

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M16C/60
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	111
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LFQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30627fjpgp-u7c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M16C/62P Group (M16C/62P, M16C/62PT) 80-pin version Block Diagram

As of Dec. 2005

Type No.		ROM Capacity	RAM Capacity	Package Type (1)	Re	marks
M3062CM6T-XXXFP	(D)	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM	T Version
M3062CM6T-XXXGP	(D)			PLQP0100KB-A	version	(High reliability
M3062EM6T-XXXGP	(P)			PRQP0080JA-A		85°C version)
M3062CM8T-XXXFP	(D)	64 Kbytes	4 Kbytes	PRQP0100JB-A		
M3062CM8T-XXXGP	(D)			PLQP0100KB-A		
M3062EM8T-XXXGP	(P)			PRQP0080JA-A		
M3062CMAT-XXXFP	(D)	96 Kbytes	5 Kbytes	PRQP0100JB-A		
M3062CMAT-XXXGP	(D)			PLQP0100KB-A		
M3062EMAT-XXXGP	(P)			PRQP0080JA-A		
M3062AMCT-XXXFP	(D)	128 Kbytes	10 Kbytes	PRQP0100JB-A		
M3062AMCT-XXXGP	(D)			PLQP0100KB-A		
M3062BMCT-XXXGP	(P)			PRQP0080JA-A		
M3062CF8TFP	(D)	64 K+4 Kbytes	4 Kbytes	PRQP0100JB-A	Flash	
M3062CF8TGP				PLQP0100KB-A	memory	
M3062AFCTFP	(D)	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	version ⁽²⁾	
M3062AFCTGP	(D)			PLQP0100KB-A		
M3062BFCTGP	(P)			PRQP0080JA-A		
M3062JFHTFP	(D)	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A		
M3062JFHTGP	(D)			PLQP0100KB-A		

Table 1.6 Product List (3) (T version (M16C/62PT))

(D): Under development

(P): Under planning

NOTES:

- The old package type numbers of each package type are as follows. PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A, PRQP0080JA-A : 80P6S-A
- 2. In the flash memory version, there is 4K bytes area (block A).

As of Dec. 2005

Type No.		ROM Capacity	RAM Capacity	Package Type ⁽¹⁾	Re	emarks
M3062CM6V-XXXFP	(P)	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM	V Version
M3062CM6V-XXXGP	(P)			PLQP0100KB-A	version	(High reliability
M3062EM6V-XXXGP	(P)			PRQP0080JA-A		125°C version)
M3062CM8V-XXXFP	(P)	64 Kbytes	4 Kbytes	PRQP0100JB-A		
M3062CM8V-XXXGP	(P)			PLQP0100KB-A		
M3062EM8V-XXXGP	(P)			PRQP0080JA-A		
M3062CMAV-XXXFP	(P)	96 Kbytes	5 Kbytes	PRQP0100JB-A		
M3062CMAV-XXXGP	(P)			PLQP0100KB-A		
M3062EMAV-XXXGP	(P)			PRQP0080JA-A		
M3062AMCV-XXXFP	(D)	128 Kbytes	10 Kbytes	PRQP0100JB-A		
M3062AMCV-XXXGP	(D)			PLQP0100KB-A		
M3062BMCV-XXXGP	(P)			PRQP0080JA-A		
M3062AFCVFP	(D)	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	Flash	
M3062AFCVGP	(D)			PLQP0100KB-A	memory	
M3062BFCVGP	(P)			PRQP0080JA-A	version ⁽²⁾	
M3062JFHVFP	(P)	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A	1	
M3062JFHVGP	(P)			PLQP0100KB-A		

Table 1.7 Product List (4) (V version (M16C/62PT))

(D): Under development

(P): Under planning

NOTES:

1. The old package type numbers of each package type are as follows.

PLQP0128KB-A : 128P6Q-A, PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A,

PRQP0080JA-A : 80P6S-A

2. In the flash memory version, there is 4K bytes area (block A).

	Product	Dockogo	Internal ROM (User ROM Area Without Block A, Block 1)		Interna (Block A,	Operating	
	Code		Program and Erase Endurance	Temperature Range	Program and Erase Endurance	Temperature Range	Temperature
Flash memory	D3	Lead-	100	0°C to 60°C	100	0°C to 60°C	-40°C to 85°C
Version	D5	included					-20°C to 85°C
	D7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	D9					-20°C to 85°C	-20°C to 85°C
	U3	Lead-free	100		100	0°C to 60°C	-40°C to 85°C
	U5						-20°C to 85°C
	U7		1,000		10,000	-40°C to 85°C	-40°C to 85°C
	U9					-20°C to 85°C	-20°C to 85°C
ROM-less	D3	Lead-	-	-	-	-	-40°C to 85°C
version	D5	included					-20°C to 85°C
	U3	Lead-free	-	-	-	-	-40°C to 85°C
	U5						-20°C to 85°C

Table 1.8 Product Code of Flash Memory version and ROMless version for M16C/62P

Figure 1.4 Marking Diagram of Flash Memory version and ROM-less version for M16C/62P (Top View)

1. Overview	
-------------	--

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
51		P5_6					ALE
52		P5_5					HOLD
53		P5_4					HLDA
54		 P13_3					
55		P13_2					
56		P13_1					
57		P13_0					
58		P5_3					BCLK
59		P5_2					RD
60		P5_1					WRH/BHE
61		P5_0					WRL/WR
62		P12_7					
63		P12_6					
64		P12_5					
65		P4_7					CS3
66		P4_6					CS2
67		P4_5					CS1
68		P4 4					CSO
69		_ P4_3					A19
70		P4 2					A18
71		 P4_1					A17
72		P4_0					A16
73		P3_7					A15
74		P3_6					A14
75		P3_5					A13
76		P3_4					A12
77		P3_3					A11
78		P3_2					A10
79		P3_1					A9
80		P12_4					
81		P12_3					
82		P12_2					
83		P12_1					
84		P12_0					
85	VCC2	D 0 0					
86	VCC	P3_0					A8(/-/D7)
0/	V 3 3	D0 7					
00		P2_7				ANZ_7	A7(/D7/D6)
09		FZ_0				AN2_0	A0(/D0/D3)
91		P2_4				AN2_3	A3(/D3/D4)
92		P2_3				AN2_3	A3(/D3/D2)
93		P2 2				AN2 2	A2(/D2/D1)
94		P2 1				AN2 1	A1(/D1/D0)
95		P2_0				 AN2_0	A0(/D0/-)
96		 P1_7	INT5				D15
97		_ P1_6	INT4				D14
98		P1_5	INT3				D13
99		_ P1_4				1	D12
100		P1_3					D11

 Table 1.11
 Pin Characteristics for 128-Pin Package (2)

RENESAS

1.6 Pin Description

Signal Name	Pin Name	I/O	Power	Description
		Туре	Supply ⁽³⁾	
Power supply input	VCC1,VCC2 VSS	Ι	-	Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is that VCC1 \geq VCC2. ^(1, 2)
Analog power supply input	AVCC AVSS	Ι	VCC1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	Ι	VCC1	The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS	Ι	VCC1	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode.
External data bus width select input	BYTE	Ι	VCC1	Switches the data bus in external memory space. The data bus is 16 bits long when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it to either one. Connect this pin to VSS when an single-chip mode.
Bus control pins ⁽⁴⁾	D0 to D7	I/O	VCC2	Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.
	D8 to D15	I/O	VCC2	Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus.
	A0 to A19	0	VCC2	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A0 to A7) by timesharing when external 8-bit data bus are set as the multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Input and output data (D0 to D7) and output address bits (A1 to A8) by timesharing when external 16-bit data bus are set as the multiplexed bus.
	CS0 to CS3	0	VCC2	Output $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ signals. $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are chip-select signals to specify an external space.
	WRL/WR WRH/BHE RD	0	VCC2	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR can be switched by program. • WRL, WRH and RD are selected The WRL signal becomes "L" by writing data to an even address in an external memory space. The WRH signal becomes "L" by writing data to an odd address in an external memory space. The RD pin signal becomes "L" by reading data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. • WR, BHE and RD are selected The WR signal becomes "L" by writing data in an external memory space. The RD signal becomes "L" by reading data in an external memory space. The BHE signal becomes "L" by accessing an odd address. Select WR, BHE and RD for an external 8-bit data bus.
	ALE	0	VCC2	ALE is a signal to latch the address.
	HOLD	Ι	VCC2	While the HOLD pin is held "L", the microcomputer is placed in a hold state.
	HLDA	0	VCC2	In a hold state, HLDA outputs a "L" signal.
	RDY	Ι	VCC2	While applying a "L" signal to the $\overline{\text{RDY}}$ pin, the microcomputer is placed in a wait state.

Table 1.17Pin Description (100-pin and 128-pin Version) (1)

I : Input O : Output I/O : Input and output

Power Supply : Power supplies which relate to the external bus pins are separated as VCC2, thus they can be interfaced using the different voltage as VCC1.

NOTES:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 and VCC2 pins. Also the apply condition is that VCC1 = VCC2.

- 3. When use VCC1 > VCC2, contacts due to some points or restrictions to be checked.
- 4. Bus control pins in M16C/62PT cannot be used.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

Address	Register	Symbol	After Reset
03C0h	A/D Register 0	AD0	XXh
03C1h			XXh
03C2h	A/D Register 1	AD1	XXh
03C3h	•		XXh
03C4h	A/D Register 2	AD2	XXh
03C5h		,	XXh
03C6h	A/D Register 3	AD3	XXh
03C7h		AB0	YYh
030711	A/D Register 4		
0300h	A/D Register 4	AD4	
03090		ADE	
03CAn	A/D Register 5	AD5	XXN
03CBn		100	XXN
03CCh	A/D Register 6	AD6	XXN
03CDh			XXh
03CEh	A/D Register 7	AD7	XXh
03CFh			XXh
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	00h
03D5h	-		
03D6h	A/D Control Register 0	ADCON0	00000XXXb
03D7h	A/D Control Register 1	ADCON1	00h
03D8h	D/A Register 0	DA0	00h
03D9h		5/10	
03DAh	D/A Register 1	DA1	00h
03DBh		Bitti	
03DCh	D/A Control Register		00b
0300h	B/A Control Register	DACON	0011
03DDh	Part D14 Control Pagiator (3)	DC14	VV00VVVVh
03DEII	Pull Lin Control Degister 2 (3)		AAUUAAAAD
	Pull-Op Control Register 3 (9)	PURS	
03E00	Port P0 Register	PU D4	
03E1h	Port P1 Register	P1	XXN
03E2h	Port PU Direction Register	PD0	000
03E3h	Port P1 Direction Register	PD1	UUh
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EBh	Port P5 Direction Register	PD5	00h
03ECh	Port P6 Register	P6	XXh
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD7	00h
03F0h	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00X00000b
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03E5h	Port P11 Register ⁽³⁾	P11	XXh
03F6h	Port P10 Direction Register	PD10	00h
03F7h	Port P11 Direction Register (3)	PD11	00h
03F8h	Port P12 Register (3)	P12	XXh
03F9h	Port P13 Register (3)	P13	XXh
031 311	Dert D12 Direction Perioter (3)		006
	Port P12 Direction Register (3)		001
	Pull La Cantral Degister 0		
	Pull-Up Control Register 0	PURU	
U3FDh	Puil-Up Control Register 1	PUK1	00000000b (2) 00000010b (2)
03FEh	Pull-Up Control Register 2	PUR2	00h
03FFh	Port Control Register	PCR	00h

SFR Information (6) ⁽¹⁾ Table 4.6

NOTES:

1. The blank areas are reserved and cannot be accessed by users.

At hardware reset 1 or hardware reset 2, the register is as follows:
 "0000000b" where "L" is inputted to the CNVSS pin
 "00000010b" where "H" is inputted to the CNVSS pin

At software reset, watchdog timer reset and oscillation stop detection reset, the register is as follows:

"00000000b" where the PM01 to PM00 bits in the PM0 register are "00b" (single-chip mode).
 "00000010b" where the PM01 to PM00 bits in the PM0 register are "01b" (memory expansion mode) or "11b" (microprocessor mode).

3. These registers do not exist in M16C/62P (80-pin version), and M16C/62PT (80-pin version).

X : Nothing is mapped to this bit

	Table 5.5	D/A Conversion	Characteristics (1)
--	-----------	-----------------------	---------------------

Symbol	Deremeter	Measuring Condition		Linit		
Symbol	Faranielei	measuring Condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μS
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to Vcc1=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -20 to $85^{\circ}C$ / -40 to $85^{\circ}C$ unless otherwise specified.

2. This applies when using one D/A converter, with the D/A register for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, when D/A register contents are not "00h", the IVREF will flow even if Vref id disconnected by the A/D control register.

M16C/62P Group (M16C/62P, M16C/62PT)

Figure 5.1 Power Supply Circuit Timing Diagram

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.15 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Paramotor	Stan	Llpit	
Symbol	Falantelei	Min.	Max.	Onit
tc(TA)	TAIIN Input Cycle Time	100		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	40		ns
tw(TAL)	TAIIN Input LOW Pulse Width	40		ns

Table 5.16 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Standard		Linit	
Symbol	Falanetei	Min.	Max.	Onit	
tc(TA)	TAiIN Input Cycle Time	400		ns	
tw(TAH)	TAIIN Input HIGH Pulse Width	200		ns	
tw(TAL)	TAIIN Input LOW Pulse Width	200		ns	

Table 5.17 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	Lipit	
Symbol	TIDOI Farameter	Min.	Max.	Unit
tc(TA)	TAilN Input Cycle Time	200		ns
tw(TAH)	TAilN Input HIGH Pulse Width	100		ns
tw(TAL)	TAilN Input LOW Pulse Width	100		ns

Table 5.18 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Derometer	Stan	Linit	
Symbol	Falditieter	Min.	Max.	Onit
tw(TAH)	TAIIN Input HIGH Pulse Width	100		ns
tw(TAL)	TAIIN Input LOW Pulse Width	100		ns

Table 5.19 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Linit	
Symbol		Min.	Max.	Onit
tc(UP)	TAiOUT Input Cycle Time	2000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1000		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1000		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	400		ns
th(TIN-UP)	TAiOUT Input Hold Time	400		ns

Table 5.20 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Lloit	
Symbol		Min.	Max.	Onit
tc(TA)	TAiIN Input Cycle Time	800		ns
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	200		ns
tsu(TAOUT-TAIN)	TAiIN Input Setup Time	200		ns

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.40 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Derometer	Star	Lipit	
Symbol	i didificici		Max.	Offic
tc(TB)	IN Input Cycle Time (counted on one edge) 150		ns	
tw(TBH)	TBilN Input HIGH Pulse Width (counted on one edge)	60		ns
tw(TBL)	TBilN Input LOW Pulse Width (counted on one edge)	60		ns
tc(TB)	TBilN Input Cycle Time (counted on both edges)	300		ns
tw(TBH)	TBilN Input HIGH Pulse Width (counted on both edges)	120		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	120		ns

Table 5.41 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	Lloit	
Symbol	Symbol	Min.	Max.	Onit
tc(TB)	TBilN Input Cycle Time	600		ns
tw(TBH)	TBilN Input HIGH Pulse Width	300		ns
tw(TBL)	TBiIN Input LOW Pulse Width	300		ns

Table 5.42 Timer B Input (Pulse Width Measurement Mode)

Symbol	Derometer	Stan	Lipit	
Symbol	Symbol Parameter	Min.	Max.	Unit
tc(TB)	TBiIN Input Cycle Time	600		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	300		ns
tw(TBL)	TBiIN Input LOW Pulse Width	300		ns

Table 5.43 A/D Trigger Input

Symbol	Deromotor	Stan	Linit		
Symbol	Parameter	Min.	Max.	Unit	
tc(AD)	ADTRG Input Cycle Time	1500		ns	
tw(ADL)	ADTRG Input LOW Pulse Width	200		ns	

Table 5.44 Serial Interface

Symbol	Parameter	Stan	Linit	
	Falanielei	Min.	Max.	Offic
tc(CK)	CLKi Input Cycle Time	300		ns
tw(CKH)	CLKi Input HIGH Pulse Width	150		ns
tw(CKL)	CLKi Input LOW Pulse Width	150		ns
td(C-Q)	TXDi Output Delay Time		160	ns
th(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	100		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 5.45 External Interrupt INTi Input

Symbol	Parameter	Stan	Linit	
Symbol	Symbol	Min.	Max.	Onit
tw(INH)	INTi Input HIGH Pulse Width	380		ns
tw(INL)	INTi Input LOW Pulse Width	380		ns

Figure 5.15 Timing Diagram (3)

Symbol	Parameter		Measuring Condition		Standard			Unit
Cymbol	T aramete			vicasuling contaition	Min.	Тур.	Max.	Onit
-	Resolution		Vref=V	CC1			10	Bits
INL	Integral Non-Linearity 10bit Error	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
		8bit	Vref=V	/cc1=5V			±2	LSB
_	Absolute Accuracy	10bit	VREF= VCC1= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input			±3	LSB
				External operation amp connection mode			±7	LSB
		8bit	Vref=V	/cc1=5V			±2	LSB
_	Tolerance Level Impedar	nce				3		kΩ
DNL	Differential Non-Linearity	Error					±1	LSB
_	Offset Error						±3	LSB
_	Gain Error						±3	LSB
RLADDER	Ladder Resistance		Vref=V	/CC1	10		40	kΩ
tCONV	10-bit Conversion Time, Function Available	Sample & Hold	Vref=V	/cc1=5V, φAD=12MHz	2.75			μs
tCONV	8-bit Conversion Time, S Function Available	ample & Hold	Vref=V	/cc1=5V, φAD=12MHz	2.33			μs
tSAMP	Sampling Time				0.25			μs
VREF	Reference Voltage				2.0		VCC1	V
VIA	Analog Input Voltage				0		VREF	V

Table 5.51 A/D Conversion Characteristics	(1)
---	----	---

NOTES:

1. Referenced to Vcc1=AVcc=VREF=4.0 to 5.5V, Vss=AVss=0V at T_{opr} = -40 to 85° C / -40 to 125° C unless otherwise specified. T version = -40 to 85° C, V version = -40 to 125° C

2. ϕ AD frequency must be 12 MHz or less.

 When sample & hold is disabled, φAD frequency must be 250 kHz or more, in addition to the limitation in Note 2. When sample & hold is enabled, φAD frequency must be 1MHz or more, in addition to the limitation in Note 2.

Table 5.52 D/A Conversion Characteristics (Table 5.52	D/A Conversion Characteristics (1
---	------------	-----------------------------------

Symbol	Porometer	Macouring Condition		Linit		
Symbol	Faranielei	Measuring Condition	Min.	Тур.	Max.	Onit
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
ts∪	Setup Time				3	μS
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to Vcc1=VREF=4.0 to 5.5V, Vss=AVss=0V at Topr = -40 to 85°C / -40 to 125°C unless otherwise specified. T version = -40 to 85°C, V version = -40 to 125°C

 This applies when using one D/A converter, with the D/A register for the unused D/A converter set to "00h". The resistor ladder of the A/D converter is not included. Also, when D/A register contents are not "00h", the IVREF will flow even if Vref id disconnected by the A/D control register.

VCC1=VCC2=5V

Currente e l	Deremeter			Magguring Condition	Standard			11.2
Symbol	P			Measuring Condition	Min.	Тур.	Max.	Unit
Vон	HIGH P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, Output P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, Voltage ⁽²⁾ P11_0 to P11_7, P14_0, P14_1		IOH=-5mA	Vcc1-2.0		Vcc1	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		IOH=-5mA	Vcc2-2.0		Vcc2	v
Vон	HIGH Output Voltage ⁽²⁾	P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		ОН=-200μА	Vcc1-0.3		Vcc1	V
				ЮН=-200μА	Vcc2-0.3		Vcc2	v
Vон	HIGH Output	t Voltage XOUT	HIGHPOWER	IOH=-1mA	Vcc1-2.0		Vcc1	v
			LOWPOWER	IOH=-0.5mA	Vcc1-2.0		Vcc1	
	HIGH Output	t Voltage XCOUT	HIGHPOWER	With no load applied		2.5		1/
			LOWPOWER	With no load applied		1.6		v
Vol	LOW P6_0 to P6_7, P7_0 to P7_7 Output Voltage ⁽²⁾ P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P1. P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P		′, P8_0 to P8_4, P10_0 to P10_7, 4_1	IOL=5mA			2.0	V
			7, P2_0 to P2_7, 7, P5_0 to P5_7, 13_7	IOL=5mA			2.0	v
Vol	LOW P6_0 to P6_7, P7_0 to P7_7 Output Voltage ⁽²⁾ P8_6, P8_7, P9_0 to P9_7, P11_0 to P11_7, P14_0, P1 P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to F		″, P8_0 to P8_4, P10_0 to P10_7, 4_1	IOL=200μA			0.45	V
			7, P2_0 to P2_7, 7, P5_0 to P5_7, 113_7	IOL=200μA			0.45	v
Vol	LOW Output	Voltage XOUT	HIGHPOWER	IOL=1mA			2.0	V
			LOWPOWER	IOL=0.5mA			2.0	v
	LOW Output Voltage XCOUT		HIGHPOWER	With no load applied		0		V
			LOWPOWER	With no load applied		0		v
Vt+-Vt-	Hysteresis HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INTO to INT5, NMI, ADTRG, CTS0 to CTS2, CLK0 to CLK4, TA0OUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SCL0 to SCL2, SDA0 to SDA2, SIN3, SIN4				0.2		1.0	v
VT+-VT-	Hysteresis	ysteresis RESET			0.2		2.5	V
Ін	HIGH Input Current ⁽²⁾	P0_0 to P0_7, P1_0 to P1_7, P4_0 to P4_7, P5_0 to P5_7, P8_0 to P8_7, P9_0 to P9_ P11_0 to P11_7, P12_0 to P P14_0, P14_1, XIN, RESET,	VI=5V			5.0	μΑ	
lı.	LOW Input Current ⁽²⁾	P0_0 to P0_7, P1_0 to P1_7, P4_0 to P4_7, P5_0 to P5_7, P8_0 to P8_7, P9_0 to P9_7 P11_0 to P11_7,P12_0 to P9_7 P14_0, P14_1, XIN, RESET	VI=0V			-5.0	μΑ	
Rpullup	Pull-Up Resistance (2)	P0_0 to P0_7, P1_0 to P1_7. P4_0 to P4_7, P5_0 to P5_7 P8_0 to P8_4, P8_6, P8_7, F P11_0 to P11_7, P12_0 to P P14_0, P14_1	VI=0V	30	50	170	kΩ	
Rfxin	Feedback Resistance XIN					1.5		MΩ
Rfxcin	Feedback Resistance XCIN					15		MΩ
VRAM	RAM Retention Voltage			At stop mode	2.0			V

Table 5.57 Electrical Characteristics (1) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.0 to 5.5V, Vss = 0V at Topr = -40 to 85°C / -40 to 125°C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85°C, V version =-40 to 125°C.
2. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Unit

mΑ mΑ mΑ mΑ

mΑ

mΑ

μA

μΑ

μA

μΑ

μA

μΑ

μA μA μA

Symbol	Doromot	Parameter		Moscuring Condition		Standard		
Symbol	Falaillet	ei	Measuring Condition		Min.	Тур.	Max.	
Icc	Power Supply Current (Vcc1=Vcc2=4.0V to 5.5V)	In single-chip mode, the output	Mask ROM	f(BCLK)=24MHz No division, PLL operation		14	20	
		pins are open and other pins are Vss		No division, On-chip oscillation		1		
			Flash Memory	f(BCLK)=24MHz, No division, PLL operation		18	27	
				No division, On-chip oscillation		1.8		
			Flash Memory Program	f(BCLK)=10MHz, Vcc1=5.0V		15		
			Flash Memory Erase	f(BCLK)=10MHz, Vcc1=5.0V		25		
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		
			Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		
				On-chip oscillation, Wait mode		50		
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5		
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0		
				Stop mode Topr =25°C		2.0	6.0	
				Stop mode Topr =85°C			20	
				Stop mode Topr =125°C			TBD	

Table 5.58 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.0 to 5.5V, Vss = 0V at Topr = -40 to 85°C / -40 to 125°C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85°C, V version =-40 to 125°C.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.

RENESAS

REVISION HISTORY

M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual

Devi	Dete	Description		
Rev.	Nev. Dale		Summary	
1.10	May 28, 2003	1	Applications are partly revised.	
		2	Table 1.1.1 is partly revised.	
		4-5	Table 1.1.2 and 1.1.3 is partly revised.	
			"Note 1" is partly revised.	
		22	Table 1.5.3 is partly revised.	
		23	Table 1.5.5 is partly revised.	
			Table 1.5.6 is added.	
		24	Table 1.5.9 is partly revised.	
		30	Notes 1 and 2 in Table 1.5.26 is partly revised.	
		31	Notes 1 in Table 1.5.27 is partly revised.	
		30-31	Note 3 is added to "Data output hold time (refers to BCLK)" in Table 1.5.26 and 1.5.27.	
		32	Note 4 is added to "th(ALE-AD)" in Table 1.5.28.	
		30-32	Switching Characteristics is partly revised.	
		36-39	th(WR-AD) and th(WR-DB) in Figure 1.5.5 to 1.5.8 is partly revised.	
		40-41	th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.9 to	
			1.5.10 is partly revised.	
		42	Note 2 is added to Table 1.5.29.	
		47	Notes 1 and 2 in Table 1.5.45 is partly revised.	
		48	Notes 1 in Table 1.5.46 is partly revised.	
		47-48	Note 3 is added to "Data output hold time (refers to BCLK)" in Table	
			1.5.45 and 1.5.46.	
		49	Note 4 is added to "th(ALE-AD)" in Table 1.5.47.	
		47-48	Switching Characteristics is partly revised.	
		53-56	th(WR-AD) and th(WR-DB) in Figure 1.5.15 to 1.5.18 is partly revised.	
		57-56	1.5.20 is partly revised.	
2.00	Oct 29, 2003	-	Since high reliability version is added, a group name is revised. M16C/62 Group (M16C/62P) \rightarrow M16C/62 Group (M16C/62PT)	
		2-4	Table 1.1 to 1.3 are revised. Note 3 is partly revised.	
		2-4	Table 1.1 to 1.3 are revised.	
			Note 3 is partly revised.	
		6	Figure 1.2 Note5 is deleted.	
		7-9	Table 1.4 to 1.7 Product List is partly revised.	
		11	Table 1.8 and Figure 1.4 are added.	
		12-15	Figure 1.5 to 1.9 ZP is added.	
		17,19	Table 1.10 and 1.12 ZP is added to timer A.	
		18,20	Table 1.11 and 1.13 VCC1 is added to VREF.	
		30	Table 5.1 is revised.	
		31-32	Table 5.2 and 5.3 are revised.	