

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m3062lfgpfp-u3c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

M16C/62P Group (M16C/62P, M16C/62PT) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0001-0241 Rev.2.41 Jan 10, 2006

1. Overview

The M16C/62P Group (M16C/62P, M16C/62PT) of single-chip microcomputers are built using the high performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 80-pin, 100-pin and 128-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.

1.1 Applications

Audio, cameras, television, home appliance, office/communications/portable/industrial equipment, automobile, etc.

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

1.2 Performance Outline

Table 1.1 to 1.3 list Performance Outline of M16C/62P Group (M16C/62P, M16C/62PT)(128-pin version).

Table 1.1	Performance Outline of M16C/62P Group (M16C/62P, M16C/62PT)(128-pin version)
-----------	--

	Item	Performance			
		M16C/62P			
CPU	Number of Basic Instructions	91 instructions			
1	Minimum Instruction Execution	41.7ns(f(BCLK)=24MHz, VCC1=3.3 to 5.5V)			
	Time	100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)			
	Operating Mode	Single-chip, memory expansion and microprocessor mode			
	Address Space	1 Mbyte (Available to 4 Mbytes by memory space expansion			
	-	function)			
	Memory Capacity	See Table 1.4 to 1.5 Product List			
Peripheral	Port	Input/Output : 113 pins, Input : 1 pin			
Function	Multifunction Timer	Timer A : 16 bits x 5 channels,			
		Timer B : 16 bits x 6 channels,			
		Three phase motor control circuit			
	Serial Interface	3 channels			
		Clock synchronous, UART, I ² C bus ⁽¹⁾ , IEBus ⁽²⁾			
		2 channels			
		Clock synchronous			
	A/D Converter	10-bit A/D converter: 1 circuit, 26 channels			
	D/A Converter	8 bits x 2 channels			
	DMAC	2 channels			
	CRC Calculation Circuit	CCITT-CRC			
	Watchdog Timer	15 bits x 1 channel (with prescaler)			
	Interrupt	Internal: 29 sources, External: 8 sources, Software: 4 sources,			
		Priority level: 7 levels			
	Clock Generation Circuit	4 circuits			
		Main clock generation circuit (*),			
		Subclock generation circuit (*),			
		On-chip oscillator, PLL synthesizer			
		(*)Equipped with a built-in feedback resistor.			
	Oscillation Stop Detection	Stop detection of main clock oscillation, re-oscillation detection			
	Function	function (A)			
	Voltage Detection Circuit	Available (option ⁽⁴⁾)			
Electric	Supply Voltage	VCC1=3.0 to 5.5 V, VCC2=2.7V to VCC1 (f(BCLK=24MHz)			
Characteristics		VCC1=2.7 to 5.5 V, VCC2=2.7V to VCC1 (f(BCLK=10MHz)			
	Power Consumption	14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz)			
		8 mA (VCC1=VCC2=3V, f(BCLK)=10MHz)			
		1.8μA (VCC1=VCC2=3V, f(XCIN)=32kHz, wait mode) 0.7μA (VCC1=VCC2=3V, stop mode)			
Flash memory	Program/Erase Supply Voltage	3.3±0.3 V or 5.0±0.5 V			
version	Program and Erase Endurance	100 times (all area)			
		or 1,000 times (user ROM area without block A and block 1)			
		/ 10,000 times (block A, block 1) $^{(3)}$			
Operating Ambie	nt Temperature	-20 to 85°C,			
Package					
Operating Ambie Package	nt Temperature	-20 to 85°C, -40 to 85°C ⁽³⁾ 128-pin plastic mold LQFP			

NOTES:

- 1. I²C bus is a registered trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a registered trademark of NEC Electronics Corporation.
- 3. See **Table 1.8 Product Code** for the program and erase endurance, and operating ambient temperature. In addition 1,000 times/10,000 times are under development as of Jul., 2005. Please inquire about a release schedule.
- 4. All options are on request basis.

As of Dec. 2005

			-	-		
Туре No.		ROM Capacity	RAM Capacity	Package Type ⁽¹⁾	Re	emarks
M3062CM6V-XXXFP	(P)	48 Kbytes	4 Kbytes	PRQP0100JB-A	Mask ROM	V Version
M3062CM6V-XXXGP	(P)			PLQP0100KB-A	version	(High reliability
M3062EM6V-XXXGP	(P)			PRQP0080JA-A		125°C version)
M3062CM8V-XXXFP	(P)	64 Kbytes	4 Kbytes	PRQP0100JB-A		
M3062CM8V-XXXGP	(P)			PLQP0100KB-A		
M3062EM8V-XXXGP	(P)			PRQP0080JA-A		
M3062CMAV-XXXFP	(P)	96 Kbytes	5 Kbytes	PRQP0100JB-A		
M3062CMAV-XXXGP	(P)			PLQP0100KB-A		
M3062EMAV-XXXGP	(P)			PRQP0080JA-A		
M3062AMCV-XXXFP	(D)	128 Kbytes	10 Kbytes	PRQP0100JB-A		
M3062AMCV-XXXGP	(D)			PLQP0100KB-A		
M3062BMCV-XXXGP	(P)			PRQP0080JA-A		
M3062AFCVFP	(D)	128K+4 Kbytes	10 Kbytes	PRQP0100JB-A	Flash	
M3062AFCVGP	(D)			PLQP0100KB-A	memory	
M3062BFCVGP	(P)			PRQP0080JA-A	version ⁽²⁾	
M3062JFHVFP	(P)	384K+4 Kbytes	31 Kbytes	PRQP0100JB-A		
M3062JFHVGP	(P)			PLQP0100KB-A		

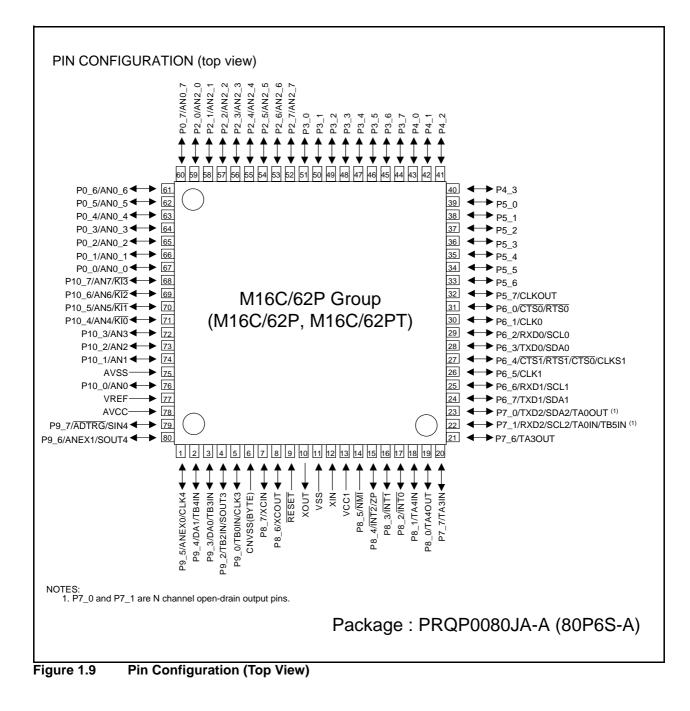
Table 1.7 Product List (4) (V version (M16C/62PT))

(D): Under development

(P): Under planning

NOTES:

1. The old package type numbers of each package type are as follows.


PLQP0128KB-A : 128P6Q-A, PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A,

PRQP0080JA-A : 80P6S-A

2. In the flash memory version, there is 4K bytes area (block A).

Pin	No							
FIII	GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
51	49		P4_3					A19
52	50		P4_2					A18
53	51		P4_1					A17
54	52		P4_0					A16
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13
58	56		P3_4					A12
59	57		P3_3					A11
60	58		P3_2					A10
61	59		P3_1					A9
62	60	VCC2						
63	61		P3_0					A8(/-/D7)
64	62	VSS	D0 7				410.7	A7((D7(D0))
65 66	63 64		P2_7				AN2_7	A7(/D7/D6) A6(/D6/D5)
66 67	64 65		P2_6 P2_5				AN2_6 AN2_5	A6(/D6/D5) A5(/D5/D4)
67 68	66		P2_5 P2_4				AN2_5 AN2_4	A3(/D3/D4) A4(/D4/D3)
69	67		P2_3				AN2_4 AN2_3	A3(/D3/D2)
70	68		P2_2				AN2_2	A2(/D2/D1)
71	69		P2_1				AN2_1	A1(/D1/D0)
72	70		 P2_0				 AN2_0	A0(/D0/-)
73	71		P1_7	INT5				D15
74	72		P1_6	INT4				D14
75	73		P1_5	INT3				D13
76	74		P1_4	INTS				D13
77	75		P1_3					D11
78	76		P1_2					D10
79	77		P1_1					D9
80	78		P1_0					D8 D7
81 82	79 80		P0_7 P0_6				AN0_7 AN0_6	D7 D6
83	81		P0_0 P0_5				AN0_6	D5
84	82		P0_4				AN0_3	D3
85	83		P0_3				AN0_3	D3
86	84		P0_2				AN0_2	D2
87	85		P0_1				AN0_1	D1
88	86		P0_0				AN0_0	D0
89	87		P10_7	KI3			AN7	
90	88		P10_6	KI2			AN6	
91	89		P10_5	KI1			AN5	
L								
92	90		P10_4	KI0			AN4	
93 94	91 92		P10_3 P10_2				AN3 AN2	
94 95	92 93		P10_2 P10_1				AN2 AN1	
95 96	93 94	AVSS	1 10_1					
97	95		P10_0				AN0	
98	96	VREF					-	
99	97	AVCC						
100	97 98	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				CIN/4		+
100	90		P9_7			SIN4	ADTRG	

 Table 1.14
 Pin Characteristics for 100-Pin Package (2)

Address	Register	Symbol	After Reset
0380h	Count Start Flag	TABSR	00h
0381h	Clock Prescaler Reset Fag	CPSRF	0XXXXXXb
0382h	One-Shot Start Flag	ONSF	00h
0383h	Trigger Select Register	TRGSR	00h
0384h	Up-Down Flag	UDF	00h ⁽²⁾
0385h			
0386h	Timer A0 Register	TA0	XXh
0387h			XXh
0388h	Timer A1 Register	TA1	XXh
0389h			XXh
038Ah	Timer A2 Register	TA2	XXh
038Bh			XXh
038Ch	Timer A3 Register	TA3	XXh
038Dh	1		XXh
038Eh	Timer A4 Register	TA4	XXh
038Fh	1		XXh
0390h	Timer B0 Register	TB0	XXh
0391h			XXh
0392h	Timer B1 Register	TB1	XXh
0393h			XXh
0394h	Timer B2 Register	TB2	XXh
0395h			XXh
0396h	Timer A0 Mode Register	TAOMR	00h
0397h	Timer A1 Mode Register	TA1MR	00h
0398h	Timer A2 Mode Register	TA2MR	00h
0399h	Timer A3 Mode Register	TA3MR	00h
039Ah	Timer A4 Mode Register	TA4MR	00h
039Bh	Timer B0 Mode Register	TBOMR	00XX0000b
039Ch	Timer B1 Mode Register	TB1MR	00XX0000b
039Dh	Timer B2 Mode Register	TB2MR	00XX0000b
039Eh	Timer B2 Special Mode Register	TB2SC	XXXXXX00b
039Fh			
03A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
03A1h	UART0 Bit Rate Generator	U0BRG	XXh
03A2h	UART0 Transmit Buffer Register	UOTB	XXh
03A3h			XXh
03A4h	UART0 Transmit/Receive Control Register 0	UOCO	00001000b
03A5h	UART0 Transmit/Receive Control Register 1	U0C1	00XX0010b
03A6h	UART0 Receive Buffer Register	UORB	XXh
03A7h			XXh
03A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
03A9h	UART1 Bit Rate Generator	U1BRG	XXh
03AAh	UART1 Transmit Buffer Register	U1TB	XXh
03ABh		114.00	XXh
03ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
03ADh	UART1 Transmit/Receive Control Register 1	U1C1	00XX0010b
03AEh 03AFh	UART1 Receive Buffer Register	U1RB	XXh
03AFn 03B0h	UART Transmit/Receive Control Register 2	UCON	XXh X0000000b
03B0h 03B1h			4000000
03B1h 03B2h			
03B2h 03B3h			
03B3h 03B4h			
03B5h			
03B6h			
03B01			
	DMA0 Request Factor Select Register	DM0SL	00h
		DIVIOSE	001
03B8h			
03B8h 03B9h		DM1SI	00b
03B8h 03B9h 03BAh	DMA1 Request Factor Select Register	DM1SL	00h
03B8h 03B9h 03BAh 03BBh	DMA1 Request Factor Select Register		
03B8h 03B9h 03BAh 03BBh 03BCh		DM1SL CRCD	XXh
03B8h 03B9h 03BAh 03BBh	DMA1 Request Factor Select Register		

Table 4.5	SFR Information (5) ⁽¹⁾
-----------	------------------------------------

NOTES:

The blank areas are reserved and cannot be accessed by users.
 Bit 5 in the Up-down flag is "0" by reset. However, The values in these bits when read are indeterminate.

X : Nothing is mapped to this bit

Table 5.6Flash Memory Version Electrical Characteristics (1) for 100 cycle products (D3, D5, U3,
U5)

Symbol	Parameter			11-20		
Symbol			Min.	Тур.	Max.	Unit
-	Program and Erase Endurance (3)		100			cycle
-	Word Program Time (Vcc1=5.0V)			25	200	μs
-	Lock Bit Program Time			25	200	μs
-	Block Erase Time	4-Kbyte block		0.3	4	S
=	(Vcc1=5.0V)	8-Kbyte block		0.3	4	S
_		32-Kbyte block		0.5	4	S
_		64-Kbyte block		0.8	4	S
-	Erase All Unlocked Blocks Time (2)	•			4×n	S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μs
-	Data Hold Time ⁽⁵⁾		10			year

Table 5.7Flash Memory Version Electrical Characteristics (6) for 10,000 cycle products (D7, D9,
U7, U9) (Block A and Block 1 (7))

Symbol	Parameter			Unit		
Symbol	Falameter	Min.	Тур.	Max.	Onit	
-	Program and Erase Endurance (3, 8, 9)		10,000 (4)			cycle
-	Word Program Time (Vcc1=5.0V)			25		μS
-	Lock Bit Program Time			25		μS
_	Block Erase Time (Vcc1=5.0V)	4-Kbyte block		0.3		S
tPS	Flash Memory Circuit Stabilization Wait Time	•			15	μS
-	Data Hold Time ⁽⁵⁾		10			year

NOTES:

1. Referenced to Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 °C (D3, D5, U3, U5) unless otherwise specified.

2. n denotes the number of block erases.

3. Program and Erase Endurance refers to the number of times a block erase can be performed.

If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times.

For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)

- 4. Maximum number of E/W cycles for which operation is guaranteed.
- 5. Topr = -40 to 85 °C (D3, D7, U3, U7) / -20 to 85 °C (D5, D9, U5, U9).
- 6. Referenced to Vcc1 = 4.5 to 5.5V, 3.0 to 3.6V at Topr = -40 to 85 °C (D7, U7) / -20 to 85 °C (D9, U9) unless otherwise specified.
- 7. Table 5.7 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.6.
- 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to track the total number of times erasure is used.
- 9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase command at least three times until erase error disappears.
- 10. Set the PM17 bit in the PM1 register to "1" (wait state) when executing more than 100 times rewrites (D7, D9, U7 and U9).
- 11. Customers desiring E/W failure rate information should contact their Renesas technical support representative.

Table 5.8Flash Memory Version Program / Erase Voltage and Read Operation Voltage
Characteristics (at Topr = 0 to 60 °C(D3, D5, U3, U5), Topr = -40 to 85 °C(D7, U7) / Topr =
-20 to 85 °C(D9, U9))

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC1 = 3.3 V \pm 0.3 V \text{ or } 5.0 V \pm 0.5 V$	Vcc1=2.7 to 5.5 V

Symbol	Parameter	Measuring Condition		Unit		
Symbol	Falanielei	weasuring condition	Min.	Тур.	Max.	Unit
Vdet4	Low Voltage Detection Voltage (1)	Vcc1=0.8V to 5.5V	3.3	3.8	4.4	V
Vdet3	Reset Level Detection Voltage (1, 2)		2.2	2.8	3.6	V
Vdet4-Vdet3	Electric potential difference of Low Voltage Detection and Reset Level Detection		0.3			V
Vdet3s	Low Voltage Reset Retention Voltage				0.8	V
Vdet3r	Low Voltage Reset Release Voltage (3)		2.2	2.9	4.0	V

 Table 5.9
 Low Voltage Detection Circuit Electrical Characteristics

NOTES:

1. Vdet4 > Vdet3.

2. Where reset level detection voltage is less than 2.7 V, if the supply power voltage is greater than the reset level detection voltage, the microcomputer operates with $f(BCLK) \le 10MHz$.

3. Vdet3r > Vdet3 is not guaranteed.

4. The voltage detection circuit is designed to use when VCC1 is set to 5V.

Table 5.10 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring Condition		Unit		
Symbol	Falanlelei	Measuring Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc1=2.7V to 5.5V			2	ms
td(R-S)	STOP Release Time				150	μS
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μS
td(S-R)	Brown-out Detection Reset (Hardware Reset 2) Release Wait Time	VCC1=Vdet3r to 5.5V		6 (1)	20	ms
td(E-A)	Low Voltage Detection Circuit Operation Start Time	Vcc1=2.7V to 5.5V			20	μs

NOTES:

1. When Vcc1 = 5V.

Symbol		Parameter		Measuring Condition	Sta	andard		Unit
Symbol		Falameter		Measuring Condition	Min.	Тур.	Max.	Unit
Vон	HIGH Output Voltage ⁽³⁾	P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, I P11_0 to P11_7, P14_0, P14	P10_0 to P10_7,	IOH=-5mA	Vcc1-2.0		Vcc1	v
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P5_0 to P5_7,	IOH=-5mA ⁽²⁾	Vcc2-2.0		/p. Max. Vcc1 Vcc2 Vcc1 Vcc2 Vcc1 Vcc2 Vcc1 Vcc1 V Vcc1 V Vc1 V V V V V V V V V V V V	
Vон	HIGH Output Voltage ⁽³⁾	P6_0 to P6_7, P7_2 to P7_7 P8_6, P8_7, P9_0 to P9_7, I P11_0 to P11_7, P14_0, P14	P10_0 to P10_7,	ОН=-200μА	Vcc1-0.3		Vcc1	
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	', P5_0 to P5_7,	IOH=-200µA ⁽²⁾	Vcc2-0.3		Vcc2	
Vон	HIGH Outpu	t Voltage XOUT	HIGHPOWER	IOH=-1mA	Vcc1-2.0		VCC1	V
			LOWPOWER	IOH=-0.5mA	Vcc1-2.0		VCC1	V
	HIGH Output Voltage XCOUT		HIGHPOWER	With no load applied		2.5		
			LOWPOWER	With no load applied		1.6		V
Vol	LOW Output Voltage ⁽³⁾	P6_0 to P6_7, P7_0 to P7_7 P8_6, P8_7, P9_0 to P9_7, I P11_0 to P11_7, P14_0, P14	P10 0 to P10 7,	IOL=5mA			2.0	
		P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7,	IOL=5mA (2)			2.0	V
Vol	LOW Output Voltage ⁽³⁾	Output P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,			0.45			
	Ŭ	P0_0 to P0_7, P1_0 to P1_7 P3_0 to P3_7, P4_0 to P4_7 P12_0 to P12_7, P13_0 to P	7, P2_0 to P2_7, 7, P5_0 to P5_7,	IOL=200µA ⁽²⁾			0.45	V
Vol	LOW Output		HIGHPOWER	IOL=1mA			2.0	
			LOWPOWER	IOL=0.5mA			2.0	V
	LOW Output	t Voltage XCOUT	HIGHPOWER	With no load applied		0		.,
			LOWPOWER	With no load applied		0		V
Vt+-Vt-	Hysteresis	HOLD, RDY, TAOIN to TA4II INTO to INT5, NMI, ADTRG, I TAOOUT to TA4OUT, KIO to SCL0 to SCL2, SDA0 to SD/	CTS0 to CTS2, CLK0 to CLK4, KI3, RXD0 to RXD2,		0.2		1.0	v
VT+-VT-	Hysteresis	RESET	, ,		0.2		2.5	V
Ін	HIGH Input Current ⁽³⁾		12_7, P13_0 to P13_7,	VI=5V			5.0	μΑ
lıL	LOW Input Current ⁽³⁾		12_7, P13_0 to P13_7,	VI=0V			-5.0	μΑ
Rpullup	Pull-Up Resistance (3)	P4_0 to P4_7, P5_0 to P5_7	, P2_0 to P2_7, P3_0 to P3_7, , P6_0 to P6_7, P7_2 to P7_7, P9_0 to P9_7, P10_0 to P10_7, 12_7, P13_0 to P13_7,	VI=0V	30	50	170	kΩ
Rfxin	Feedback R	esistance XIN				1.5	l	MΩ
Rfxcin	Feedback R	esistance XCIN				15	l	MΩ
Vram	RAM Retent	ion Voltage		At stop mode	2.0			V

Table 5.11 Electrical Characteristics (1) (1)

NOTES: 1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=24MHz unless otherwise

specified. 2. Where the product is used at Vcc1 = 5 V and Vcc2 = 3 V, refer to the 3 V version value for the pin specified value on Vcc2 port side.

3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.13 External Clock Input (XIN input) (1)

Symbol	Parameter	Stan	Unit	
	Farameter		Max.	Offic
tc	External Clock Input Cycle Time	62.5		ns
ťw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

NOTES:

1. The condition is Vcc1=Vcc2=3.0 to 5.0V.

Table 5.14 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Star	Unit	
Symbol	Farameter		Min. Max.	
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data Input Access Time (when accessing multiplex bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data Input Setup Time	40		ns
tsu(RDY-BCLK)	RDY Input Setup Time	30		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	40		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 45[ns]$$
n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 45[ns]$$
 n is "2" for 2-wait setting, "3" for 3-wait setting.

Switching Characteristics

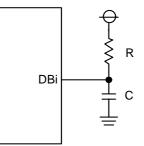
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Cumbal	Deremeter	Parameter		dard	Linit
Symbol	Parameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	Figure 5.2	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) (3)		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} = 40[ns] \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$


2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc2) by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1k Ω X ln(1-0.2Vcc2 / Vcc2)

 $t = -30 \text{ F } \times 1 \text{ K} \Omega \times 1 \text{ m} (1 - 0.2 \text{ VCC})$

= 6.7ns.

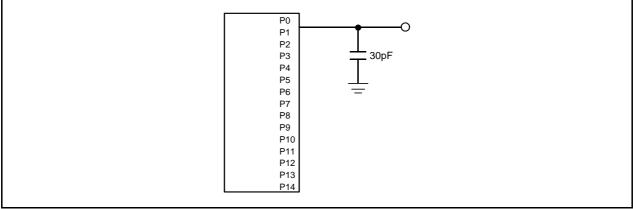


Figure 5.2 Ports P0 to P14 Measurement Circuit

Switching Characteristics

.

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

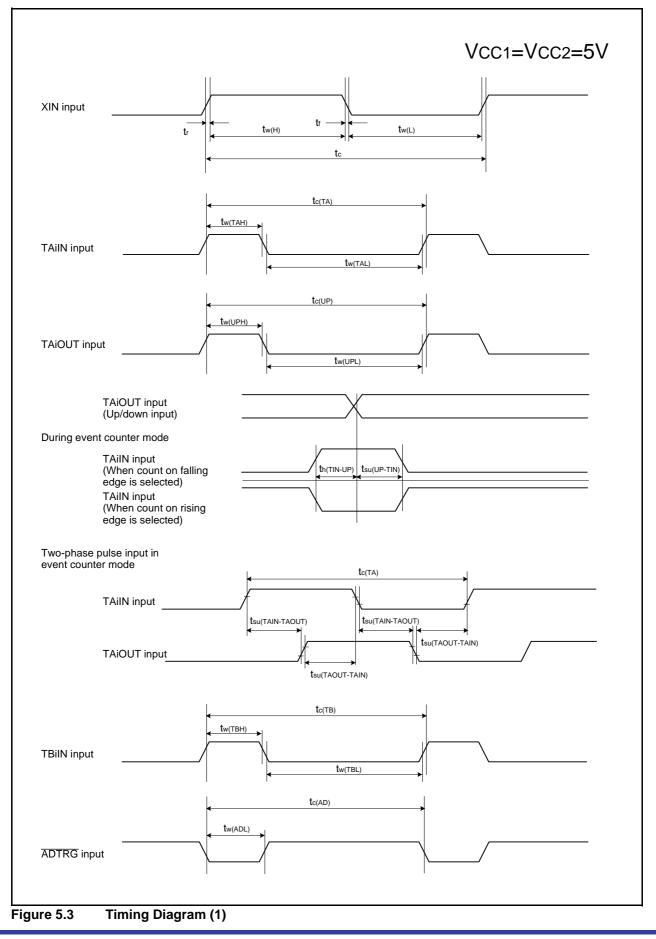
Table 5.29	Memory Expansion and Microprocessor Modes (for 2- to 3-wait setting, external area
	access and multiplex bus selection)

Symbol	Deremeter		Stan	dard	Unit
Symbol	Parameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		(NOTE 1)		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
th(RD-CS)	Chip Select Output Hold Time (in relation to RD)		(NOTE 1)		ns
th(WR-CS)	Chip Select Output Hold Time (in relation to WR)		(NOTE 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time			25	ns
th(BCLK-RD)	RD Signal Output Hold Time		0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time	See	0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)	Figure 5.2		40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK)		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns
td(BCLK-ALE)	ALE Signal Output Delay Time (in relation to BCLK)			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (in relation to BCLK)		-4		ns
td(AD-ALE)	ALE Signal Output Delay Time (in relation to Address)		(NOTE 3)		ns
th(AD-ALE)	ALE Signal Output Hold Time (in relation to Address)		(NOTE 4)		ns
td(AD-RD)	RD Signal Output Delay From the End of Address		0		ns
td(AD-WR)	WR Signal Output Delay From the End of Address		0		ns
tdz(RD-AD)	Address Output Floating Start Time			8	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$


2. Calculated according to the BCLK frequency as follows:


$$\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns] \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25[ns]$$

4. Calculated according to the BCLK frequency as follows:

Symbol	Doromot	or	Maaa	uring Condition	;	Standard	b	Unit
Symbol	Falamen	2.7V to 3.6V) mode, the output pins are open and other pins are Vss No division, On-chip oscillation Flash Memory f(BCLK)=10MHz, No division, On-chip oscillation Flash Memory No division, On-chip oscillation Flash Memory No division, On-chip oscillation Flash Memory f(BCLK)=10MHz, No division, On-chip oscillation Flash Memory f(BCLK)=10MHz, VCC1=3.0V Flash Memory f(BCLK)=10MHz, VCC1=3.0V Flash Memory f(BCLK)=10MHz, VCC1=3.0V Mask ROM f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾	Min. Typ. Max.			Onit		
	Power Supply Current (Vcc1=Vcc2=2.7V to 3.6V)		Mask ROM			8	11	mA
	· · · · · · · · · · · · · · · · · · ·	pins are open and				1	Max.	mA
						8	13	mA
			,			1.8		mA
			,			12		mA
	Erase			22		mA		
			Mask ROM	Low power dissipation		25		μA
			Flash Memory	f(BCLK)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μA
				f(BCLK)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μA
				On-chip oscillation, Wait mode		45		μA
			Mask ROM Flash Memory	f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		6.0		μΑ
				f(BCLK)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		1.8		μA
				Stop mode Topr =25°C		0.7	3.0	μΑ
Idet4	Low Voltage Detection Diss	sipation Current (4)				0.6	4	μΑ
Idet3	Reset Area Detection Dissi	pation Current (4)				0.4	2	μΑ

Table 5.31 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(BCLK)=10MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register

Idet3: VC26 bit in the VCR2 register

Switching Characteristics

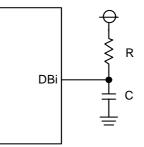
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.46	Memory Expansion and Microprocessor Modes (for setting with no wait)
	· · · · · · · · · · · · · · · · · · ·

Currente e l	Deveryeter		Stan	dard	Linit
Symbol	Parameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		4		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.12		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	Figure 5.12	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) (3)		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:


$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns] \qquad \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times In (1-VoL / Vcc2)$ by a circuit of the right figure. For example, when VoL = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

t = -30pF X 1k Ω X In(1-0.2Vcc2 / Vcc2)

= 6.7ns.

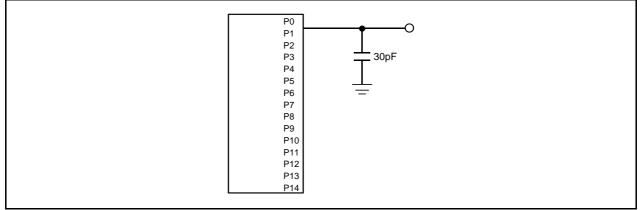


Figure 5.12 Ports P0 to P14 Measurement Circuit

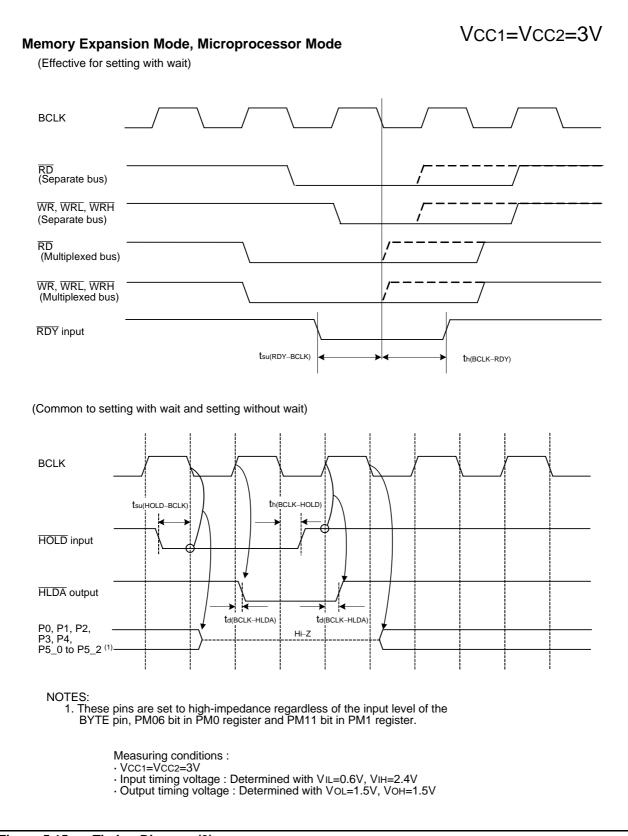
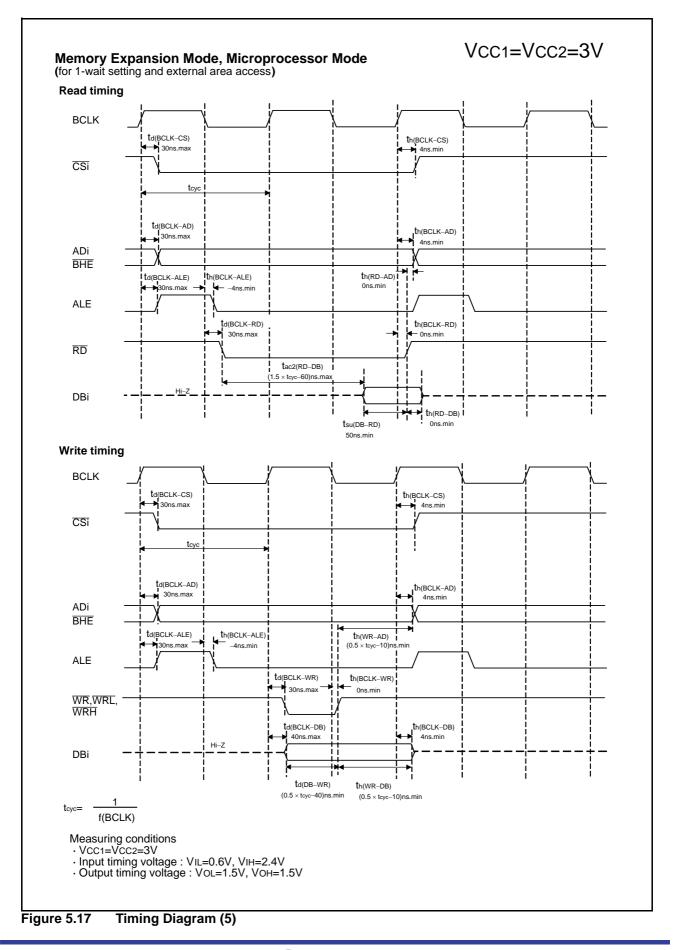



Figure 5.15 Timing Diagram (3)

Symbol	Darameter	Parameter		Standard			
Symbol	Falanielei			Тур.	Max.	Unit	
-	Program and Erase Endurance ⁽³⁾		100			cycle	
-	Word Program Time (Vcc1=5.0V)			25	200	μS	
-	Lock Bit Program Time			25	200	μS	
-	Block Erase Time	4-Kbyte block	4	0.3	4	S	
-	(Vcc1=5.0V)	8-Kbyte block		0.3	4	S	
-		32-Kbyte block		0.5	4	S	
-		64-Kbyte block		0.8	4	S	
-	Erase All Unlocked Blocks Time (2)				4×n	S	
tPS	Flash Memory Circuit Stabilization Wait Time	e			15	μS	
-	Data Hold Time ⁽⁵⁾		20			year	

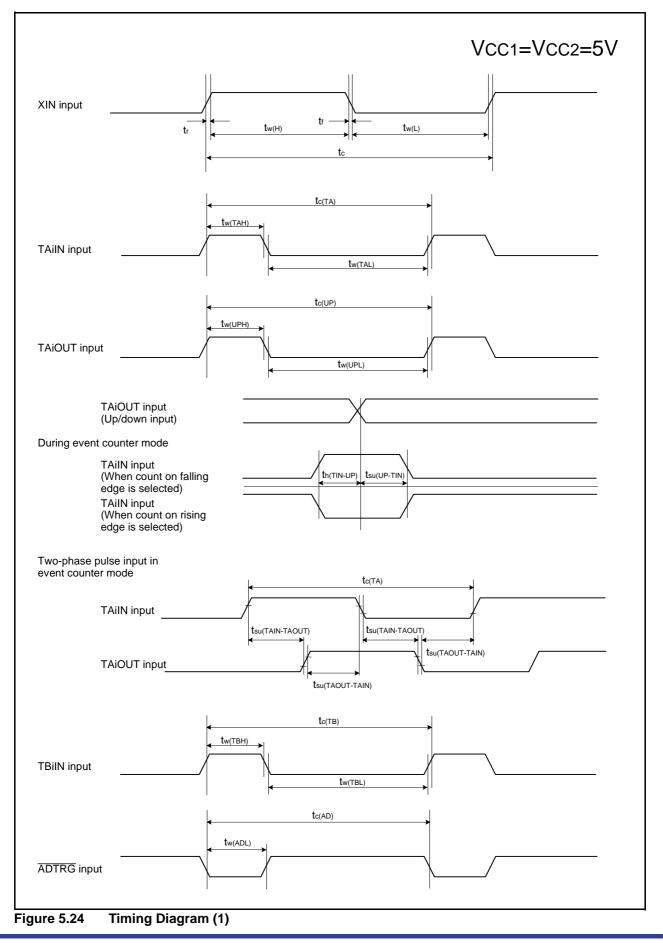
Table 5.53 Flash Memory Version Electrical Characteristics (1) for 100 cycle products (B, U)

Table 5.54Flash Memory Version Electrical Characteristics (6) for 10,000 cycle products (B7, U7)(Block A and Block 1 (7))

Symbol	Parameter			Standard		Unit
Symbol	Faranielei		Min.	Тур.	Max.	Unit
-	Program and Erase Endurance ^(3, 8, 9)		10,000 (4)			cycle
-	Word Program Time (Vcc1=5.0V)			25		μS
-	Lock Bit Program Time			25		μS
_	Block Erase Time (Vcc1=5.0V)	4-Kbyte block	4	0.3		S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μS
-	Data Hold Time ⁽⁵⁾		20			year

NOTES:

- 1. Referenced to Vcc1=4.5 to 5.5V at $T_{opr} = 0$ to 60 °C unless otherwise specified.
- 2. n denotes the number of block erases.


 Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times. For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)

- 4. Maximum number of E/W cycles for which operation is guaranteed.
- 5. Ta (ambient temperature)=55 °C. As to the data hold time except Ta=55 °C, please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor.
- 6. Referenced to Vcc1 = 4.5 to 5.5V at Topr = −40 to 85 °C (B7, U7 (T version)) / −40 to 125 °C (B7, U7 (V version)) unless otherwise specified.
- 7. Table 5.54 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.53.
- 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to track the total number of times erasure is used.
- 9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase command at least three times until erase error disappears.
- 10. Set the PM17 bit in the PM1 register to "1" (wait state) when executing more than 100 times rewrites (B7 and U7).
- 11. Customers desiring E/W failure rate information should contact their Renesas technical support representative.

Table 5.55Flash Memory Version Program/Erase Voltage and Read Operation Voltage
Characteristics (at Topr = 0 to 60 °C(B, U), Topr = -40 to 85 °C (B7, U7 (T version)) / -40
to 125 °C (B7, U7 (V version))

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC1 = 5.0 V \pm 0.5 V$	Vcc1=4.0 to 5.5 V

