/communications/portable/industrial equipment, automobile, etc.

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

	Item	Performance				
		M16C/62P	M16C/62PT ⁽⁴⁾			
CPU	Number of Basic Instructions	91 instructions				
	Minimum Instruction Execution Time	41.7ns(f(BCLK)=24MHz, VCC1=3.3 to 5.5V) 100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)	41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5.5V)			
	Operating Mode	Single-chip mode				
	Address Space	1 Mbyte				
	Memory Capacity	See Table 1.4 to 1.7 Product Lis	st			
Peripheral	Port	Input/Output : 70 pins, Input : 1 pin				
Function	Multifunction Timer	Timer A : 16 bits x 5 channels (Time Timer B : 16 bits x 6 channels (Time				
	Serial Interface	2 channels Clock synchronous, UART, I ² C bu 1 channel Clock synchronous, I ² C bus ⁽¹⁾ , IE 2 channels Clock synchronous (1 channel is c	Bus ⁽²⁾ only transmission)			
1	A/D Converter	10-bit A/D converter: 1 circuit, 26 ch	annels			
	D/A Converter	8 bits x 2 channels				
	DMAC	2 channels				
	CRC Calculation Circuit	CCITT-CRC				
	Watchdog Timer	15 bits x 1 channel (with prescaler)				
	Interrupt	Internal: 29 sources, External: 5 sources, Sof	tware: 4 sources, Priority level: 7 levels			
	Clock Generation Circuit	4 circuits Main clock generation circuit (*), Subclock generation circuit (*), On-chip oscillator, PLL synthesizer (*)Equipped with a built-in feedback resistor.				
	Oscillation Stop Detection Function	Stop detection of main clock oscillation, re-oscillation detection function				
	Voltage Detection Circuit		Absent			
Electric Characteristics	Supply Voltage	VCC1=3.0 to 5.5 V, (f(BCLK=24MHz) VCC1=2.7 to 5.5 V, (f(BCLK=10MHz)	VCC1=4.0 to 5.5V, (f(BCLK=24MHz)			
	Power Consumption	14 mA (VCC1=5V, f(BCLK)=24MHz) 8 mA (VCC1=3V, f(BCLK)=10MHz) 1.8μA (VCC1=3V, f(XCIN)=32kHz, wait mode) 0.7μA (VCC1=3V, stop mode)	14 mA (VCC1=5V, f(BCLK)=24MHz) 2.0μA (VCC1=5V, f(XCIN)=32kHz, wait mode) 0.8μA (VCC1=5V, stop mode)			
Flash memory	Program/Erase Supply Voltage	3.3 ± 0.3V or 5.0 ± 0.5V	5.0 ± 0.5V			
version	Program and Erase Endurance	100 times (all area) or 1,000 times (user ROM area with / 10,000 times (block A, block 1) ⁽³⁾	out block A and block 1)			
Operating Amb	ient Temperature	-20 to 85°C, -40 to 85°C ⁽³⁾	T version : -40 to 85°C V version : -40 to 125°C			
Package		80-pin plastic mold QFP	1			

Table 1.3 Performance Outline of M16C/62P Group (M16C/62P, M16C/62PT)(80-pin version)

NOTES:

- 1. I²C bus is a registered trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.
- 3. See **Table 1.8 and 1.9 Product Code** for the program and erase endurance, and operating ambient temperature.

In addition 1,000 times/10,000 times are under development as of Jul., 2005. Please inquire about a release schedule.

4. All options are on request basis.

As of Dec. 2005

			-	-		
Туре No.		ROM Capacity	RAM Capacity	Package Type ⁽¹⁾	Re	emarks
M3062CM6V-XXXFP	(P)	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM	V Version
M3062CM6V-XXXGP	(P)			PLQP0100KB-A	version	(High reliability
M3062EM6V-XXXGP	(P)			PRQP0080JA-A		125°C version)
M3062CM8V-XXXFP	(P)	64 Kbytes	4 Kbytes	PRQP0100JB-A		
M3062CM8V-XXXGP	(P)			PLQP0100KB-A		
M3062EM8V-XXXGP	(P)			PRQP0080JA-A		
M3062CMAV-XXXFP	(P)	96 Kbytes	5 Kbytes	PRQP0100JB-A		
M3062CMAV-XXXGP	(P)			PLQP0100KB-A		
M3062EMAV-XXXGP	(P)			PRQP0080JA-A		
M3062AMCV-XXXFP	(D)	128 Kbytes	10 Kbytes	PRQP0100JB-A		
M3062AMCV-XXXGP	(D)			PLQP0100KB-A		
M3062BMCV-XXXGP	(P)			PRQP0080JA-A		
M3062AFCVFP	(D)	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	Flash	
M3062AFCVGP	(D)			PLQP0100KB-A	memory	
M3062BFCVGP	(P)			PRQP0080JA-A	version ⁽²⁾	
M3062JFHVFP	(P)	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A		
M3062JFHVGP	(P)			PLQP0100KB-A		

Table 1.7 Product List (4) (V version (M16C/62PT))

(D): Under development

(P): Under planning

NOTES:

1. The old package type numbers of each package type are as follows.

PLQP0128KB-A : 128P6Q-A, PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A,

PRQP0080JA-A : 80P6S-A

2. In the flash memory version, there is 4K bytes area (block A).

	Product	Dockogo	Internal ROM (User ROM Area Without Block A, Block 1)		Interna (Block A,	Operating Ambient	
	Code	Package	Program and Erase Endurance	Temperature Range	Program and Erase Endurance	Temperature Range	Temperature
Flash memory	D3	Lead-	100	0°C to 60°C	100	0°C to 60°C	-40°C to 85°C
Version	D5	included					-20°C to 85°C
	D7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	D9					-20°C to 85°C	-20°C to 85°C
	U3	Lead-free	100		100	0°C to 60°C	-40°C to 85°C
	U5						-20°C to 85°C
	U7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	U9					-20°C to 85°C	-20°C to 85°C
ROM-less	D3	Lead-	-	-	-	-	-40°C to 85°C
version	D5	included					-20°C to 85°C
	U3	Lead-free	-	-	-	-	-40°C to 85°C
	U5						-20°C to 85°C

Table 1.8 Product Code of Flash Memory version and ROMless version for M16C/62P

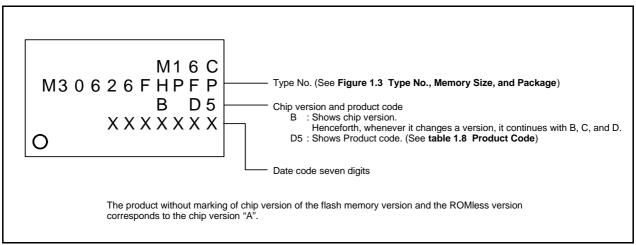


Figure 1.4 Marking Diagram of Flash Memory version and ROM-less version for M16C/62P (Top View)

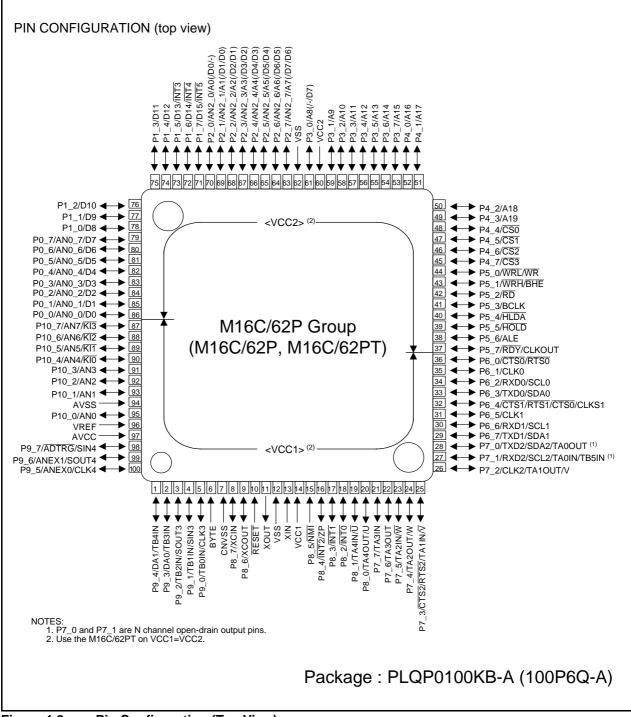


Figure 1.8 Pin Configuration (Top View)

Pin FP	No. GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
1	99		P9_6			SOUT4	ANEX1	
2	100		P9_5			CLK4	ANEX0	
3	1		P9_4		TB4IN		DA1	
4	2		P9_3		TB3IN		DA0	
5	3		P9_2		TB2IN	SOUT3		
6	4		 P9_1		TB1IN	SIN3		
7	5		P9_0		TBOIN	CLK3		
8	6	BYTE						
9	7	CNVSS						
10	8	XCIN	P8_7					
11	9	XCOUT	P8_6					
12	10	RESET						
13	11	XOUT						
14	12	VSS						
15	13	XIN						
16	14	VCC1						
17	15		P8_5	NMI				
18	16		 P8_4	INT2	ZP			1
19	17		P8_3	INT1				
20	18							
			P8_2	INT0				
21	19		P8_1		TA4IN/U			
22	20		P8_0		TA4OUT/U			
23	21		P7_7		TA3IN			
24	22		P7_6		TA3OUT			
25	23		P7_5		TA2IN/W			
26	24		P7_4		TA2OUT/W			
27	25		P7_3		TA1IN/V	CTS2/RTS2		
28	26		P7_2		TA1OUT/V	CLK2		
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2		
30	28		P7_0		TA0OUT	TXD2/SDA2		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6_4			CTS1/RTS1/CTS0/CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6_2			RXD0/SCL0		
37	35		P6_1			CLK0		
38	36		P6_0			CTS0/RTS0		
39	37		P5_7					RDY/CLKOUT
40	38		P5_6					ALE
41	39		 P5_5					HOLD
42	40		P5_4					HLAD
42	40		P5_4 P5_3		<u> </u>			BCLK
44	42		P5_2					RD
45	43		P5_1					WRH/BHE
46	44		P5_0					WRL/WR
47	45		P4_7					CS3
48	46		P4_6					CS2
49	47		 P4_5					CS1
49			·_~	1	1	1	1	1 - - -

 Table 1.13
 Pin Characteristics for 100-Pin Package (1)

RENESAS

1.6 Pin Description

	•	•		. ,,,
Signal Name	Pin Name	I/O Type	Power Supply ⁽³⁾	Description
Power supply input	VCC1,VCC2 VSS	I	_	Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is that VCC1 \ge VCC2. ^(1, 2)
Analog power supply input	AVCC AVSS	I	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS	Ι	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode.
External data bus width select input	BYTE	I	VCC1	Switches the data bus in external memory space. The data bus is 16 bits long when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it to either one. Connect this pin to VSS when an single-chip mode.
Bus control pins ⁽⁴⁾	D0 to D7	I/O	VCC2	Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.
	D8 to D15	I/O	VCC2	Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus.
	A0 to A19	0	VCC2	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A0 to A7) by timesharing when external 8-bit data bus are set as the multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A1 to A8) by timesharing when external 16-bit data bus are set as the multiplexed bus.
	CS0 to CS3	0	VCC2	Output $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ signals. $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are chip-select signals to specify an external space.
	WRL/WR WRH/BHE RD	0	VCC2	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR can be switched by program. • WRL, WRH and RD are selected The WRL signal becomes "L" by writing data to an even address in an external memory space. The WRH signal becomes "L" by writing data to an odd address in an external memory space. The RD pin signal becomes "L" by reading data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. The RD signal becomes "L" by reading data in an external memory space. The BHE and RD are selected Signal becomes "L" by reading data in an external memory space. The BHE signal becomes "L" by reading data in an external memory space.
	ALE	0	VCC2	ALE is a signal to latch the address.
	HOLD	I	VCC2	While the $\overline{\text{HOLD}}$ pin is held "L", the microcomputer is placed in a hold state.
	HLDA	0	VCC2	In a hold state, HLDA outputs a "L" signal.
	RDY	1	VCC2	While applying a "L" signal to the \overline{RDY} pin, the microcomputer is

Table 1.17Pin Description (100-pin and 128-pin Version) (1)

I : Input O : Output I/O : Input and output

Power Supply : Power supplies which relate to the external bus pins are separated as VCC2, thus they can be interfaced using the different voltage as VCC1.

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 and VCC2 pins. Also the apply condition is that VCC1 = VCC2.

- 3. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 4. Bus control pins in M16C/62PT cannot be used.

1	Overview

Signal Name	Pin Name	I/O Type	Power Supply ⁽¹⁾	Description
Reference voltage input	VREF	I	VCC1	Applies the reference voltage for the A/D converter and D/A converter.
A/D converter	AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7	I	VCC1	Analog input pins for the A/D converter.
	ADTRG	Ι	VCC1	This is an A/D trigger input pin.
	ANEX0	I/O	VCC1	This is the extended analog input pin for the A/D converter, and is the output in external op-amp connection mode.
	ANEX1	Ι	VCC1	This is the extended analog input pin for the A/D converter.
D/A converter	DA0, DA1	0	VCC1	This is the output pin for the D/A converter.
I/O port ⁽¹⁾	P0_0 to P0_7, P2_0 to P2_7, P3_0 to P3_7, P5_0 to P5_7, P6_0 to P6_7, P10_0 to P10_7	I/O	VCC1	8-bit I/O ports in CMOS, having a direction register to select an input or output. Each pin is set as an input port or output port. An input port can be set for a pull-up or for no pull-up in 4-bit unit by program.
	P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7	I/O	VCC1	I/O ports having equivalent functions to P0.
	P4_0 to P4_3, P7_0, P7_1, P7_6, P7_7	I/O	VCC1	I/O ports having equivalent functions to P0. (however, output of P7_0 and P7_1 for the N-channel open drain output.)
Input port	P8_5	l	VCC1	Input pin for the $\overline{\text{NMI}}$ interrupt. Pin states can be read by the P8_5 bit in the P8 register.

Table 1.21Pin Description (80-pin Version) (2)

I : Input O : Output I/O : Input and output

NOTES:

1. There is no external connections for port P1, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version. Set the direction bits in these ports to "1" (output mode), and set the output data to "0" ("L") using the program.

Table 4.4 SFR Informa	ation (4) ⁽¹⁾	
-----------------------	--------------------------	--

Address	Register	Symbol	After Reset
0340h	Timer B3, 4, 5 Count Start Flag	Symbol TBSR	000XXXXb
0341h	Timer B3, 4, 5 Count Start hag	TBOR	000/////
0342h	Timer A1-1 Register	TA11	XXh
0343h			XXh
0344h	Timer A2-1 Register	TA21	XXh
0345h			XXh
0346h	Timer A4-1 Register	TA41	XXh
0347h	- ř		XXh
0348h	Three-Phase PWM Control Register 0	INVC0	00h
0349h	Three-Phase PWM Control Register 1	INVC1	00h
034Ah	Three-Phase Output Buffer Register 0	IDB0	00h
034Bh	Three-Phase Output Buffer Register 1	IDB1	00h
034Ch	Dead Time Timer	DTT	XXh
034Dh	Timer B2 Interrupt Occurrence Frequency Set Counter	ICTB2	XXh
034Eh			
034Fh			
0350h	Timer B3 Register	TB3	XXh
0351h			XXh
0352h	Timer B4 Register	TB4	XXh
0353h	Timer DF Degister	TDC	XXh
0354h 0355h	Timer B5 Register	TB5	XXh XXh
0355h 0356h			^^!!
0356h 0357h			
0358h			
0359h			
035Ah			
035Bh	Timer B3 Mode Register	TB3MR	00XX0000b
035Ch	Timer B4 Mode Register	TB4MR	00XX0000b
035Dh	Timer B5 Mode Register	TB5MR	00XX0000b
035Eh	Interrupt Factor Select Register 2	IFSR2A	00XXXXXb
035Fh	Interrupt Factor Select Register	IFSR	00h
0360h	SI/O3 Transmit/Receive Register	S3TRR	XXh
0361h			
0362h	SI/O3 Control Register	S3C	0100000b
0363h	SI/O3 Bit Rate Generator	S3BRG	XXh
0364h	SI/O4 Transmit/Receive Register	S4TRR	XXh
0365h			
0366h	SI/O4 Control Register	S4C	0100000b
0367h	SI/O4 Bit Rate Generator	S4BRG	XXh
0368h			
0369h			
036Ah			
036Bh			
036Ch	UARTO Special Mode Register 4	U0SMR4	00h
036Dh	UARTO Special Mode Register 3	U0SMR3	000X0X0Xb
036Eh	UARTO Special Mode Register 2	U0SMR2	X000000b
036Fh 0370h	UART0 Special Mode Register UART1 Special Mode Register 4	U0SMR U1SMR4	X000000b 00h
0370h	UART1 Special Mode Register 4 UART1 Special Mode Register 3	U1SMR4 U1SMR3	000X0X0Xb
0371h 0372h	UART1 Special Mode Register 3	U1SMR3	X000000b
0372h	UART1 Special Mode Register	U1SMR2	X000000b
0373h	UART2 Special Mode Register 4	U2SMR4	00h
0374n	UART2 Special Mode Register 3	U2SMR4	000X0X0Xb
0376h	UART2 Special Mode Register 3	U2SMR2	X000000b
0377h	UART2 Special Mode Register	U2SMR	X000000b
0378h	UART2 Transmit/Receive Mode Register	U2MR	00h
0379h	UART2 Bit Rate Generator	U2BRG	XXh
037Ah	UART2 Transmit Buffer Register	U2TB	XXh
037Bh			XXh
037Ch	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
037Dh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
037Eh	UART2 Receive Buffer Register	U2RB	XXh

NOTES: 1. The blank areas are reserved and cannot be accessed by users.

 ${\sf X}$: Nothing is mapped to this bit

Table 5.6Flash Memory Version Electrical Characteristics (1) for 100 cycle products (D3, D5, U3,
U5)

Symbol	Parameter	Deremeter			Standard			
Symbol	Parameter	Parameter		Тур.	Max.	Unit		
-	Program and Erase Endurance (3)	100			cycle			
-	Word Program Time (Vcc1=5.0V)			25	200	μs		
-	Lock Bit Program Time			25	200	μs		
-	Block Erase Time	4-Kbyte block		0.3	4	S		
=	(Vcc1=5.0V)	8-Kbyte block		0.3	4	S		
_		32-Kbyte block		0.5	4	S		
_		64-Kbyte block		0.8	4	S		
-	Erase All Unlocked Blocks Time (2)	•			4×n	S		
tPS	Flash Memory Circuit Stabilization Wait Time				15	μs		
-	Data Hold Time ⁽⁵⁾		10			year		

Table 5.7Flash Memory Version Electrical Characteristics (6) for 10,000 cycle products (D7, D9,
U7, U9) (Block A and Block 1 (7))

Symbol	Parameter		Unit			
Symbol	Falameter	Min.	Тур.	Max.	Onit	
-	Program and Erase Endurance (3, 8, 9)	10,000 (4)			cycle	
-	Word Program Time (Vcc1=5.0V)		25		μS	
-	Lock Bit Program Time		25		μS	
_	Block Erase Time (Vcc1=5.0V)	4-Kbyte block		0.3		S
tPS	Flash Memory Circuit Stabilization Wait Time	•			15	μS
-	Data Hold Time ⁽⁵⁾		10			year

NOTES:

1. Referenced to Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 °C (D3, D5, U3, U5) unless otherwise specified.

2. n denotes the number of block erases.

3. Program and Erase Endurance refers to the number of times a block erase can be performed.

If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times.

For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)

- 4. Maximum number of E/W cycles for which operation is guaranteed.
- 5. Topr = -40 to 85 °C (D3, D7, U3, U7) / -20 to 85 °C (D5, D9, U5, U9).
- 6. Referenced to Vcc1 = 4.5 to 5.5V, 3.0 to 3.6V at Topr = -40 to 85 °C (D7, U7) / -20 to 85 °C (D9, U9) unless otherwise specified.
- 7. Table 5.7 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.6.
- 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to track the total number of times erasure is used.
- 9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase command at least three times until erase error disappears.
- 10. Set the PM17 bit in the PM1 register to "1" (wait state) when executing more than 100 times rewrites (D7, D9, U7 and U9).
- 11. Customers desiring E/W failure rate information should contact their Renesas technical support representative.

Table 5.8Flash Memory Version Program / Erase Voltage and Read Operation Voltage
Characteristics (at Topr = 0 to 60 °C(D3, D5, U3, U5), Topr = -40 to 85 °C(D7, U7) / Topr =
-20 to 85 °C(D9, U9))

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC1 = 3.3 V \pm 0.3 V \text{ or } 5.0 V \pm 0.5 V$	Vcc1=2.7 to 5.5 V

M16C/62P Group (M16C/62P, M16C/62PT)

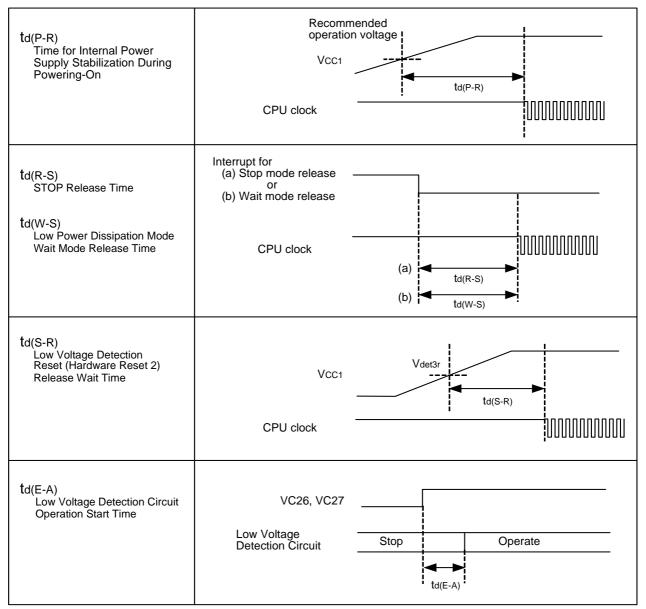


Figure 5.1 Power Supply Circuit Timing Diagram

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.13 External Clock Input (XIN input) (1)

Symbol	Parameter	Stan	Unit		
	Falametei	Min.	Max.	Offic	
tc	External Clock Input Cycle Time	62.5		ns	
ťw(H)	External Clock Input HIGH Pulse Width 25				
tw(L)	External Clock Input LOW Pulse Width 25				
tr	External Clock Rise Time 15				
tf	External Clock Fall Time		15	ns	

NOTES:

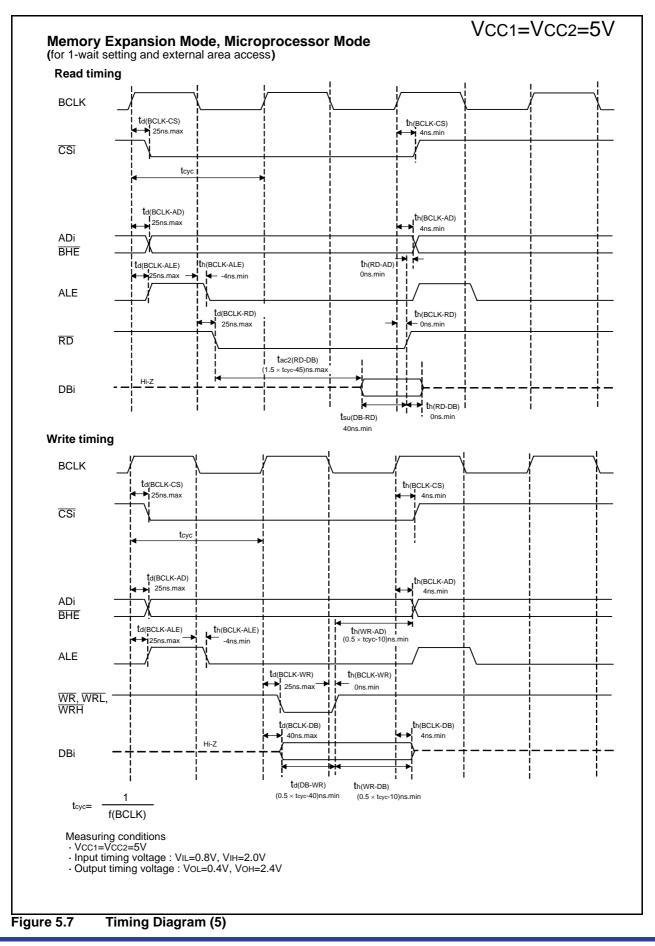
1. The condition is Vcc1=Vcc2=3.0 to 5.0V.

Table 5.14 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Star	Standard			
	Farameter	Min.	Max.	Unit		
tac1(RD-DB)	Data Input Access Time (for setting with no wait) (NOTE 1)					
tac2(RD-DB)	Data Input Access Time (for setting with wait) (NOTE 2)					
tac3(RD-DB)	Data Input Access Time (when accessing multiplex bus area) (NOTE 3)					
tsu(DB-RD)	Data Input Setup Time 40					
tsu(RDY-BCLK)	RDY Input Setup Time	30				
tsu(HOLD-BCLK)	HOLD Input Setup Time	40		ns		
th(RD-DB)	Data Input Hold Time	0		ns		
th(BCLK-RDY)	RDY Input Hold Time	0		ns		
th(BCLK-HOLD)	HOLD Input Hold Time	0	ns			

NOTES:

1. Calculated according to the BCLK frequency as follows:


$$\frac{0.5 \times 10^9}{f(BCLK)} - 45[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 45[ns]$$
n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 45[ns]$$
 n is "2" for 2-wait setting, "3" for 3-wait setting.

VCC1=VCC2=3V

Switching Characteristics

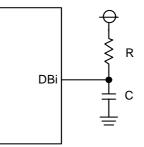
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.46	Memory Expansion and Microprocessor Modes (for setting with no wait)

Currente e l	Parameter		Standard		Unit	
Symbol			Min.	Max.	Unit	
td(BCLK-AD)	Address Output Delay Time			30	ns	
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns	
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns	
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns	
td(BCLK-CS)	Chip Select Output Delay Time			30	ns	
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns	
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns	
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns	
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.12		30	ns	
th(BCLK-RD)	RD Signal Output Hold Time	I igure 5.12	0		ns	
td(BCLK-WR)	WR Signal Output Delay Time			30	ns	
th(BCLK-WR)	WR Signal Output Hold Time		0		ns	
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns	
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		4		ns	
td(DB-WR)	Data Output Delay Time (in relation to WR)	(NOTE 1)		ns		
th(WR-DB)	Data Output Hold Time (in relation to WR) (3)		(NOTE 2)		ns	
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns	

NOTES:

1. Calculated according to the BCLK frequency as follows:


$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns] \qquad \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR X \ln (1 - VoL / Vcc2)$ by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

t = -30pF X 1k Ω X In(1-0.2Vcc2 / Vcc2)

= 6.7ns.

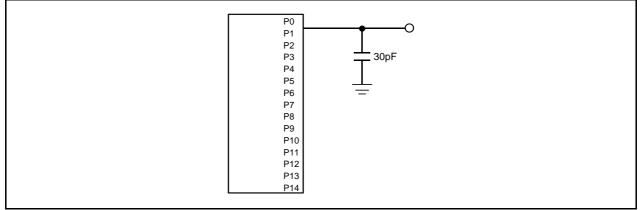
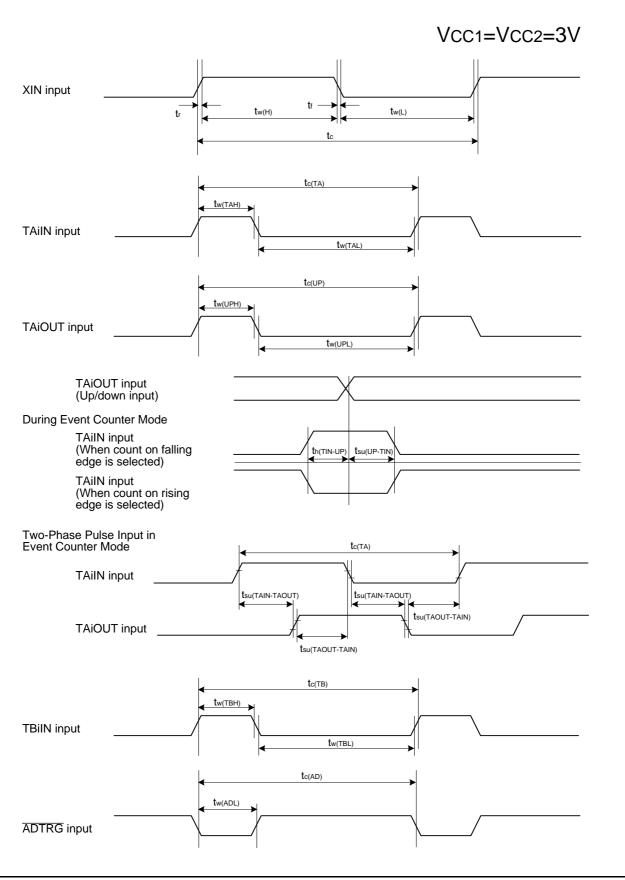
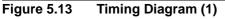
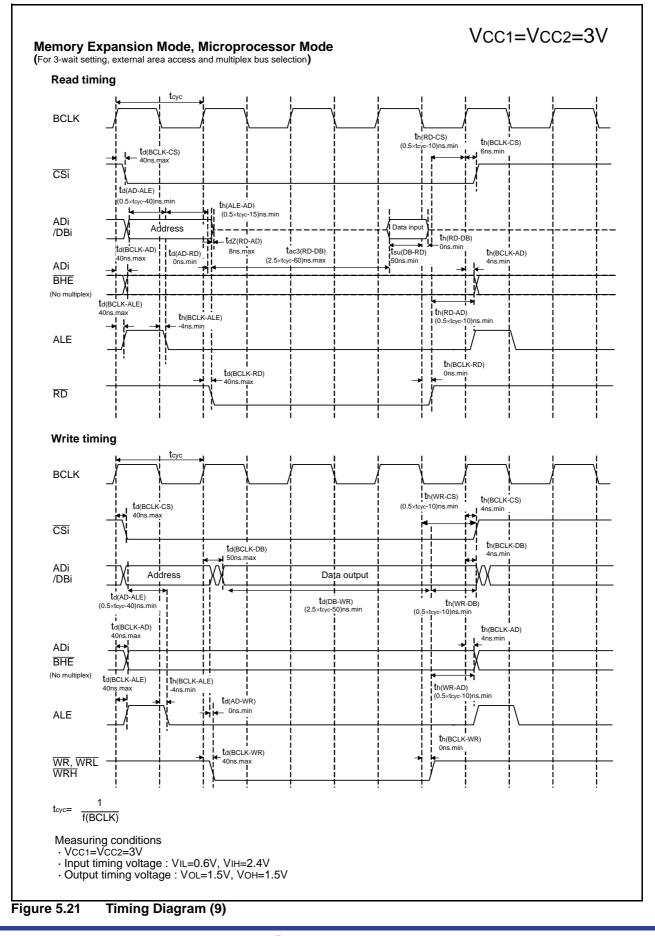
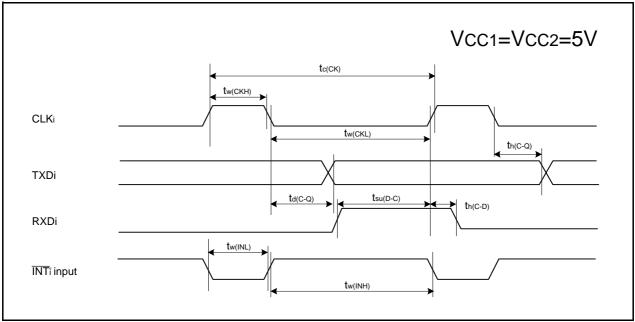
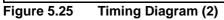





Figure 5.12 Ports P0 to P14 Measurement Circuit

RENESAS




VCC1=VCC2=5V

Timing Requirements

(Vcc1 = Vcc2 = 5V, Vss = 0V, at Topr = -40 to 85°C (T version) / -40 to 125°C (V version) unless otherwise specified)

Symbol	Parameter	Stan	Unit			
Symbol		Min.	Max.	Offic		
tc	External Clock Input Cycle Time	62.5		ns		
tw(H)	External Clock Input HIGH Pulse Width 25					
tw(L)	External Clock Input LOW Pulse Width	DW Pulse Width 25				
tr	External Clock Rise Time 15					
tf	External Clock Fall Time	15	ns			

F	REVISION H	ISTOF	RY	M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual		
Rev. Date				Description		
TXCV.	Pale Pa			Summary		
		33	Table 5.4 A-D Conversion Characteristics is revised.			
			Table 5.5 D-A Conversion Characteristics revised.			
		34,74	Table 5.6 to	Table 5.6 to 5.7 and table 5.54 to 5.55 are revised.		
		36	Table 5.11	is revised.		
		38,55	Table 5.14	and 5.33 HLDA output deley time is deleted.		
		41	Figure 5.1 i	s partly revised.		
		41-43,	Table 5.27	to 5.29 and table 5.46 to 48 HLDA output deley time is added.		
		58-60				
		44	Figure 5.2	Timing Diagram (1) XIN input is added.		
		47-48	Figure 5.5 t	to 5.6 Read timing $DB \rightarrow DBi$		
		49-50	Figure 5.7 t	to 5.8 Write timing $DB \rightarrow DBi$		
		52	Figure 5.10			
		53	Table 5.30			
		58	-	is partly revised.		
		61	-	Timing Diagram (1) XIN input is added.		
		64-65	0	to 5.16 Read timing $DB \rightarrow DBi$		
		66-67	-	to 5.18 Write timing $DB \rightarrow DBi$		
		69	Figure 5.20			
		70-85		haracteristics (M16C/62PT) is added.		
2.10	Nov 07, 2003	8-9 23	Table 1.5 to Table 3.1 is	o 1.7 Product List is partly revised. Note 1 is deleted. s revised.		
		71	Table 5.50			
		72	Table 5.51			
2.11	Jan 06, 2004	16		$VCC1 VCC2 \rightarrow VCC1 > VCC2$		
		17-18		to 1.11 NOTE 1 VCC1 VCC2 \rightarrow VCC1 > VCC2		
		31		Power Supply Ripple Allowable Frequency Unit MHz \rightarrow kHz		
		12		nd Figure 1.5 are added.		
2.30	Sep 01, 2004	18, 20		to 1.13 are revised.		
		19,21		to 1.14 are revised.		
		24	-	s partly revised.		
		05	Note 3 is ad			
		25	Note 6 is ad			
		33	Table 5.3 is			
		34		able 5.4 is added.		
		34 35		5.6 is partly revised.		
		- 30	Table 5.8 is revised. Table 5.9 is revised.			
		37				
		57				