

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Coro Processor	485/2000
	103/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	l²C, IrDA, SCI, X-Bus
Peripherals	PWM, WDT
Number of I/O	74
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2148bfa20v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14.4	Operati	on	352
	14.4.1	Watchdog Timer Mode	352
	14.4.2	Interval Timer Mode	354
	14.4.3	RESO Signal Output Timing	355
14.5	Interruj	pt Sources	355
14.6	Usage I	Notes	356
	14.6.1	Notes on Register Access	356
	14.6.2	Conflict between Timer Counter (TCNT) Write and Increment	357
	14.6.3	Changing Values of CKS2 to CKS0 Bits	357
	14.6.4	Switching between Watchdog Timer Mode and Interval Timer Mode	357
	14.6.5	System Reset by RESO Signal	358
	14.6.6	Counter Values during Transitions between High-Speed, Sub-Active,	
		and Watch Modes	358
Secti	on 15	Serial Communication Interface (SCI and IrDA)	359
15.1	Feature	·S	359
15.2	Input/C	Output Pins	361
15.3	Registe	r Descriptions	361
	15.3.1	Receive Shift Register (RSR)	362
	15.3.2	Receive Data Register (RDR)	362
	15.3.3	Transmit Data Register (TDR)	362
	15.3.4	Transmit Shift Register (TSR)	362
	15.3.5	Serial Mode Register (SMR)	363
	15.3.6	Serial Control Register (SCR)	364
	15.3.7	Serial Status Register (SSR)	366
	15.3.8	Serial Interface Mode Register (SCMR)	368
	15.3.9	Bit Rate Register (BRR)	369
	15.3.10	Keyboard Comparator Control Register (KBCOMP)	375
15.4	Operati	on in Asynchronous Mode	376
	15.4.1	Data Transfer Format	377
	15.4.2	Receive Data Sampling Timing and Reception Margin in Asynchronous	
		Mode	378
	15.4.3	Clock	379
	15.4.4	SCI Initialization (Asynchronous Mode)	380
	15.4.5	Data Transmission (Asynchronous Mode)	381
	15.4.6	Serial Data Reception (Asynchronous Mode)	383
15.5	Multip	rocessor Communication Function	387
	15.5.1	Multiprocessor Serial Data Transmission	388
	15.5.2	Multiprocessor Serial Data Reception	390
15.6	Operati	on in Clocked Synchronous Mode	393
	15.6.1	Clock	393

Rev. 3.00 Mar 21, 2006 page xxx of liv

Figure 2.1 Exception Vector Table (Normal Mode)

Figure 2.2 Stack Structure in Normal Mode

2.2.2 Advanced Mode

Address space

Linear access to a maximum address space of 16 Mbytes is possible.

• Extended registers (En)

The extended registers (E0 to E7) can be used as 16-bit registers. They can also be used as the upper 16-bit segments of 32-bit registers or address registers.

Figure 3.10 Address Map for H8S/2148B (2)

7.2 **Register Descriptions**

The DTC has the following registers.

- DTC mode register A (MRA)
- DTC mode register B (MRB)
- DTC source address register (SAR)
- DTC destination address register (DAR)
- DTC transfer count register A (CRA)
- DTC transfer count register B (CRB)

These six registers cannot be directly accessed from the CPU. When a DTC activation interrupt source occurs, the DTC reads a set of register information that is stored in on-chip RAM to the corresponding DTC registers and transfers data. After the data transfer, it writes a set of updated register information back to on-chip RAM.

- DTC enable registers A to E (DTCERA to DTCERE)
- DTC vector register (DTVECR)

7.2.1 DTC Mode Register A (MRA)

MRA selects the DTC operating mode.

7.7.2 Software Activation

An example is shown in which the DTC is used to transfer a block of 128 bytes of data by means of software activation. The transfer source address is H'1000 and the transfer destination address is H'2000. The vector number is H'60, so the vector address is H'04C0.

- Set MRA to incrementing source address (SM1 = 1, SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), block transfer mode (MD1 = 1, MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one block transfer by one interrupt (CHNE = 0). Set the transfer source address (H'1000) in SAR, the transfer destination address (H'2000) in DAR, and 128 (H'8080) in CRA. Set 1 (H'0001) in CRB.
- 2. Set the start address of the register information at the DTC vector address (H'04C0).
- 3. Check that the SWDTE bit in DTVECR is 0. Check that there is currently no transfer activated by software.
- 4. Write 1 to the SWDTE bit and the vector number (H'60) to DTVECR. The write data is H'E0.
- 5. Read DTVECR again and check that it is set to the vector number (H'60). If it is not, this indicates that the write failed. This is presumably because an interrupt occurred between steps 3 and 4 and led to a different software activation. To activate this transfer, go back to step 3.
- 6. If the write was successful, the DTC is activated and a block of 128 bytes of data is transferred.
- 7. After the transfer, an SWDTEND interrupt occurs. The interrupt handling routine should clear the SWDTE bit to 0 and perform wrap-up processing.

Dort	Description	Mada 1	Мос	les 2 and 3	I/O
Port	Description	wode 1	(EXPE = 1)	(EXPE = 0)	Status
Port 1	General I/O port also	A7	A7/P17/PW7	P17/PW7	On-chip
	functioning as address	A6	A6/P16/PW6	P16/PW6	input pull-
	pins	A5	A5/P15/PW5	P15/PW5	up 10005
		A4	A4/P14/PW4	P14/PW4	
		A3	A3/P13/PW3	P13/PW3	
		A2	A2/P12/PW2	P12/PW2	
		A1	A1/P11/PW1	P11/PW1	
		A0	A0/P10/PW0	P10/PW0	
Port 2	General I/O port also	A15	A15/P27/PW15/	P27/PW15/CBLANK	On-chip
	functioning as address	A14	CBLANK	P26/PW14	input pull-
	pin, and timer	A13	A14/P26/PW14	P25/PW13	up 10005
	connection output pin	A12	A13/P25/PW13	P24/PW12	
		A11	A12/P24/PW12	P23/PW11	
		A10	A11/P23/PW11	P22/PW10	
		A9	A10/P22/PW10	P21/PW9	
		A8	A9/P21/PW9	P20/PW8	
			A8/P20/PW8		
Port 3	General I/O port also	D15		P37/HDB7/SERIRQ*	On-chip
	input/output, XBS data	D14		P36/HDB6/LCLK*	up MOSs
	bus input/output, and	D13		P35/HDB5/LRESET*	
	LPC input/output pins	D12		P34/HDB4/LFRAME*	
		D11		P33/HDB3/LAD3*	
		D10		P32/HDB2/LAD2*	
		D9		P31/HDB1/LAD1*	
		D8		P30/HDB0/LAD0*	

Table 8.1 Port Functions of H8S/2140B, H8S/2141B, H8S/2145B, and H8S/2148B

10.3.1 PWM (D/A) Counters H and L (DACNTH, DACNTL)

DACNT is a 14-bit readable/writable up-counter. The input clock is selected by the clock select bit (CKS) in DACR. DACNT functions as the time base for both PWM (D/A) channels. When a channel operates with 14-bit precision, it uses all DACNT bits. When a channel operates with 12-bit precision, it uses the lower 12 bits and ignores the upper two bits. Since DACNT consists of 16-bit data, DACNT transfers data to the CPU via the temporary register (TEMP). For details, refer to section 10.4, Bus Master Interface.

		DACNTH							DACNTL								
Bit (CPU) Bit (Counter)	:	15 7	14 6	13 5	12 4	11 3	10 2	9 1	8 0	7 8	6 9	5 10	4 11	3 12	2 13	1	0
																—	REGS

• DACNTH

Bit	Bit Name	Initial Value	R/W	Description
7	UC7	All 0	R/W	Upper Up-Counter
to	to			
0	UC0			

• DACNTL

Bit	Bit Name	Initial Value	R/W	Description
7	UC8	All 0	R/W	Lower Up-Counter
to 2	to UC13			
1		1	R	Reserved
				This bit is always read as 1 and cannot be modified.
0	REGS	1	R/W	Register Select
				DADRA and DACR, and DADRB and DACNT, are located at the same addresses. The REGS bit specifies which registers can be accessed.
				0: DADRA and DADRB can be accessed
				1: DACR and DACNT can be accessed

Figure 10.4 Output Waveform (OS = 1, DADR Corresponds to T_{μ})

An example of setting CFS to 1 (basic cycle = resolution (T) \times 256) and OS to 1 (PWMX inverted output) is shown as an additional pulse. When CFS is set to 1, the duty ratio of the basic pulse is determined by the upper eight bits (DA13 to DA6) in DADR, and the position of the additional pulse is determined by the following six bits (DA5 to DA0) as shown in figure 10.5.

Table 10.4 shows the position of the additional pulse.

Figure 10.5 D/A Data Register Configuration when CFS = 1

Here, the case of DADR = H'0207 (B'0000 0010 0000 0111) is considered. Figure 10.6 shows an output waveform. Because CFS = 1 and the value of upper eight bits is B'0000 0010, the duty ratio of the basic pulse is $2/256 \times (T)$ of high width.

12.3.1 Timer Counter (TCNT)

Each TCNT is an 8-bit readable/writable up-counter. TCNT_0 and TCNT_1 comprise a single 16bit register, so they can be accessed together by word access. The clock source is selected by the CKS2 to CKS0 bits in TCR. TCNT can be cleared by an external reset input signal, comparematch A signal or compare-match B signal. The method of clearing can be selected by the CCLR1 and CCLR0 bits in TCR. When TCNT overflows (changes from H'FF to H'00), the OVF bit in TCSR is set to 1. TCNT is initialized to H'00.

12.3.2 Time Constant Register A (TCORA)

TCORA is an 8-bit readable/writable register. TCORA_0 and TCORA_1 comprise a single 16-bit register, so they can be accessed together by word access. TCORA is continually compared with the value in TCNT. When a match is detected, the corresponding compare-match flag A (CMFA) in TCSR is set to 1. Note however that comparison is disabled during the T2 state of a TCORA write cycle. The timer output from the TMO pin can be freely controlled by these compare-match A signals and the settings of output select bits OS1 and OS0 in TCSR. TCORA is initialized to H'FF.

12.3.3 Time Constant Register B (TCORB)

TCORB is an 8-bit readable/writable register. TCORB_0 and TCORB_1 comprise a single 16-bit register, so they can be accessed together by word access. TCORB is continually compared with the value in TCNT. When a match is detected, the corresponding compare-match flag B (CMFB) in TCSR is set to 1. Note however that comparison is disabled during the T2 state of a TCORB write cycle. The timer output from the TMO pin can be freely controlled by these compare-match B signals and the settings of output select bits OS3 and OS2 in TCSR. TCORB is initialized to H'FF.

12.3.4 Timer Control Register (TCR)

TCR selects the TCNT clock source and the condition by which TCNT is cleared, and enables/disables interrupt requests.

Input Capture Signal Input Timing: Figure 12.11 shows the timing of the input capture operation.

Figure 12.11 Timing of Input Capture Operation

If the input capture signal is input while TICRR and TICRF are being read, the input capture signal is delayed by one system clock (ϕ) cycle. Figure 12.12 shows the timing of this operation.

Figure 12.12 Timing of Input Capture Signal (Input Capture Signal Is Input during TICRR and TICRF Read)

13.4.5 IVI Signal Fall Modification and IHI Synchronization

By using the timer connection facility and TMR_1, the fall of the IVI signal can be shifted backward by the specified number of IHI signal waveforms. Also, the fall of the IVI signal can be synchronized with the rise of the IHI signal.

To perform 8-bit timer divided waveform period measurement, TCNT in TMR_1 is set to count external clock (IHI signal) pulses, and to be cleared on the rising edge of the external reset signal (inverse of the IVI signal). The number of IHI signal pulses until the fall of the IVI signal is written in TCORB.

Since the IVI signal supplied to the IVO signal selection circuit is normally set on the rise of the IVI signal and reset on the fall, its waveform is the same as that of the original IVI signal. When fall modification is selected, a reset is performed on a TMR_1 TCORB compare-match in TMR_1.

The fall of the waveform generated in this way can be synchronized with the rise of the IHI signal, regardless of whether or not fall modification is selected.

Examples of TCR, TCSR, and TCORB settings in TMR_1 are shown in table 13.8, and the fall modification/IHI synchronization timing chart is shown in figure 13.7.

		6			6.144			7.3728			8		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	2	106	-0.44	2	108	0.08	2	130	-0.07	2	141	0.03	
150	2	77	0.16	2	79	0.00	2	95	0.00	2	103	0.16	
300	1	155	0.16	1	159	0.00	1	191	0.00	1	207	0.16	
600	1	77	0.16	1	79	0.00	1	95	0.00	1	103	0.16	
1200	0	155	0.16	0	159	0.00	0	191	0.00	0	207	0.16	
2400	0	77	0.16	0	79	0.00	0	95	0.00	0	103	0.16	
4800	0	38	0.16	0	39	0.00	0	47	0.00	0	51	0.16	
9600	0	19	-2.34	0	19	0.00	0	23	0.00	0	25	0.16	
19200	0	9	-2.34	0	9	0.00	0	11	0.00	0	12	0.16	
31250	0	5	0.00	0	5	2.40	—	_	_	0	7	0.00	
38400	0	4	-2.34	0	4	0.00	0	5	0.00	—	—	—	

Operating Frequency ϕ (MHz)

Operating Frequency φ (MHz)

	9.8304 10 12					2		12.2	88			
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	174	-0.26	2	177	-0.25	2	212	0.03	2	217	0.08
150	2	127	0.00	2	129	0.16	2	155	0.16	2	159	0.00
300	1	255	0.00	2	64	0.16	2	77	0.16	2	79	0.00
600	1	127	0.00	1	129	0.16	1	155	0.16	1	159	0.00
1200	0	255	0.00	1	64	0.16	1	77	0.16	1	79	0.00
2400	0	127	0.00	0	129	0.16	0	155	0.16	0	159	0.00
4800	0	63	0.00	0	64	0.16	0	77	0.16	0	79	0.00
9600	0	31	0.00	0	32	-1.36	0	38	0.16	0	39	0.00
19200	0	15	0.00	0	15	1.73	0	19	-2.34	0	19	0.00
31250	0	9	-1.70	0	9	0.00	0	11	0.00	0	11	2.40
38400	0	7	0.00	0	7	1.73	0	9	-2.34	0	9	0.00

Legend:

-: Can be set, but there will be a degree of error.

Note: Make the settings so that the error does not exceed 1%.

16.4.7 IRIC Setting Timing and SCL Control

The interrupt request flag (IRIC) is set at different times depending on the WAIT bit in ICMR, the FS bit in SAR, and the FSX bit in SARX. If the ICDRE or ICDRF flag is set to 1, SCL is automatically held low after one frame has been transferred in synchronization with the internal clock. Figures 16.26 to 16.28 show the IRIC set timing and SCL control.

Figure 16.26 IRIC Setting Timing and SCL Control (1)

16.5 Interrupt Sources

The IIC has interrupt sources IICI and DDCSWI. Table 16.8 shows the interrupt sources and priority. Individual interrupt sources can be enabled or disabled using the enable bits in ICCR and DDCSWR, and are sent to the interrupt controller independently.

An IICI interrupt can activate the DTC to allow data transfer.

Channel	Name	Enable Bit	Interrupt Source	Interrupt Flag	DTC Activation	Priority
0	IICI0	IEIC	I ² C bus interface interrupt request	IRIC	Possible	High ≜
	DDCSWI	IE	Format automatic switch interrupt	IF	Not possible	_
1	IICI1	IEIC	I ² C bus interface interrupt request	IRIC	Possible	Low

Table 16.8 IIC Interrupt Sources

16.6 Usage Notes

- In master mode, if an instruction to generate a start condition is issued and then an instruction to generate a stop condition is issued before the start condition is output to the I²C bus, neither condition will be output correctly. To output the start condition followed by the stop condition, after issuing the instruction that generates the start condition, read DR in each I²C bus output pin, and check that SCL and SDA are both low. The pin states can be monitored by reading DR even if the ICE bit is set to 1. Then issue the instruction that generates the stop condition. Note that SCL may not yet have gone low when BBSY is cleared to 0.
- 2. Either of the following two conditions will start the next transfer. Pay attention to these conditions when accessing to ICDR.
 - Write to ICDR when ICE = 1 and TRS = 1 (including automatic transfer from ICDRT to ICDRS)
 - Read from ICDR when ICE = 1 and TRS = 0 (including automatic transfer from ICDRS to ICDRR)
- 3. Table 16.9 shows the timing of SCL and SDA outputs in synchronization with the internal clock. Timings on the bus are determined by the rise and fall times of signals affected by the bus load capacitance, series resistance, and parallel resistance.

Figure 18.1 shows a block diagram of the XBS.

Figure 18.1 Block Diagram of XBS

Rev. 3.00 Mar 21, 2006 page 510 of 788 REJ09B0300-0300

Table 19.5 shows the scope of the host interface pin shutdown.

Port	Scope of Shutdown	I/O	Notes
P33–P30	0	I/O	Hi-Z
P34	0	Input	Hi-Z
P35	Х	Input	LPC hardware reset function is active
P36	0	Input	Hi-Z
P37	0	I/O	Hi-Z
PB1	Δ	I/O	Hi-Z, only when LSCIE = 1
PB0	Δ	I/O	Hi-Z, only when LSMIE = 1
P80	Δ	I/O	Hi-Z, only when PMEE = 1
P81	Δ	I/O	Hi-Z, only when FGA20E = 1
P82	0	Input	Hi-Z
P83	Х	Input	Needed to clear shutdown state
	Port P33–P30 P34 P35 P36 P37 P81 PB0 P80 P80 P81 P82 P83	Scope of Shutdown P33–P30 O P34 O P35 × P36 O P37 O P81 Δ P80 Δ P81 Δ P81 Δ P81 × P82 O	Scope of Shutdown I/O P33–P30 O I/O P34 O Input P35 × Input P36 O Input P37 O I/O P81 Δ I/O P80 Δ I/O P81 Δ I/O P81 Δ I/O P81 Δ I/O P83 × Input

 Table 19.5
 Scope of Host Interface Pin Shutdown

Legend:

O: Pin that is shutdown by the shutdown function

A: Pin that is shutdown only when the LPC function is selected by register setting

 \times : Pin that is not shutdown

In the LPC shutdown state, the LPC's internal state and some register bits are initialized. The order of priority of LPC shutdown and reset states is as follows.

1. System reset (reset by $\overline{\text{STBY}}$ or $\overline{\text{RES}}$ pin input, or WDT0 overflow)

- All register bits, including bits LPC3E to LPC1E, are initialized.

2. LPC hardware reset (reset by \overline{LRESET} pin input)

- LRSTB, SDWNE, and SDWNB bits are cleared to 0.

3. LPC software reset (reset by LRSTB)

— SDWNE and SDWNB bits are cleared to 0.

4. LPC hardware shutdown

— SDWNB bit is cleared to 0.

5. LPC software shutdown

19.4.5 Host Interface Serialized Interrupt Operation (SERIRQ)

A host interrupt request can be issued from the host interface by means of the SERIRQ pin. In a host interrupt request via the SERIRQ pin, LCLK cycles are counted from the start frame of the serialized interrupt transfer cycle generated by the host or a peripheral function, and a request signal is generated by the frame corresponding to that interrupt. The timing is shown in figure 19.6.

The serialized interrupt transfer cycle frame configuration is as follows. Two of the states comprising each frame are the recover state in which the SERIRQ signal is returned to the 1-level at the end of the frame, and the turnaround state in which the SERIRQ signal is not driven. The recover state must be driven by the host or slave processor that was driving the preceding state.

Register Abbrevia-	Deset	High- Speed/ Medium-	Match	Sleep	Sub-	Sub-	Module	Software	Hardware	Madula
	Initialized	Speed	Watch	Sleep	Active	Sleep	Stop	Stanuby	Initialized	
PJPCK	Initialized	_	_	_	_	_	_	_	Initialized	PORT
	Initialized	_	_	_	_	_	_		Initialized	-
	Initialized	_	_	_	_	_	_		Initialized	-
PIDR	Initialized	_	_	_	_	_	_	_	Initialized	_
PZDR	Initialized		_	_	_	_	_	_	Initialized	_
P3DDR	Initialized	_	_	_	_	_	_	_	Initialized	-
P4DDR	Initialized	_	_	_	_	_	_		Initialized	-
P3DR	Initialized	_	_	_			_		Initialized	-
P4DR	Initialized	_	_	_	_		_		Initialized	_
P5DDR	Initialized	—	—	_			—		Initialized	-
P6DDR	Initialized	_	_	_	_	_	_	_	Initialized	_
P5DR	Initialized	_	—	_	—	—	—		Initialized	_
P6DR	Initialized	_	_	_	_	-	_	_	Initialized	_
PBODR	Initialized	_	_	_	_	—	_	_	Initialized	_
PBPIN	_	_	_	_	_	_	_	_	_	_
P8DDR	Initialized	_	_	_	_	_	_	_	Initialized	_
P7PIN	_	_	_	_	_	_	_	_	_	_
PBDDR	Initialized	_	_	_	_	_	_	_	Initialized	_
P8DR	Initialized	_	_	_	_	_	_	_	Initialized	_
P9DDR	Initialized	_	_	_	_	_	_	_	Initialized	-
P9DR	Initialized	_	_	_			_		Initialized	-
IER	Initialized	_	_	_	_	_	_	_	Initialized	INT
STCR	Initialized	_	_	_			_	_	Initialized	SYSTEM
SYSCR	Initialized	_	_	_	_	_	_	_	Initialized	-
MDCR	Initialized	_	_	_	_	_	_	_	Initialized	-
BCR	Initialized	_	_	_	_	_	_	_	Initialized	BSC
WSCR	Initialized	_	_	_	_	_	_		Initialized	_
TCR_0	Initialized	_	_	_	_	_	_	_	Initialized	TMR_0,
TCR_1	Initialized	_	_	_	_	_	_	_	Initialized	TMR_1
TCSR_0	Initialized	_	_	_	_	_	_	_	Initialized	-
TCSR 1	Initialized	_	_	_	_	_	_	_	Initialized	-
TCORA 0	Initialized	_	_	_	_	_	_	_	Initialized	-
TCORA_1	Initialized	_	_	_	_	_	_	_	Initialized	-

Control Signal Timing: Table 27.6 shows the control signal timing. The only external interrupts that can operate on the subclock ($\phi = 32.768$ kHz) are NMI and IRQ0, 1, 2, 6, and 7.

Table 27.6Control Signal Timing

Conditions: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{cc}B = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}$, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$

		Co	ondition			
		1	0 MHz		Test	
Item	Symbol	Min	Max	Unit	Conditions	
RES setup time	t _{ress}	300	—	ns	Figure 27.9	
RES pulse width	t _{resw}	20	_	t _{cyc}	_	
NMI setup time (NMI)	t _{nmis}	250	_	ns	Figure 27.10	
NMI hold time (NMI)	t _{nmin}	10	_	ns		
NMI pulse width (exiting software standby mode)	t _{nmiw}	200	_	ns		
IRQ setup time (IRQ7 to IRQ0)	t _{irqs}	250	_	ns	-	
IRQ hold time(IRQ7 to IRQ0)	t _{iRQH}	10	_	ns	_	
IRQ pulse width (IRQ7, IRQ6, IRQ2 to IRQ0) (exiting software standby mode)	t _{irqw}	200	_	ns		

27.2.3 AC Characteristics

The following shows the clock timing, control signal timing, bus timing, and on-chip peripheral function timing. For the AC characteristics test conditions, see figure 27.3.

Clock Timing: Table 27.20 shows the clock timing. The clock timing specified here covers clock (\$\phi\$) output and clock pulse generator (crystal) and external clock input (EXTAL pin) oscillation settling times. For details of external clock input (EXTAL pin and EXCL pin) timing, see section 25, Clock Pulse Generator.

Table 27.20 Clock Timing

- Condition A: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{cc}B = 5.0 \text{ V} \pm 10\%$, $V_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification product), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide range temperature specification product)
- Condition B: $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $V_{cc}B = 4.0 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification product), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide range temperature specification product)
- Condition C: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{cc}B = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$

		Condition A		Condition B		Condition C			
		10 MHz		16 MHz		20 MHz			Test
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Clock cycle time	t _{cyc}	100	500	62.5	500	50	500	ns	Figure 27.6
Clock high pulse width	t _{ch}	30	—	20	_	17	_	ns	Figure 27.6
Clock low pulse width	t _{cL}	30		20	—	17	—	ns	
Clock rise time	t _{Cr}	—	20	—	10	—	8	ns	
Clock fall time	t _{cf}	—	20	—	10	—	8	ns	-
Oscillation settling time at reset (crystal)	t _{osc1}	20	—	10	—	10	—	ms	Figure 27.7
Oscillation settling time in software standby (crystal)	t _{osc2}	8	_	8	_	8	_	ms	Figure 27.8
External clock output stabilization delay time	t _{dext}	500	_	500	_	500	—	μs	-