

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	I²C, IrDA, SCI, X-Bus
Peripherals	PWM, WDT
Number of I/O	74
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2148bfa20iv

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Name								
Pin No.	Extend	ed modes	Single-Chip Modes	Flash Memory					
TFP-144	Mode 1	Mode 2, Mode 3 (EXPE = 1)	Mode 2, Mode 3 (EXPE = 0)	Programmer Mode					
25	PE7	PE7	PE7	NC					
26	PE6	PE6	PE6	NC					
27	PE5	PE5	PE5	NC					
28	PE4	PE4	PE4	NC					
29	PE3	PE3	PE3	NC					
30	PE2	PE2	PE2	NC					
31	PE1	PE1	PE1	NC					
32	PE0	PE0	PE0	NC					
33 (B)	PA7/CIN15/KIN15/ PS2CD	PA7/A23/CIN15/ KIN15/PS2CD	PA7/CIN15/KIN15/ PS2CD	NC					
34 (B)	PA6/CIN14/KIN14/ PS2CC	PA6/A22/CIN14/ KIN14/PS2CC	PA6/CIN14/KIN14/ PS2CC	NC					
35 (B) PA5/CIN13/KIN13/ PS2BD		PA5/A21/CIN13/ KIN13/PS2BD	PA5/CIN13/KIN13/ PS2BD	NC					
36	VCCB	VCCB	VCCB	VCC					
37 (B)	PA4/CIN12/KIN12/ PS2BC	PA4/A20/CIN12/ KIN12/PS2BC	PA4/CIN12/KIN12/ PS2BC	NC					
38 (B)	PA3/CIN11/KIN11/ PS2AD	PA3/A19/CIN11/ KIN11/PS2AD	PA3/CIN11/KIN11/ PS2AD	NC					
39 (B)	PA2/CIN10/KIN10/ PS2AC	PA2/A18/CIN10/ KIN10/PS2AC	PA2/CIN10/KIN10/ PS2AC	NC					
40 (B)	PA1/CIN9/KIN9	PA1/A17/CIN9/KIN9	PA1/CIN9/KIN9	NC					
41 (B)	PA0/CIN8/KIN8	PA0/A16/CIN8/KIN8	PA0/CIN8/KIN8	NC					
42	VSS	VSS	VSS	VSS					
43	PF7	PF7	PF7	NC					
44	PF6	PF6	PF6	NC					
45	PF5	PF5	PF5	NC					
46	PF4	PF4	PF4	NC					
47	PF3	PF3	PF3	NC					
48	PF2	PF2	PF2	NC					

Section 5 Interrupt Controller

5.1 Features

• Two interrupt control modes

Any of two interrupt control modes can be set by means of the INTM1 and INTM0 bits in the system control register (SYSCR).

• Priorities settable with ICR

An interrupt control register (ICR) is provided for setting interrupt priorities. Three priority levels can be set for each module for all interrupts except NMI and address break.

Independent vector addresses

All interrupt sources are assigned independent vector addresses, making it unnecessary for the source to be identified in the interrupt handling routine.

• Thirty-one external interrupts

NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or falling edge detection can be selected for NMI. Falling-edge, rising-edge, or both-edge detection, or level sensing, can be selected for $\overline{IRQ7}$ to $\overline{IRQ0}$. The IRQ6 interrupt is shared by the interrupt from the $\overline{IRQ6}$ pin and eight external interrupt inputs ($\overline{KIN7}$ to $\overline{KIN0}$), and the IRQ7 interrupt is shared by the interrupt from the $\overline{IRQ7}$ pin and sixteen external interrupt inputs ($\overline{KIN15}$ to $\overline{KIN8}$ and $\overline{WUE7}$ to $\overline{WUE0}$). $\overline{KIN15}$ to $\overline{KIN0}$ and $\overline{WUE7}$ to $\overline{WUE0}$ can be masked individually by the user program.

DTC control

The DTC can be activated by an interrupt request.

Renesas

5.6.2 Interrupt Control Mode 1

In interrupt control mode 1, mask control is applied to three levels for IRQ and on-chip peripheral module interrupt requests by comparing the I and UI bits in CCR in the CPU, and the ICR setting.

- An interrupt request with interrupt control level 0 is accepted when the I bit in CCR is cleared to 0. When the I bit is set to 1, the interrupt request is held pending
- An interrupt request with interrupt control level 1 is accepted when the I bit or UI bit in CCR is cleared to 0. When both I and UI bits are set to 1, the interrupt request is held pending.

For instance, the state transition when the interrupt enable bit corresponding to each interrupt is set to 1, and ICRA to ICRC are set to H'20, H'00, and H'00, respectively (IRQ2 and IRQ3 interrupts are set to control level 1, and other interrupts are set to control level 0) is shown below. Figure 5.5 shows a state transition diagram.

- All interrupt requests are accepted when I = 0. (Priority order: NMI > IRQ2 > IRQ3 > address break > IRQ0 > IRQ1 ...)
- Only NMI, IRQ2, IRQ3 and address break interrupt requests are accepted when I = 1 and UI = 0.
- Only an NMI and address break interrupt request is accepted when I = 1 and UI = 1.

Figure 5.5 State Transition in Interrupt Control Mode 1

Renesas

Section 8 I/O Ports

8.4 Port 3

Port 3 is an 8-bit I/O port. Port 3 pins also function as a bidirectional data bus, XBS bidirectional data bus, and LPC input/output pins. Port 3 functions change according to the operating mode. Port 3 has the following registers.

- Port 3 data direction register (P3DDR)
- Port 3 data register (P3DR)
- Port 3 pull-up MOS control register (P3PCR)

8.4.1 Port 3 Data Direction Register (P3DDR)

P3DDR specifies input or output for the pins of port 3 on a bit-by-bit basis.

Bit	Bit Name	Initial Value	R/W	Description
7	P37DDR	0	W	Modes 1, 2, and 3 (EXPE = 1)
6	P36DDR	0	W	The input/output direction specified by P3DDR is
5	P35DDR	0	W	Ignored, and pins automatically function as data
4	P34DDR	0	W	Modes 2 and 3 (EXPE = 0)
3	P33DDR	0	W	The corresponding port 3 pins are output ports
2	P32DDR	0	W	when P3DDR bits are set to 1, and input ports
1	P31DDR	0	W	when cleared to 0.
0	P30DDR	0	W	-

8.14.2 Port C and Port D Output Data Registers (PCODR, PDODR)

Bit	Bit Name	Initial Value	R/W	Description
7	PC70DR	0	R/W	PCODR can always be read or written to,
6	PC60DR	0	R/W	regardless of the contents of PCDDR.
5	PC50DR	0	R/W	
4	PC40DR	0	R/W	
3	PC30DR	0	R/W	—
2	PC2ODR	0	R/W	—
1	PC10DR	0	R/W	—
0	PC00DR	0	R/W	_

PCODR and PDODR store output data for the pins on ports C and D.

Bit	Bit Name	Initial Value	R/W	Description
7	PD70DR	0	R/W	PDODR can always be read or written to,
6	PD60DR	0	R/W	regardless of the contents of PDDDR.
5	PD50DR	0	R/W	-
4	PD40DR	0	R/W	-
3	PD30DR	0	R/W	-
2	PD20DR	0	R/W	-
1	PD10DR	0	R/W	-
0	PD00DR	0	R/W	-

8.14.3 Port C and Port D Input Data Registers (PCPIN, PDPIN)

Reading PCPIN and PDPIN always returns the pin states.

Bit	Bit Name	Initial Value	R/W	Description
7	PC7PIN	Undefined*	R	PCPIN indicates the port C state. PCPIN has the
6	PC6PIN	Undefined*	R	same address as PCDDR. If a write is performed, the port C settings will change
5	PC5PIN	Undefined*	R	- the port o settings will endinge.
4	PC4PIN	Undefined*	R	
3	PC3PIN	Undefined*	R	—
2	PC2PIN	Undefined*	R	—
1	PC1PIN	Undefined*	R	—
0	PC0PIN	Undefined*	R	—

Note: * The initial value is determined according to the PC7 to PC0 pin states.

Bit	Bit Name	Initial Value	R/W	Description
7	PD7PIN	Undefined*	R	PDPIN indicates the port D state. PDPIN has the
6	PD6PIN	Undefined*	R	same address as PDDDR. If a write is performed, the port D settings will change
5	PD5PIN	Undefined*	R	
4	PD4PIN	Undefined*	R	
3	PD3PIN	Undefined*	R	
2	PD2PIN	Undefined*	R	
1	PD1PIN	Undefined*	R	
0	PD0PIN	Undefined*	R	

Note: * The initial value is determined according to the PD7 to PD0 pin states.

11.5.4 Input Capture Input Timing

The rising or falling edge can be selected for the input capture input timing by the IEDGA to IEDGD bits in TCR. Figure 11.7 shows the usual input capture timing when the rising edge is selected.

Figure 11.7 Input Capture Input Signal Timing (Usual Case)

If ICRA to ICRAD are read when the corresponding input capture signal arrives, the internal input capture signal is delayed by one system clock (ϕ). Figure 11.8 shows the timing for this case.

Figure 11.8 Input Capture Input Signal Timing (When ICRA to ICRD are Read)

11.5.5 Buffered Input Capture Input Timing

ICRC and ICRD can operate as buffers for ICRA and ICRB, respectively. Figure 11.9 shows how input capture operates when ICRC is used as ICRA's buffer register (BUFEA = 1) and IEDGA and IEDGC are set to different values (IEDGA = 0 and IEDGC = 1, or IEDGA = 1 and IEDGC = 0), so that input capture is performed on both the rising and falling edges of FTIA.

Bit	Bit Name	Initial Value	R/W	Description
3	OS3	0	R/W	Output Select 3, 2
2	OS2	0	R/W	These bits specify how the TMO0 pin output level is to be changed by compare-match B of TCORB_0 and TCNT_0.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)
1	OS1	0	R/W	Output Select 1, 0
0	OS0	0	R/W	These bits specify how the TMO0 pin output level is to be changed by compare-match A of TCORA_0 and TCNT_0.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

Note: * Only 0 can be written, for flag clearing.

• TCSR_1

Bit	Bit Name	Initial Value	R/W	Description		
7	CMFB	0	R/(W)*	Compare-Match Flag B		
				[Setting condition]		
				When the values of TCNT_1 and TCORB_1 match		
				[Clearing conditions]		
				• Read CMFB when CMFB = 1, then write 0 in CMFB		
				• When the DTC is activated by a CMIB interrupt		
6	CMFA	0	R/(W)*	Compare-Match Flag A		
				[Setting condition]		
				When the values of TCNT_1 and TCORA_1 match		
				[Clearing conditions		
				• Read CMFA when CMFA = 1, then write 0 in CMFA		
				• When the DTC is activated by a CMIA interrupt		

Input Capture Signal Input Timing: Figure 12.11 shows the timing of the input capture operation.

Figure 12.11 Timing of Input Capture Operation

If the input capture signal is input while TICRR and TICRF are being read, the input capture signal is delayed by one system clock (ϕ) cycle. Figure 12.12 shows the timing of this operation.

Figure 12.12 Timing of Input Capture Signal (Input Capture Signal Is Input during TICRR and TICRF Read)

13.4.4 2fH Modification of IHI Signal

By using the timer connection facility and FRT, even if there is a part of the IHI signal with twice the frequency, this can be eliminated. In order for this function to operate properly, the duty cycle of the IHI signal must be approximately 30% or less, or approximately 70% or above.

The 8-bit OCRDM contents or twice the OCRDM contents can be added automatically to the data captured in ICRD in the FRT, and compare-matches generated at these points. The interval between the two compare-matches is called a mask interval. A value equivalent to approximately 1/3 the IHI signal period is written in OCRDM. ICRD is set so that capture is performed on the rise of the IHI signal.

Since the IHI signal supplied to the IHO signal selection circuit is normally set on the rise of the IHI signal and reset on the fall, its waveform is the same as that of the original IHI signal. When 2fH modification is selected, IHI signal edge detection is disabled during mask intervals. Capture is also disabled during these intervals.

Examples of TCR, TCSR, TOCR, and OCRDM settings in the FRT are shown in table 13.7, and the 2fH modification timing chart is shown in figure 13.6.

15.3.8 Serial Interface Mode Register (SCMR)

SCMR selects SCI functions and its format.

Bit	Bit Name	Initial Value	R/W	Description		
7 to	_	All 1	R	Reserved		
4				These bits are always read as 1 and cannot be modified.		
3	SDIR	0	R/W	Data Transfer Direction		
				Selects the serial/parallel conversion format.		
				0: TDR contents are transmitted with LSB-first.		
				Receive data is stored as LSB first in RDR.		
				1: TDR contents are transmitted with MSB-first.		
				Receive data is stored as MSB first in RDR.		
				The SDIR bit is valid only when the 8-bit data format is used for transmission/reception; when the 7-bit data format is used, data is always transmitted/received with LSB-first.		
2	SINV	0	R/W	Data Invert		
				Specifies inversion of the data logic level. The SINV bit does not affect the logic level of the parity bit. When the parity bit is inverted, invert the O/\overline{E} bit in SMR.		
				0: TDR contents are transmitted as they are. Receive data is stored as it is in RDR.		
				 TDR contents are inverted before being transmitted. Receive data is stored in inverted form in RDR. 		
1	_	1	R	Reserved		
				This bit is always read as 1 and cannot be modified.		
0	SMIF	0	R/W	Serial Communication Interface Mode Select:		
				0: Normal asynchronous or clocked synchronous mode		
				1: Reserved mode		

Figure 17.1 Block Diagram of Keyboard Buffer Controller

Figure 17.2 shows how the keyboard buffer controller is connected.

Figure 17.2 Keyboard Buffer Controller Connection

17.2 Input/Output Pins

Table 17.1 lists the input/output pins used by the keyboard buffer controller.

Table 17.1 Pin Configuration

Channel	Name	Abbreviation *	I/O	Function
0	KBC clock I/O pin (KCLK0)	PS2AC	I/O	KBC clock input/output
	KBC data I/O pin (KD0)	PS2AD	I/O	KBC data input/output
1	KBC clock I/O pin (KCLK1)	PS2BC	I/O	KBC clock input/output
	KBC data I/O pin (KD1)	PS2BD	I/O	KBC data input/output
2	KBC clock I/O pin (KCLK2)	PS2CC	I/O	KBC clock input/output
	KBC data I/O pin (KD2)	PS2CD	I/O	KBC data input/output
Note: *	These are the external I/O pin r	names. In the text,	clock I/	O pins are referred to as KCLK

and data I/O pins as KD, omitting the channel designations.

19.3.5 Output Data Registers 1 to 3 (ODR1 to ODR3)

The ODR registers are 8-bit readable/writable registers for the slave processor (this LSI), and 8-bit read-only registers for the host processor. The registers selected from the host according to the I/O address are shown in the following table. For information on ODR3 selection, see section 19.3.3, LPC Channel 3 Address Register (LADR3). In an LPC I/O read cycle, the data in the selected register is transferred to the host. The initial values of ODR1 to ODR3 are undefined.

	I/O Ad	dress	Transfer			
Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Register Selection
0000 0000 0110	0	0	0	0	I/O read	ODR1 read
0000 0000 0110	0	0	1	0	I/O read	ODR2 read

19.3.6 Bidirectional Data Registers 0 to 15 (TWR0 to TWR15)

The TWR registers are sixteen 8-bit readable/writable registers to both the slave processor (this LSI) and the host processor. In TWR0, however, two registers (TWR0MW and TWR0SW) are allocated to the same address for both the host address and the slave address. TWR0MW is a write-only register for the host processor, and a read-only register for the slave processor, while TWR0SW is a write-only register for the slave processor and a read-only register for the host processor. When the host and slave processors begin a write, after the respective TWR0 registers have been written to, access right arbitration for simultaneous access is performed by checking the status flags to see if those writes were valid. For the registers selected from the host according to the I/O address, see section 19.3.3, LPC Channel 3 Address Register (LADR3).

Data transferred in an LPC I/O write cycle is written to the selected register; in an LPC I/O read cycle, the data in the selected register is transferred to the host. The initial values of TWR0 to TWR15 are undefined.

19.3.7 Status Registers 1 to 3 (STR1 to STR3)

The STR registers are 8-bit registers that indicate status information during host interface processing. Bits 3, 1, and 0 of STR1 to STR3, and bits 7 to 4 of STR3, are read-only bits for both the host processor and the slave processor (this LSI). However, only 0 can be written to bit 0 of STR1 to STR3 and bits 6 and 4 of STR3, from the slave processor (this LSI), in order to clear the flags to 0. The registers selected from the host processor according to the I/O address are shown in the following table. For information on STR3 selection, see section 19.3.3, LPC Channel 3 Address Register (LADR3). In an LPC I/O read cycle, the data in the selected register is transferred to the host processor. The initial values of STR1 to STR3 are H'00.

Renesas

Bit	Bit Name	Initial Value	R/W	Description				
2	CH2	0	R/W	Channel Select 2 to 0				
1	CH1	0	R/W	Select analog input channels. The input channel				
0	CH0	0	R/W	setting must be made when a (ADST = 0).	conversion is halted			
				When SCAN = 0:	When SCAN = 1:			
				000: AN0	000: AN0			
				001: AN1	001: AN0 and AN1			
				010: AN2	010: AN0 to AN2			
				011: AN3	011: AN0 to AN3			
				100: AN4	100: AN4			
				101: AN5	101: AN4 and AN5			
				110: AN6, or CIN0 to CIN7	110: AN4 to AN6 or			
				111: AN7, or CIN8 to CIN15	CIN0 to CIN7			
					111: AN4 to AN6 or CIN0 to CIN7, or AN7 or CIN8 to CIN15			

Note: * Only 0 can be written for clearing the flag.

21.3.3 A/D Control Register (ADCR)

Section 21 A/D Converter

ADCR enables A/D conversion started by an external trigger signal.

Bit	Bit Name	Initial Value	R/W	Description
7	TRGS1	0	R/W	Timer Trigger Select 1 and 0
6 TRGS0 0		0	R/W	Enable the start of A/D conversion by a trigger signal. Only set bits TRGS1 and TRGS0 when conversion is halted (ADST = 0).
				00: A/D conversion start by external trigger is disabled
				01: A/D conversion start by external trigger is disabled
				10: A/D conversion start by conversion trigger from TMR is enabled
				11: A/D conversion start by $\overline{\text{ADTRG}}$ pin is enabled
5 to 0) —	All 1	R	Reserved
				These bits are always read as 1 and cannot be modified.

23.9 Program/Erase Protection

There are three kinds of flash memory program/erase protection: hardware protection, software protection, and error protection.

23.9.1 Hardware Protection

Hardware protection is a state in which programming/erasing of flash memory is forcibly disabled or aborted by a reset (including WDT overflow reset), or a transition to hardware standby mode, software standby mode, sub-active mode, sub-sleep mode or watch mode. Flash memory control registers 1 and 2 (FLMCR1 and FLMCR2) and erase block registers 1 and 2 (EBR1 and EBR2) are initialized. In a reset via the RES pin, the reset state is not entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the RES pin low for the RES pulse width specified in the AC Characteristics section.

23.9.2 Software Protection

Software protection can be implemented against programming/erasing of all flash memory blocks by clearing the SWE bit in FLMCR1 to 0. When software protection is in effect, setting the P or E bit in FLMCR1 does not cause a transition to program mode or erase mode. By setting the erase block registers 1 and 2 (EBR1 and EBR2), erase protection can be set for individual blocks. When EBR1 and EBR2 are set to H'00, erase protection is set for all blocks.

23.9.3 Error Protection

In error protection, an error is detected when the CPU's runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

When the following errors are detected during programming/erasing of flash memory, the FLER bit in FLMCR2 is set to 1, and the error protection state is entered.

- When the flash memory of is read during programming/erasing (including vector read and instruction fetch)
- Immediately after exception handling (excluding a reset) during programming/erasing
- When a SLEEP instruction is executed (transits to software standby mode, sleep mode, subactive mode, sub-sleep mode, or watch mode) during programming/erasing
- When the bus ownership is released during programming/erasing

Section 26 List of Registers

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
PADDR	PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR	PORT
P1PCR	P17PCR	P16PCR	P15PCR	P14PCR	P13PCR	P12PCR	P11PCR	P10PCR	-
P2PCR	P27PCR	P26PCR	P25PCR	P24PCR	P23PCR	P22PCR	P21PCR	P20PCR	-
P3PCR	P37PCR	P36PCR	P35PCR	P34PCR	P33PCR	P32PCR	P31PCR	P30PCR	-
P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	-
P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR	-
P1DR	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR	-
P2DR	P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR	_
P3DDR	P37DDR	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR	-
P4DDR	P47DDR	P46DDR	P45DDR	P44DDR	P43DDR	P42DDR	P41DDR	P40DDR	_
P3DR	P37DR	P36DR	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR	_
P4DR	P47DR	P46DR	P45DR	P44DR	P43DR	P42DR	P41DR	P40DR	_
P5DDR	_	_	_	_	_	P52DDR	P51DDR	P50DDR	_
P6DDR	P67DDR	P66DDR	P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDR	-
P5DR	_	_	_	_	_	P52DR	P51DR	P50DR	_
P6DR	P67DR	P66DR	P65DR	P64DR	P63DR	P62DR	P61DR	P60DR	-
PBODR	PB70DR	PB6ODR	PB50DR	PB40DR	PB3ODR	PB2ODR	PB10DR	PB00DR	-
PBPIN	PB7PIN	PB6PIN	PB5PIN	PB4PIN	PB3PIN	PB2PIN	PB1PIN	PB0PIN	-
P8DDR	_	P86DDR	P85DDR	P84DDR	P83DDR	P82DDR	P81DDR	P80DDR	_
P7PIN	P77PIN	P76PIN	P75PIN	P74PIN	P73PIN	P72PIN	P71PIN	P70PIN	
PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR	-
P8DR	_	P86DR	P85DR	P84DR	P83DR	P82DR	P81DR	P80DR	_
P9DDR	P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	P91DDR	P90DDR	
P9DR	P97DR	P96DR	P95DR	P94DR	P93DR	P92DR	P91DR	P90DR	
IER	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E	INT
STCR	IICS	IICX1	IICX0	IICE	FLSHE	_	ICKS1	ICKS0	SYSTEM
SYSCR	CS2E	IOSE	INTM1	INTM0	XRST	NMIEG	HIE	RAME	
MDCR	EXPE	_	_	_	_	_	MDS1	MDS0	
BCR	_	ICIS0	BRSTRM	BRSTS1	BRSTS0	_	IOS1	IOS0	BSC
WSCR	_	_	ABW	AST	WMS1	WMS0	WC1	WC0	
TCR_0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR_0,
TCR_1	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	FMR_1
TCSR_0	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0	

Cor		Cond	ition A	A Condition B 16 MHz		Condition C 20 MHz		-	Test
	10 MHz		MHz						
ltem	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Read data access time 4	t _{ACC4}	_	$2.5 \times t_{_{cyc}} - 50$	_	$2.5 \times t_{_{cyc}} - 35$	_	$2.5 \times t_{_{cyc}} - 25$	ns	Figures 27.11 to
Read data access time 5	t _{ACC5}	—	$3.0 imes t_{cyc} - 80$	—	3.0 imes t _{cyc} – 55	—	$3.0 imes t_{cyc} - 40$	ns	27.15
HWR, LWR delay time 1	$\mathbf{t}_{_{\mathrm{WRD1}}}$	—	60	—	45	—	30	ns	_
HWR, LWR delay time 2	$\mathbf{t}_{_{\mathrm{WRD2}}}$	—	60	—	45	—	30	ns	
HWR, LWR pulse width 1	t _{wsw1}	1.0 × t _{cyc} – 40	_	1.0 × t _{cyc} – 30	_	1.0 × t _{cyc} – 20	_	ns	-
HWR, LWR pulse width 2	t _{wsw2}	1.5 × t _{cyc} – 40	_	1.5 × t _{cyc} – 30	_	1.5 × t _{cyc} – 20	_	ns	-
Write data delay time	t _{wdd}	—	60	—	45	—	30	ns	-
Write data setup time	t _{wDS}	0	_	0	_	0	_	ns	-
Write data hold time	t _{wDH}	20	_	15	_	10	_	ns	-
WAIT setup time	t _{wrs}	60	—	45	—	30	_	ns	
WAIT hold time	t _{wth}	10		5	_	5	_	ns	

Figure C.2 Package Dimensions (TFP-100B)