

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	XCore
Core Size	32-Bit 24-Core
Speed	4000MIPS
Connectivity	-
Peripherals	<u>.</u>
Number of I/O	176
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1M x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	374-LFBGA
Supplier Device Package	374-FBGA (18x18)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xlf232-1024-fb374-i40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	xCORE Multicore Microcontrollers
2	XLF232-1024-FB374 Features
3	Pin Configuration
4	Signal Description
5	Example Application Diagram
6	Product Overview
7	PLL
8	Boot Procedure
9	Memory
10	JTAG
11	Board Integration
12	DC and Switching Characteristics
13	Package Information
14	Ordering Information
App	endices
A	Configuration of the XLF232-1024-FB374 30
В	Processor Status Configuration
С	Tile Configuration
D	Node Configuration
E	JTAG, xSCOPE and Debugging
F	Schematics Design Check List
G	PCB Layout Design Check List
Н	Associated Design Documentation
1	Related Documentation
J	Revision History

TO OUR VALUED CUSTOMERS

It is our intention to provide you with accurate and comprehensive documentation for the hardware and software components used in this product. To subscribe to receive updates, visit http://www.xmos.com/.

XMOS Ltd. is the owner or licensee of the information in this document and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd. makes no representation that the information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other countries, and may not be used without written permission. Company and product names mentioned in this document are the trademarks or registered trademarks of their respective owners.

4 Signal Description

This section lists the signals and I/O pins available on the XLF232-1024-FB374. The device provides a combination of 1 bit, 4bit, 8bit and 16bit ports, as well as wider ports that are fully or partially (gray) bonded out. All pins of a port provide either output or input, but signals in different directions cannot be mapped onto the same port.

Pins may have one or more of the following properties:

- PD/PU: The IO pin has a weak pull-down or pull-up resistor. On GPIO pins this resistor can be enabled. This resistor is designed to ensure defined logic input state for unconnected pins. It should not be used to pull external circuitry. Note that the resistors are highly non-linear and only a maximum pull current is specified in Section 12.2.
- ST: The IO pin has a Schmitt Trigger on its input.
- ▶ IOT: The IO pin is powered from VDDIOT (X1) or VDDIOT_2 (X3), not VDDIO
- ▶ IO: the pin is powered from VDDIO

	Power pins (9)		
Signal	Function	Туре	Properties
GND	Digital ground	GND	
OTP_VCC	OTP power supply	PWR	
PLL_AGND	Analog ground for PLL	PWR	
PLL_AVDD	Analog PLL power	PWR	
VDD	Digital tile power	PWR	
VDD33	Peripheral power	PWR	
VDDIO	Digital I/O power	PWR	
VDDIOT	Digital I/O power (top)	PWR	
VDDIOT_2	Digital I/O power (top, X3)	PWR	

	JTAG pins (6)		
Signal	Function	Туре	Properties
RST_N	Global reset input	Input	IO, PU, ST
ТСК	Test clock	Input	IO, PD, ST
TDI	Test data input	Input	IO, PU
TDO	Test data output	Output	IO, PD
TMS	Test mode select	Input	IO, PU
TRST_N	Test reset input	Input	IO, PU, ST

-XM()S

X1D68 > X1D69 > X1D70 > X2D00	$x_{0}L2_{out}^{1}$ $x_{0}L2_{out}^{2}$ $x_{0}L2_{out}^{3}$ $x_{0}L2_{out}^{4}$	1A ⁰	4A ⁰ 4A ¹	8A ⁰		32A ¹⁶ 32A ¹⁷ 32A ¹⁸ 32A ¹⁹	I/O I/O I/O I/O	IO, PD IO, PD IO, PD
X1D68 > X1D69 > X1D70 > X2D00	X ₀ L2 ² _{out} X ₀ L2 ³ _{out}	1A ⁰		8A ⁰		32A ¹⁸	1/0	IO, PD
X1D69 > X1D70 > X2D00	X ₀ L2 ³ ut	1A ⁰		8A ⁰				
X1D70 >> X2D00		1A ⁰		8A ⁰		32A ¹⁹	1/0	
X2D00 X2D02 X2D03 X2D04 X2D05 X2D06		1A ⁰		8A ⁰				IO, PD
X2D03 X2D04 X2D05 X2D06				8A ⁰			I/O	IO, PD
X2D04 X2D05 X2D06			4A ¹		16A ⁰	32A ²⁰	I/O	IO, PD
X2D05 X2D06				8A ¹	16A ¹	32A ²¹	I/O	IO, PD
X2D06			4B ⁰	8A ²	16A ²	32A ²²	I/O	IO, PD
			4B ¹	8A ³	16A ³	32A ²³	I/O	IO, PD
⊢			4B ²	8A ⁴	16A ⁴	32A ²⁴	I/O	IO, PD
X2D07			4B ³	8A ⁵	16A ⁵	32A ²⁵	I/O	IO, PD
X2D08			4A ²	8A ⁶	16A ⁶	32A ²⁶	I/O	IO, PD
X2D09			4A ³	8A ⁷	16A ⁷	32A ²⁷	I/O	IO, PD
X2D11		1D ⁰					I/O	IO, PD
X2D12		1E ⁰					I/O	IO, PD
X2D13		1F ⁰					I/O	IO, PD
X2D14			4C ⁰	8B ⁰	16A ⁸	32A ²⁸	1/0	IO, PD
X2D15			4C ¹	8B ¹	16A ⁹	32A ²⁹	I/O	IO, PD
	X ₂ L4 ⁴		4D ⁰	8B ²	16A ¹⁰	-	I/O	IO, PD
	$X_2L4_{in}^3$		4D ¹	8B ³	16A ¹¹		1/0	IO, PD
	X ₂ L4 ²		4D ²	8B ⁴	16A ¹²		1/0	IO, PD
	X ₂ L4 ¹		4D ³	8B ⁵	16A ¹³		I/O	IO, PD
X2D20	-2 - 10		4C ²	8B ⁶	16A ¹⁴	32A ³⁰	1/0	IO, PD
X2D21			4C ³	8B ⁷	16A ¹⁵	32A ³¹	1/0	IO, PD
X2D22		1G ⁰				-	1/0	IO, PD
X2D23		1H ⁰					I/O	IO, PD
	X ₂ L7 ⁰	110					I/O	IO, PD
	$X_2L7_{out}^0$	1J ⁰					I/O	IO, PD
	$X_2L7_{out}^3$.,	4E ⁰	8C ⁰	16B ⁰		I/O	IO, PD
	$X_2L7_{out}^4$		4E ¹	8C ¹	16B ¹		I/O	IO, PD
X2D28			4F ⁰	8C ²	16B ²		I/O	IO, PD
X2D29			4F ¹	8C ³	16B ³		I/O	IO, PD
X2D30			4F ²	8C ⁴	16B ⁴		I/O	IO, PD
X2D31			4F ³	8C ⁵	16B ⁵		I/O	IO, PD
X2D32			4E ²	8C ⁶	16B ⁶		1/0	IO, PD
X2D33			4E ³	8C ⁷	16B ⁷		1/0	IO, PD
	X ₂ L7 ¹	1K ⁰					1/0	IO, PD
	$X_2L7_{out}^2$ $X_2L7_{out}^2$	1L ⁰					1/0	IO, PD
X2D35 /	out	1M ⁰		8D ⁰	16B ⁸		1/0	IO, PD
	X ₂ L5 ⁴			00		32A ⁰	1/0	IO, PD
	$X_2L5_{in}^3$ $X_2L5_{in}^3$					32A ¹	1/0 1/0	IO, PD
	$X_2L5_{in}^2$ $X_2L5_{in}^2$					32A ²	1/0	IO, PD
	$X_2L5_{in}^1$ $X_2L5_{in}^1$					32A ³	1/0	IO, PD
	''2'''in					524	1/0	(continued)

-XMOS[®]-

(continued)

X2D54	X ₂ L5 _{out}				32A ³	1/0	10, PD
X2D55	X ₂ L5 ¹ _{out}				32A ⁶	I/0	IO, PD
X2D56	X ₂ L5 ² _{out}				32A ⁷	I/O	IO, PD
X2D57	X ₂ L5 ³ _{out}				32A ⁸	I/O	IO, PD
X2D58	X ₂ L5 ⁴ _{out}				32A ⁹	I/O	IO, PD
X2D61	X ₂ L6 ⁴ _{in}				32A ¹⁰	I/O	IO, PD
X2D62	X ₂ L6 ³ _{in}				32A ¹¹	I/O	IO, PD
X2D63	X ₂ L6 ² _{in}				32A ¹²	I/O	IO, PD
X2D64	X ₂ L6 ¹ _{in}				32A ¹³	I/O	IO, PD
X2D65	X ₂ L6 ⁰ _{in}				32A ¹⁴	I/O	IO, PD
X2D66	X ₂ L6 ⁰ _{out}				32A ¹⁵	I/O	IO, PD
X2D67	X ₂ L6 ¹ _{out}				32A ¹⁶	I/O	IO, PD
X2D68	X ₂ L6 ² _{out}				32A ¹⁷	I/O	IO, PD
X2D69	X ₂ L6 ³ _{out}				32A ¹⁸	I/O	IO, PD
X2D70	X ₂ L6 ⁴ _{out}				32A ¹⁹	I/O	IO, PD
X3D00	X ₂ L7 ² 1A ⁰					I/0	IO, PD
X3D01	X ₂ L7 ¹ 1B ⁰					1/0	IO, PD
X3D02	X ₂ L4 ⁰	4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	IO, PD
X3D03	X ₂ L4 ⁰ _{out}	4A ¹	8A ¹	16A ¹	32A ²¹	I/O	IO, PD
X3D04	X ₂ L4 ¹ _{out}	4B ⁰	8A ²	16A ²	32A ²²	I/O	IO, PD
X3D05	X ₂ L4 ² _{out}	4B ¹	8A ³	16A ³	32A ²³	I/O	IO, PD
X3D06	X ₂ L4 ³ _{out}	4B ²	8A ⁴	16A ⁴	32A ²⁴	I/O	IO, PD
X3D07	X ₂ L4 ⁴ _{out}	4B ³	8A ⁵	16A ⁵	32A ²⁵	I/O	IO, PD
X3D08	X ₂ L7 ⁴ _{in}	4A ²	8A ⁶	16A ⁶	32A ²⁶	I/O	IO, PD
X3D09	X ₂ L7 ³ _{in}	4A ³	8A ⁷	16A ⁷	32A ²⁷	I/O	IO, PD
X3D10	1C ⁰					I/O	IOT, PD
X3D11	1D ⁰					I/O	IOT, PD
X3D12	1 E ⁰					I/O	IO, PD
X3D13	1 F ⁰					I/O	IO, PD
X3D14		4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/O	IO, PD
X3D15		4C ¹	8B1	16A ⁹	32A ²⁹	I/O	IO, PD
X3D20		4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IO, PD
X3D21		4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/O	IO, PD
X3D23	1H ⁰					I/O	IO, PD
X3D24	110					I/O	IO, PD
X3D25	1J ⁰					I/O	IO, PD
X3D26		4E ⁰	8C ⁰	16B ⁰		I/O	IOT, PD
X3D27		4E ¹	8C ¹	16B ¹		I/O	IOT, PD
X3D28		4F ⁰	8C ²	16B ²		I/O	IOT, PD
X3D29		4F ¹	8C ³	16B ³		I/O	IOT, PD
X3D30		4F ²	8C ⁴	16B ⁴		I/O	IOT, PD
X3D31		4F ³	8C ⁵	16B ⁵		I/O	IOT, PD

XMOS[®]

Signal

X2D53

X2D54

Function

 $X_2L5_{in}^0$

 $X_2L5_{out}^0$

Туре

I/0

I/0

32A⁴

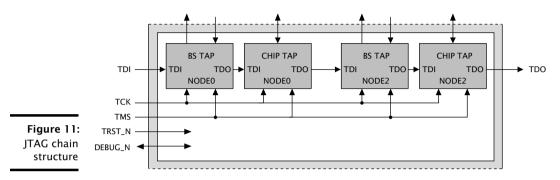
32A⁵

Properties

IO, PD

IO, PD

XLF232-1024-FB374 Datasheet

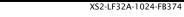

Signal	Function	Туре	Properties
X3D32	4E ² 8C ⁶ 16B ⁶	I/0	IOT, PD
X3D33	4E ³ 8C ⁷ 16B ⁷	I/0	IOT, PD
X3D40	8D ⁴ 16B ¹²	I/0	IOT, PD
X3D41	8D ⁵ 16B ¹³	I/0	IOT, PD
X3D42	8D ⁶ 16B ¹⁴	I/0	IOT, PD
X3D43	8D ⁷ 16B ¹⁵	I/0	IOT, PD

	System pins (4)		
Signal	Function	Туре	Properties
CLK	PLL reference clock	Input	IO, PD, ST
DEBUG_N	Multi-chip debug	I/O	IO, PU
MODE0	Boot mode select	Input	PU
MODE1	Boot mode select	Input	PU

10 JTAG

The JTAG module can be used for loading programs, boundary scan testing, incircuit source-level debugging and programming the OTP memory.

The JTAG chain structure is illustrated in Figure 11. Directly after reset, two TAP controllers are present in the JTAG chain for each xCORE Tile: the boundary scan TAP and the chip TAP. The boundary scan TAP is a standard 1149.1 compliant TAP that can be used for boundary scan of the I/O pins. The chip TAP provides access into the xCORE Tile, switch and OTP for loading code and debugging.


The TRST_N pin must be asserted low during and after power up for 100 ns. If JTAG is not required, the TRST_N pin can be tied to ground to hold the JTAG module in reset.

The DEBUG_N pin is used to synchronize the debugging of multiple xCORE Tiles. This pin can operate in both output and input mode. In output mode and when configured to do so, DEBUG_N is driven low by the device when the processor hits a debug break point. Prior to this point the pin will be tri-stated. In input mode and when configured to do so, driving this pin low will put the xCORE Tile into debug mode. Software can set the behavior of the xCORE Tile based on this pin. This pin should have an external pull up of $4K7-47K\Omega$ or left not connected in single core applications.

The JTAG device identification register can be read by using the IDCODE instruction. Its contents are specified in Figure 12.

	Bit	31											De	evice	Ide	ntifi	atio	n Re	egist	er											E	lit0
Figure 12:		Ver	sion								Pa	rt N	umb	er										Man	ufact	ture	r Ide	ntit	y			1
IDCODE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	1	1	0	0	1	1
return value		(0			(D			C)			()			e	5			6	5				3			Э	3	

-XM()S

The JTAG usercode register can be read by using the USERCODE instruction. Its contents are specified in Figure 13. The OTP User ID field is read from bits [22:31] of the security register on xCORE Tile 0, *see* §9.1 (all zero on unprogrammed devices).

Figure 13: USERCODE return value

	Bit	31												ι	Jser	code	Reg	giste	r												В	it0
3: 「				0	TP U	lser	ID					Unu	ised									Silic	on I	Revis	ion							
E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e			0			()			()			2	2			8	3			C)			()			C)	

11 Board Integration

The device has the following power supply pins:

- ▶ VDD pins for the xCORE Tile
- ▶ VDDIO pins for the I/O lines
- ▶ PLL_AVDD pins for the PLL
- OTP_VCC pins for the OTP

Several pins of each type are provided to minimize the effect of inductance within the package, all of which must be connected. The power supplies must be brought up monotonically and input voltages must not exceed specification at any time.

The VDD supply must ramp from 0V to its final value within 10 ms to ensure correct startup.

The VDDIO and OTP_VCC supply must ramp to its final value before VDD reaches 0.4 V.

The PLL_AVDD supply should be separated from the other noisier supplies on the board. The PLL requires a very clean power supply, and a low pass filter (for example, a 2.2Ω resistor and 100 nF multi-layer ceramic capacitor) is recommended on this pin.

The following ground pins are provided:

- PLL_AGND for PLL_AVDD
- ► GND for all other supplies

All ground pins must be connected directly to the board ground.

The VDD and VDDIO supplies should be decoupled close to the chip by several 100 nF low inductance multi-layer ceramic capacitors between the supplies and GND (for example, 100nF 0402 for every other supply pin). The ground side of the decoupling capacitors should have as short a path back to the GND pins as possible. A bulk decoupling capacitor of at least 10 uF should be placed on each of these supplies.

RST_N is an active-low asynchronous-assertion global reset signal. Following a reset, the PLL re-establishes lock after which the device boots up according to the boot mode (*see* §8). RST_N and must be asserted low during and after power up for 100 ns.

11.1 Land patterns and solder stencils

The package is a 374 ball Fine Ball Grid Array (FBGA) on a 0.8 mm pitch.

The land patterns and solder stencils will depend on the PCB manufacturing process. We recommend you design them with using the IPC specifications *"Generic Requirements for Surface Mount Design and Land Pattern Standards"* IPC-7351B. This standard aims to achieve desired targets of heel, toe and side fillets for solder-joints. The mechanical drawings in Section 13 specify the dimensions and tolerances.

11.2 Ground and Thermal Vias

Vias next to each ground ball into the ground plane of the PCB are recommended for a low inductance ground connection and good thermal performance.

11.3 Moisture Sensitivity

XMOS devices are, like all semiconductor devices, susceptible to moisture absorption. When removed from the sealed packaging, the devices slowly absorb moisture from the surrounding environment. If the level of moisture present in the device is too high during reflow, damage can occur due to the increased internal vapour pressure of moisture. Example damage can include bond wire damage, die lifting, internal or external package cracks and/or delamination.

All XMOS devices are Moisture Sensitivity Level (MSL) 3 - devices have a shelf life of 168 hours between removal from the packaging and reflow, provided they are stored below 30C and 60% RH. If devices have exceeded these values or an included moisture indicator card shows excessive levels of moisture, then the parts should be baked as appropriate before use. This is based on information from *Joint IPC/JEDEC Standard For Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface-Mount Devices* J-STD-020 Revision D.

 $-X \Lambda ()S$

X009390,

12 DC and Switching Characteristics

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
VDD	Tile DC supply voltage	0.95	1.00	1.05	V	
VDDIO	I/O supply voltage	2.30	3.30	3.60	V	
VDDIOT_0	I/O supply voltage	2.25	3.30	3.60	V	
VDDIOT_1	I/O supply voltage	2.25	3.30	3.60	V	
USB_VDD	USB tile DC supply voltage	0.95	1.00	1.05	V	
VDD33	Peripheral supply	3.135	3.30	3.465	V	
PLL_AVDD	PLL analog supply	0.95	1.00	1.05	V	
CI	xCORE Tile I/O load capacitance			25	pF	
Та	Ambient operating temperature (Commercial)	0		70	°C	
	Ambient operating temperature (Industrial)	-40		85	°C	
Tj	Junction temperature			125	°C	
Tstg	Storage temperature	-65		150	°C	

12.1 Operating Conditions

Figure 14: Operating conditions

12.2 DC Characteristics, VDDIO=3V3

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
V(IH)	Input high voltage	2.00		3.60	V	A
V(IL)	Input low voltage	-0.30		0.70	V	A
V(OH)	Output high voltage	2.20			V	B, C
V(OL)	Output low voltage			0.40	V	B, C
I(PU)	Internal pull-up current (Vin=0V)	-100			μA	D
I(PD)	Internal pull-down current (Vin=3.3V)			100	μA	D
I(LC)	Input leakage current	-10		10	μA	

Figure 15: DC characteristics

A All pins except power supply pins.

B Pins X1D40, X1D41, X1D42, X1D43, X1D26, X1D27, X3D40, X3D41, X3D42, X3D43, X3D26, and X3D27 are nominal 8 mA drivers, the remainder of the general-purpose I/Os are 4 mA.

C Measured with 4 mA drivers sourcing 4 mA, 8 mA drivers sourcing 8 mA.

D Used to guarantee logic state for an I/O when high impedance. The internal pull-ups/pull-downs should not be used to pull external circuitry. In order to pull the pin to the opposite state, a 4K7 resistor is recommended to overome the internal pull current.

More detailed power analysis can be found in the XS1-LF Power Consumption document.

12.6 Clock

Figure 20: Clock

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
f	Frequency	3.25	25	100	MHz	
SR	Slew rate	0.10			V/ns	
TJ(LT)	Long term jitter (pk-pk)			2	%	А
f(MAX)	Processor clock frequency			500	MHz	В

A Percentage of CLK period.

B Assumes typical tile and I/O voltages with nominal activity.

Further details can be found in the XS1-LF Clock Frequency Control document,

12.7 xCORE Tile I/O AC Characteristics

	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
	T(XOVALID)	Input data valid window	8			ns	
Figure 21:	T(XOINVALID)	Output data invalid window	9			ns	
I/O AC char- acteristics	T(XIFMAX)	Rate at which data can be sampled with respect to an external clock			60	MHz	

The input valid window parameter relates to the capability of the device to capture data input to the chip with respect to an external clock source. It is calculated as the sum of the input setup time and input hold time with respect to the external clock as measured at the pins. The output invalid window specifies the time for which an output is invalid with respect to the external clock. Note that these parameters are specified as a window rather than absolute numbers since the device provides functionality to delay the incoming clock with respect to the incoming data.

Information on interfacing to high-speed synchronous interfaces can be found in the XS1 Port I/O Timing document, X5821.

12.8 xConnect Link Performance

	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
	B(2blinkP)	2b link bandwidth (packetized)			87	MBit/s	А, В
Figure 22: Link performance	B(5blinkP)	5b link bandwidth (packetized)			217	MBit/s	А, В
	B(2blinkS)	2b link bandwidth (streaming)			100	MBit/s	В
	B(5blinkS)	5b link bandwidth (streaming)			250	MBit/s	В

A Assumes 32-byte packet in 3-byte header mode. Actual performance depends on size of the header and payload.

B 7.5 ns symbol time.

-XMOS-

The asynchronous nature of links means that the relative phasing of CLK clocks is not important in a multi-clock system, providing each meets the required stability criteria.

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
f(TCK_D)	TCK frequency (debug)			18	MHz	
f(TCK_B)	TCK frequency (boundary scan)			10	MHz	
T(SETUP)	TDO to TCK setup time	5			ns	А
T(HOLD)	TDO to TCK hold time	5			ns	А
T(DELAY)	TCK to output delay			15	ns	В

12.9 JTAG Timing

Figure 23: JTAG timing

A Timing applies to TMS and TDI inputs.

B Timing applies to TDO output from negative edge of TCK.

All JTAG operations are synchronous to TCK apart from the global asynchronous reset TRST_N.

0x13: DGETREG operand 1	Bits	Perm	Init	Description
	31:8	RO	-	Reserved
	7:0	DRW		Thread number to be read

B.16 DGETREG operand 2: 0x14

Register number to be read by DGETREG

0x14: DGETREG operand 2

Bits	Perm	Init	Description	
31:5	RO	-	Reserved	
4:0	DRW		Register number to be read	

B.17 Debug interrupt type: 0x15

Register that specifies what activated the debug interrupt.

Bits	Perm	Init	Description
31:18	RO	-	Reserved
17:16	DRW		Number of the hardware breakpoint/watchpoint which caused the interrupt (always 0 for =HOST= and =DCALL=). If multiple breakpoints/watchpoints trigger at once, the lowest number is taken.
15:8	DRW		Number of thread which caused the debug interrupt (always 0 in the case of =HOST=).
7:3	RO	-	Reserved
2:0	DRW	0	Indicates the cause of the debug interrupt 1: Host initiated a debug interrupt through JTAG 2: Program executed a DCALL instruction 3: Instruction breakpoint 4: Data watch point 5: Resource watch point

0x15: Debug interrupt type

B.18 Debug interrupt data: 0x16

On a data watchpoint, this register contains the effective address of the memory operation that triggered the debugger. On a resource watchpoint, it countains the resource identifier.

-XMOS-

B.22 Instruction breakpoint control: 0x40 .. 0x43

This register controls which logical cores may take an instruction breakpoint, and under which condition.

Bits	Perm	Init	Description	
31:24	RO	-	Reserved	
23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint t be enabled individually for each thread.	
15:2	RO	-	Reserved	
1	DRW	0	When 0 break when PC == IBREAK_ADDR. When 1 = break when PC != IBREAK_ADDR.	
0	DRW	0	When 1 the instruction breakpoint is enabled.	

0x40 .. 0x43: Instruction breakpoint control

B.23 Data watchpoint address 1: 0x50 .. 0x53

This set of registers contains the first address for the four data watchpoints.

0x50 .. 0x53: Data watchpoint address 1

Data hpoint	Bits	Perm	Init	Description
ress 1	31:0	DRW		Value.

B.24 Data watchpoint address 2: 0x60 .. 0x63

This set of registers contains the second address for the four data watchpoints.

0x60 .. 0x63: Data watchpoint address 2

Data Chpoint	Bits	Perm	Init	Description
dress 2	31:0	DRW		Value.

B.25 Data breakpoint control register: 0x70 .. 0x73

This set of registers controls each of the four data watchpoints.

-XMOS

XS2-LF32A-1024-FB374

	Bits	Perm	Init	Description
	31:24	CRO		Processor ID of this XCore.
0x00:	23:16	CRO		Number of the node in which this XCore is located.
0x00: Device identification	15:8	CRO		XCore revision.
	7:0	CRO		XCore version.

C.2 xCORE Tile description 1: 0x01

This register describes the number of logical cores, synchronisers, locks and channel ends available on this xCORE tile.

Bits	Perm	Init	Description
31:24	CRO		Number of channel ends.
23:16	CRO		Number of the locks.
15:8	CRO		Number of synchronisers.
7:0	RO	-	Reserved

C.3 xCORE Tile description 2: 0x02

This register describes the number of timers and clock blocks available on this xCORE tile.

0x02: xCORE Tile description 2

0x01: xCORE Tile description 1

	Bits	Perm	Init	Description
x02:	31:16	RO	-	Reserved
Tile	15:8	CRO		Number of clock blocks.
on 2	7:0	CRO		Number of timers.

C.4 Control PSwitch permissions to debug registers: 0x04

-XMOS-

This register can be used to control whether the debug registers (marked with permission CRW) are accessible through the tile configuration registers. When this bit is set, write -access to those registers is disabled, preventing debugging of the xCORE tile over the interconnect.

0x41: PC of logical core 1

Bits	Perm	Init	Description
31:0	CRO		Value.

C.11 PC of logical core 2: 0x42

Value of the PC of logical core 2.

0x42: PC of logical core 2

Bits	Perm	Init	Description
31:0	CRO		Value.

C.12 PC of logical core 3: 0x43

Value of the PC of logical core 3.

0x43:				
PC of logical	Bits 31:0	Perm	Init	Description
core 3	31:0	CRO		Value.

C.13 PC of logical core 4: 0x44

Value of the PC of logical core 4.

0x44: PC of logical core 4

0x44: ogical	Bits	Perm	Init	Description
ore 4	31:0	CRO		Value.

C.14 PC of logical core 5: 0x45

Value of the PC of logical core 5.

0x45: PC of logical core 5

	Bits	Perm	Init	Description
;	31:0	CRO		Value.

Bits

31:0

C.15 PC of logical core 6: 0x46

Value of the PC of logical core 6.

0x46: PC of logical core 6

 Perm
 Init
 Description

 CRO
 Value.

C.16 PC of logical core 7: 0x47

Value of the PC of logical core 7.

0x47 PC of logical core 7

0x47: gical	Bits	Perm	Init	Description
ore 7	31:0	CRO		Value.

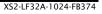
C.17 SR of logical core 0: 0x60

Value of the SR of logical core 0

0x60: SR of logical core 0

0x60: ogical	Bits	Perm	Init	Description
ore 0	31:0	CRO		Value.

C.18 SR of logical core 1: 0x61


Value of the SR of logical core 1

0x61 SR of logical core 1

61: cal	Bits	Perm	Init	Description
e 1	31:0	CRO		Value.

C.19 SR of logical core 2: 0x62

Value of the SR of logical core 2

	Bits	Perm	Init	Description
Э	31:28	RW	0	The direction for packets whose dimension is F.
2	27:24	RW	0	The direction for packets whose dimension is E.
2	23:20	RW	0	The direction for packets whose dimension is D.
1	19:16	RW	0	The direction for packets whose dimension is C.
1	15:12	RW	0	The direction for packets whose dimension is B.
	11:8	RW	0	The direction for packets whose dimension is A.
	7:4	RW	0	The direction for packets whose dimension is 9.
	3:0	RW	0	The direction for packets whose dimension is 8.

0x0D: Directions 8-15

D.12 DEBUG_N configuration, tile 0: 0x10

Configures the behavior of the DEBUG_N pin.

0x10 DEBUG_N con figuration tile 0

	Bits	Perm	Init	Description
1 0: on-	31:2	RO	-	Reserved
on,	1	RW	0	Set 1 to enable GlobalDebug to generate debug request to XCore.
0	0	RW	0	Set 1 to enable inDebug bit to drive GlobalDebug.

D.13 DEBUG_N configuration, tile 1: 0x11

Configures the behavior of the DEBUG_N pin.

0x11 DEBUG_N con figuration tile 1

_	Bits	Perm	Init	Description
1: 0n-	31:2	RO	-	Reserved
on,	1	RW	0	Set 1 to enable GlobalDebug to generate debug request to XCore.
: 1	0	RW	0	Set 1 to enable inDebug bit to drive GlobalDebug.

D.14 Debug source: 0x1F

Contains the source of the most recent debug event.

 $\cdot X MOS$

TDO to pin 13 of the xSYS header

The RST_N net should be open-drain, active-low, and have a pull-up to VDDIO.

E.3 Full xSYS header

For a full xSYS header you will need to connect the pins as discussed in Section E.2, and then connect a 2-wire xCONNECT Link to the xSYS header. The links can be found in the Signal description table (Section 4): they are labelled XL0, XL1, etc in the function column. The 2-wire link comprises two inputs and outputs, labelled ${}^{1}_{out}$, ${}^{0}_{out}$, ${}^{0}_{in}$, and ${}^{1}_{in}$. For example, if you choose to use XL0 for xSCOPE I/O, you need to connect up XL0 ${}^{1}_{out}$, XL0 ${}^{0}_{out}$, XL0 ${}^{1}_{in}$, as follows:

- XL0¹_{out} (X0D43) to pin 6 of the xSYS header with a 33R series resistor close to the device.
- XL0⁰_{out} (X0D42) to pin 10 of the xSYS header with a 33R series resistor close to the device.
- ▶ XL0⁰_{in} (X0D41) to pin 14 of the xSYS header.
- > XLO_{in}^{1} (X0D40) to pin 18 of the xSYS header.

H Associated Design Documentation

Document Title	Information	Document Number
Estimating Power Consumption For XS1-LF Devices	Power consumption	X4271
Programming XC on XMOS Devices	Timers, ports, clocks, cores and channels	X9577
xTIMEcomposer User Guide	Compilers, assembler and linker/mapper	X3766
	Timing analyzer, xScope, debugger	
	Flash and OTP programming utilities	

I Related Documentation

Document Title	Information	Document Number
The XMOS XS1 Architecture	ISA manual	X7879
XS1 Port I/O Timing	Port timings	X5821
xCONNECT Architecture	Link, switch and system information	X4249
XS1-LF Link Performance and Design Guidelines	Link timings	X2999
XS1-LF Clock Frequency Control	Advanced clock control	X1433
XS1-L Active Power Conservation	Low-power mode during idle	X7411

-XMOS°-

J Revision History

Date	Description
2015-03-20	Preliminary release
2015-04-14	Added RST to pins to be pulled hard, and removed reference to TCK from Errata
	Removed TRST_N references in packages that have no TRST_N
	New diagram for boot from embedded flash showing ports
	Pull up requirements for shared clock and external resistor for QSPI
2015-05-06	Removed references to DEBUG_N
2015-07-09	Updated electrical characteristics - Section 12
2015-08-27	Updated part marking and product code - Section 14
2015-11-23	Updated status of X2D04, X2D05, X2D06, X2D07 during boot - Section 8
	Updated Schematics Design Checklist: GPIO for X2D04, X2D05, X2D06, X2D07 during boot - Section F
2015-12-18	Clarified connectivity of internal and external xCONNECT links - Sections 3 and 4
	Made pin names canonical - Sections 3 and 4
	Updated JTAG diagram - Section 10
	Removed references to 400MHz parts - Section 12
2016-01-05	Updated signal tables to use VDDIO - Section 4
	Updated IDD value - Section 12
	Updated land pattern description - Section 11.1
2016-04-20	Typical internal pull-up and pull down current diagrams added - Section 12

XMOS®

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information") and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.