

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc859dslvr66a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- Interrupts
 - Seven external interrupt request (IRQ) lines
 - Twelve port pins with interrupt capability
 - The MPC866P and MPC866T have 23 internal interrupt sources; the MPC859P, MPC859T, and MPC859DSL have 20 internal interrupt sources.
 - Programmable priority between SCCs (MPC866P and MPC866T)
 - Programmable highest priority request
- Communications processor module (CPM)
 - RISC controller
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels
 - Up to 8-Kbytes of dual-port RAM
 - MPC866P and MPC866T have 16 serial DMA (SDMA) channels; MPC859P, MPC859T, and MPC859DSL have 10 serial DMA (SDMA) channels.
 - Three parallel I/O registers with open-drain capability
- Four baud rate generators
 - Independent (can be connected to any SCC or SMC)
 - Allow changes during operation
 - Autobaud support option
- MPC866P and MPC866T have four SCCs (serial communication controller); MPC859P, MPC859T, and MPC859DSL have one SCC; and SCC1 on MPC859DSL supports Ethernet only.
 - Serial ATM capability on all SCCs
 - Optional UTOPIA port on SCC4
 - Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation
 - HDLC/SDLC
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Asynchronous HDLC to support PPP (point-to-point protocol)
 - AppleTalk
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Serial infrared (IrDA)
 - Binary synchronous communication (BISYNC)
 - Totally transparent (bit streams)
 - Totally transparent (frame based with optional cyclic redundancy check (CRC)
- Two SMCs (serial management channels) (MPC859DSL has one SMC (SMC1) for UART.)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division multiplexed (TDM) channels

Thermal Calculation and Measurement

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International (415) 964-5111 805 East Middlefield Rd.
Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

Table 9. Bus Operation Timings (continued)

Nicona	Ohawaatawiatia	33 I	ИНz	40 I	ИНz	50 I	ИНz	66 1	ИHz	11
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B30	CS, WE(0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access ⁷ (MIN = 0.25 x B1 – 2.00)	5.60	_	4.30	_	3.00	_	1.80		ns
B30a	WE(0:3) negated to A(0:31), BADDR(28:30) invalid GPCM, write access, TRLX = 0, CSNT = 1, CS negated to A(0:31) invalid GPCM write access TRLX = 0, CSNT = 1 ACS = 10, or ACS == 11, EBDF = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50		8.00		5.60	1	ns
B30b	WE(0:3) negated to A(0:31) invalid GPCM BADDR(28:30) invalid GPCM write access, TRLX = 1, CSNT = 1. CS negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10, or ACS == 11 EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	ı	ns
B30c	WE(0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access, TRLX = 0, CSNT = 1. CS negated to A(0:31) invalid GPCM write access, TRLX = 0, CSNT = 1 ACS = 10, ACS == 11, EBDF = 1 (MIN = 0.375 x B1 - 3.00)	8.40	_	6.40	_	4.50	_	2.70	ı	ns
B30d	WE(0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access TRLX = 1, CSNT = 1, CS negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or 11, EBDF = 1	38.67	_	31.38	_	24.50	_	17.83	_	ns
B31	CLKOUT falling edge to CS valid, as requested by control bit CST4 in the corresponding word in the UPM (MAX = 0.00 X B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B31a	CLKOUT falling edge to CS valid, as requested by control bit CST1 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B31b	CLKOUT rising edge to $\overline{\text{CS}}$ valid, as requested by control bit CST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to $\overline{\text{CS}}$ valid, as requested by control bit CST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns

Table 9. Bus Operation Timings (continued)

Num	Characteristic	33 I	ИНz	40 I	ИНz	50 I	ИНz	66 1	MHz	Unit
Nulli	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Ullit
B35	A(0:31), BADDR(28:30) to \overline{CS} valid, as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 $-$ 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as requested by control bit BST2 in the corresponding word in the UPM (MIN = 0.75 x B1 $-$ 2.00)	20.70		16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to GPL valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁸ (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	_	6.00	_	6.00	_	ns
B38	CLKOUT falling edge to UPWAIT valid ⁸ (MIN = 0.00 x B1 + 1.00)	1.00	_	1.00	_	1.00	_	1.00	_	ns
B39	AS valid to CLKOUT rising edge 9 (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B41	TS valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B42	CLKOUT rising edge to $\overline{\text{TS}}$ valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B43	AS negation to memory controller signals negation (MAX = TBD)	_	TBD	_	TBD	_	TBD	_	TBD	ns

¹ For part speeds above 50 MHz, use 9.80 ns for B11a.

The timing required for \overline{BR} input is relevant when the MPC866/859 is selected to work with the internal bus arbiter. The timing for \overline{BG} input is relevant when the MPC866/859 is selected to work with the external bus arbiter.

³ For part speeds above 50 MHz, use 2 ns for B17.

⁴ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of CLKOUT, in which the TA input signal is asserted.

⁵ For part speeds above 50 MHz, use 2 ns for B19.

The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats, where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁷ The timing B30 refers to \overline{CS} when ACS = 00 and to \overline{WE} (0:3) when CSNT = 0.

Bus Signal Timing

Figure 25 shows the interrupt detection timing for the external level-sensitive lines.

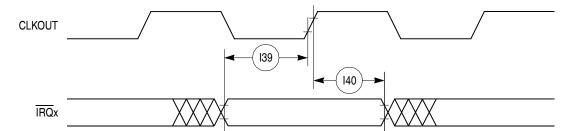


Figure 25. Interrupt Detection Timing for External Level Sensitive Lines

Figure 26 shows the interrupt detection timing for the external edge-sensitive lines.

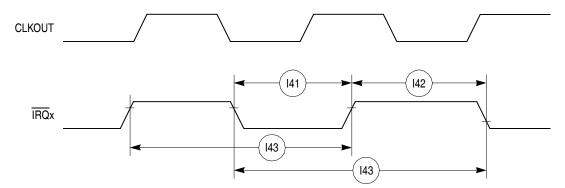


Figure 26. Interrupt Detection Timing for External Edge Sensitive Lines

Table 11 shows the PCMCIA timing for the MPC866/859.

Table 11. PCMCIA Timing

Num	Num Characteristic		33 MHz		40 MHz		ИHz	66 MHz		Unit
Num	Onaracteristic	Min	Max	Min	Max	Min	Max	Min	Max	
P44	A(0:31), $\overline{\text{REG}}$ valid to PCMCIA Strobe asserted ¹ (MIN = 0.75 x B1 – 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
P45	A(0:31), $\overline{\text{REG}}$ valid to ALE negation ¹ (MIN = 1.00 x B1 - 2.00)	28.30	_	23.00	_	18.00	_	13.20	_	ns
P46	CLKOUT to REG valid (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P47	CLKOUT to REG invalid (MIN = 0.25 x B1 + 1.00)	8.60	_	7.30	_	6.00	_	4.80	_	ns
P48	CLKOUT to CE1, CE2 asserted (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P49	CLKOUT to CE1, CE2 negated (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns

Bus Signal Timing

Figure 27 shows the PCMCIA access cycle timing for the external bus read.

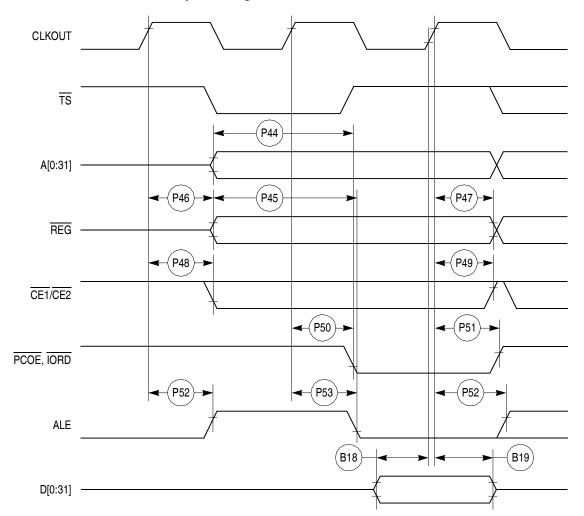


Figure 27. PCMCIA Access Cycles Timing External Bus Read

Figure 28 shows the PCMCIA access cycle timing for the external bus write.

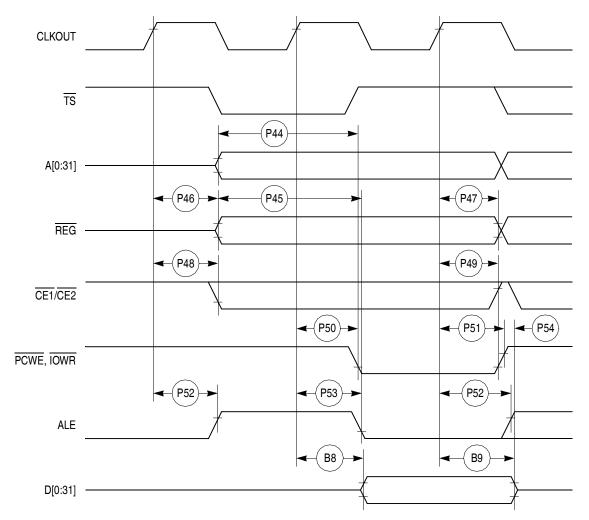


Figure 28. PCMCIA Access Cycles Timing External Bus Write

Figure 29 shows the PCMCIA WAIT signals detection timing.

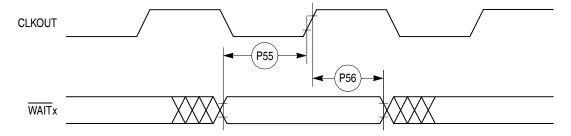


Figure 29. PCMCIA WAIT Signals Detection Timing

Bus Signal Timing

Table 12 shows the PCMCIA port timing for the MPC866/859.

Table 12. PCMCIA Port Timing

Num	Num Characteristic		33 MHz		40 MHz		50 MHz		66 MHz	
Nulli	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
P57	CLKOUT to OPx, valid (MAX = 0.00 x B1 + 19.00)	_	19.00	_	19.00	_	19.00	_	19.00	ns
P58	HRESET negated to OPx drive ¹ (MIN = 0.75 x B1 + 3.00)	25.70	_	21.70	_	18.00	_	14.40	_	ns
P59	IP_Xx valid to CLKOUT rising edge (MIN = 0.00 x B1 + 5.00)	5.00	_	5.00	_	5.00		5.00	_	ns
P60	CLKOUT rising edge to IP_Xx invalid (MIN = 0.00 x B1 + 1.00)	1.00	_	1.00	_	1.00		1.00	_	ns

OP2 and OP3 only.

Figure 30 shows the PCMCIA output port timing for the MPC866/859.

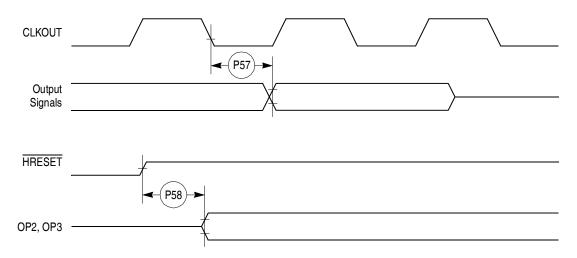


Figure 30. PCMCIA Output Port Timing

Figure 31 shows the PCMCIA output port timing for the MPC866/859.

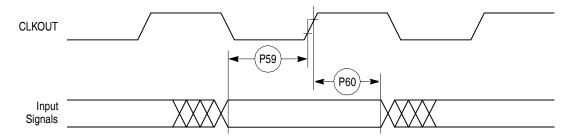


Figure 31. PCMCIA Input Port Timing

MPC866/MPC859 Hardware Specifications, Rev. 2

IEEE 1149.1 Electrical Specifications

Figure 36 shows the reset timing for the debug port configuration.

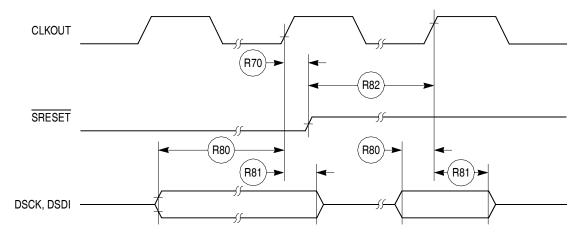


Figure 36. Reset Timing—Debug Port Configuration

11 IEEE 1149.1 Electrical Specifications

Table 15 shows the JTAG timings for the MPC866/859 shown in Figure 37 through Figure 40.

Table 15. JTAG Timing

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	Onit
J82	TCK cycle time	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	_	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	_	ns
J86	TMS, TDI data hold time	25.00	_	ns
J87	TCK low to TDO data valid	_	27.00	ns
J88	TCK low to TDO data invalid	0.00	_	ns
J89	TCK low to TDO high impedance	_	20.00	ns
J90	TRST assert time	100.00	_	ns
J91	TRST setup time to TCK low	40.00	_	ns
J92	TCK falling edge to output valid	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid	50.00	_	ns

CPM Electrical Characteristics

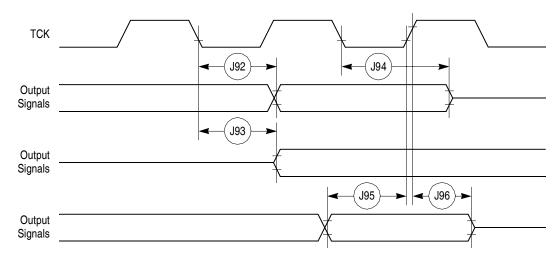


Figure 40. Boundary Scan (JTAG) Timing Diagram

12 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC866/859.

12.1 PIP/PIO AC Electrical Specifications

Table 16 shows the PIP/PIO AC timings as shown in Figure 41 through Figure 45.

Table 16. PIP/PIO Timing

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Max	Offic
21	Data-in setup time to STBI low	0	_	ns
22	Data-In hold time to STBI high	2.5 – t3 ¹	_	clk
23	STBI pulse width	1.5	_	clk
24	STBO pulse width	1 clk – 5ns	_	ns
25	Data-out setup time to STBO low	2	_	clk
26	Data-out hold time from STBO high	5	_	clk
27	STBI low to STBO low (Rx interlock)	_	2	clk
28	STBI low to STBO high (Tx interlock)	2	_	clk
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	_	25	ns

¹ t3 = Specification 23

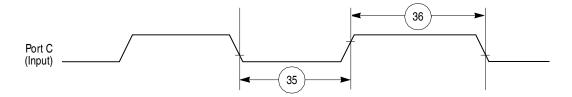


Figure 46. Port C Interrupt Detection Timing

12.3 IDMA Controller AC Electrical Specifications

Table 18 shows the IDMA controller timings as shown in Figure 47 through Figure 50.

All Frequencies Num Characteristic Unit Min Max 40 DREQ setup time to clock high ns 41 DREQ hold time from clock high 3 ns SDACK assertion delay from clock high ns SDACK negation delay from clock low 43 12 44 SDACK negation delay from TA low 20 ns 45 SDACK negation delay from clock high 15 ns \overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA}) 46 7 ns

Table 18. IDMA Controller Timing

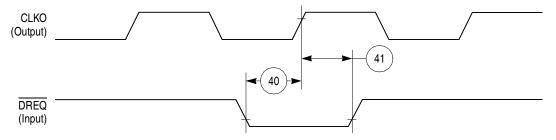


Figure 47. IDMA External Requests Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 51

CPM Electrical Characteristics

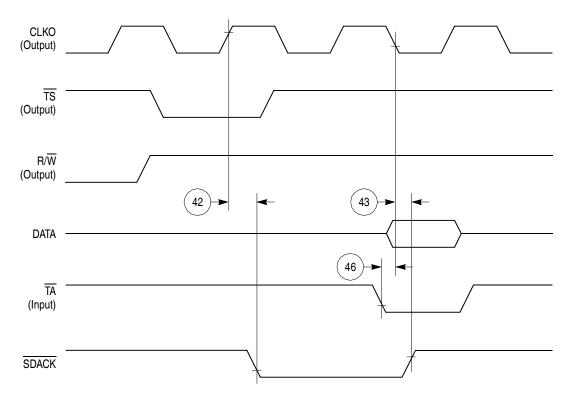


Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

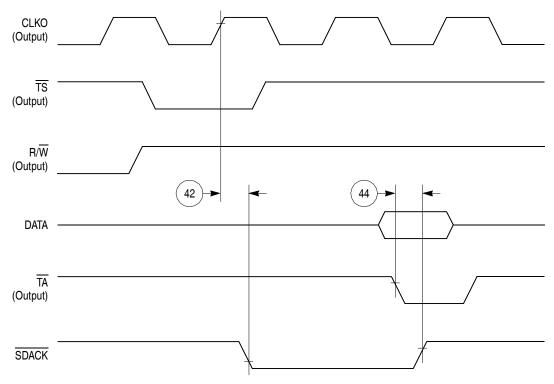


Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

12.5 Timer AC Electrical Specifications

Table 20 shows the general-purpose timer timings as shown in Figure 52.

Table 20. Timer Timing

Num	Characteristic	All Freq	Unit	
Nulli	Characteristic	Min	Max	Offic
61	TIN/TGATE rise and fall time	10	_	ns
62	TIN/TGATE low time	1	_	clk
63	TIN/TGATE high time	2	_	clk
64	TIN/TGATE cycle time	3	_	clk
65	CLKO low to TOUT valid	3	25	ns

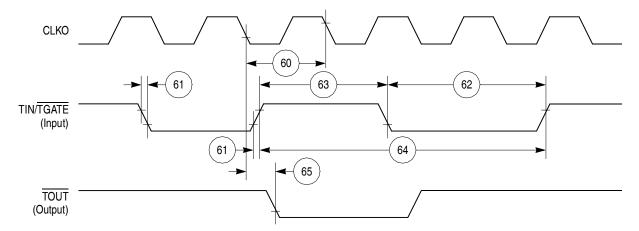


Figure 52. CPM General-Purpose Timers Timing Diagram

12.6 Serial Interface AC Electrical Specifications

Table 21 shows the serial interface timings as shown in Figure 53 through Figure 57.

Table 21. SI Timing

Num	Characteristic	All F	requencies	Unit
Nulli	Characteristic	Min	Max	Offic
70	L1RCLK, L1TCLK frequency (DSC = 0) 1, 2	_	SYNCCLK/2.5	MHz
71	L1RCLK, L1TCLK width low (DSC = 0) ²	P + 10	_	ns
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	_	ns
72	L1TXD, L1ST(1-4), L1RQ, L1CLKO rise/fall time	_	15.00	ns
73	L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)	20.00	_	ns

CPM Electrical Characteristics

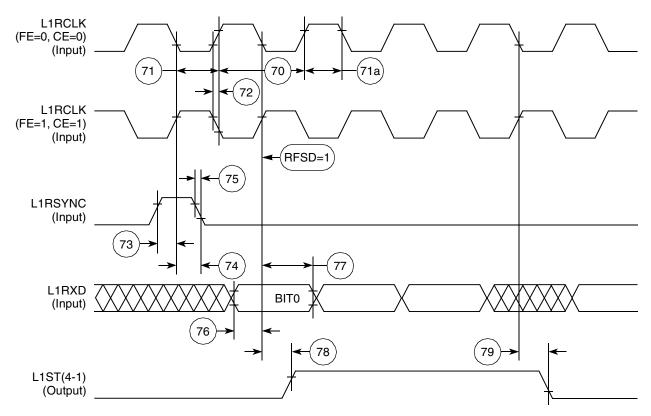


Figure 53. SI Receive Timing Diagram with Normal Clocking (DSC = 0)

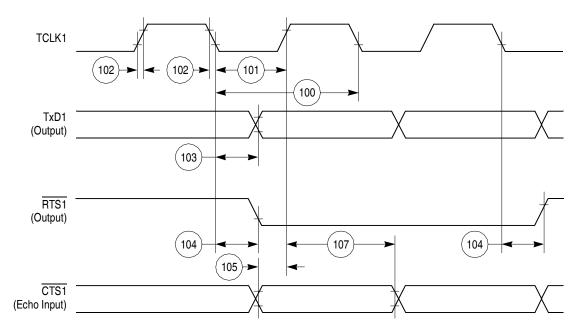


Figure 60. HDLC Bus Timing Diagram

12.8 Ethernet Electrical Specifications

Table 24 shows the Ethernet timings as shown in Figure 61 through Figure 65.

Table 24. Ethernet Timing

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Max	Omi
120	CLSN width high	40	_	ns
121	RCLK1 rise/fall time	_	15	ns
122	RCLK1 width low	40	_	ns
123	RCLK1 clock period ¹	80	120	ns
124	RXD1 setup time	20	_	ns
125	RXD1 hold time	5	_	ns
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	_	ns
127	RENA width low	100	_	ns
128	TCLK1 rise/fall time	_	15	ns
129	TCLK1 width low	40	_	ns
130	TCLK1 clock period ¹	99	101	ns
131	TXD1 active delay (from TCLK1 rising edge)	_	50	ns
132	TXD1 inactive delay (from TCLK1 rising edge)	6.5	50	ns
133	TENA active delay (from TCLK1 rising edge)	10	50	ns

69

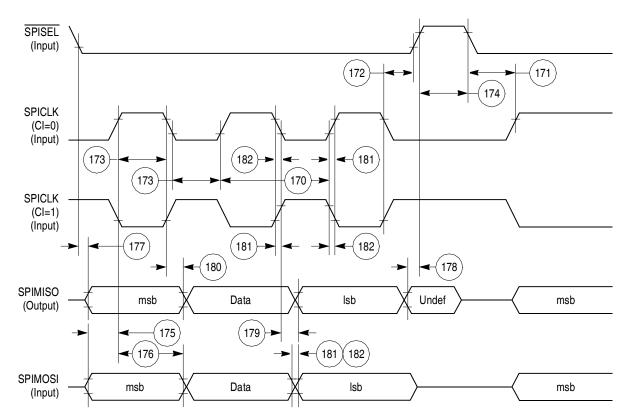


Figure 69. SPI Slave (CP = 0) Timing Diagram

Mechanical Data and Ordering Information

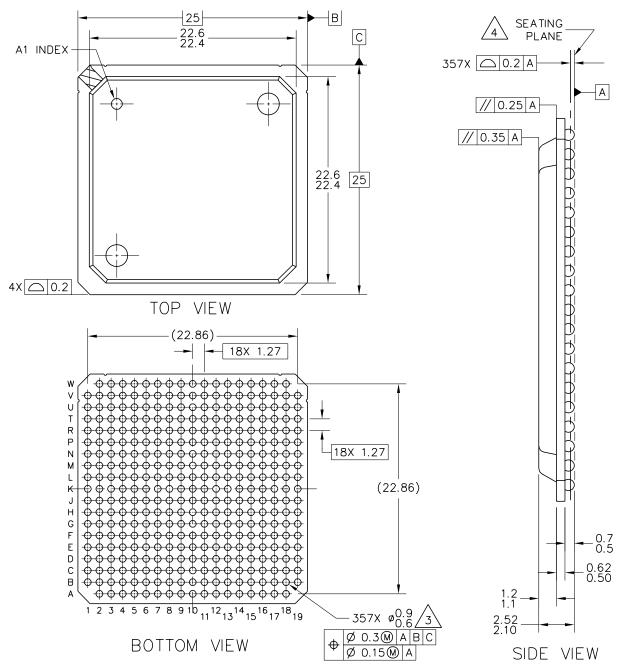
Table 38. MPC866/859 Package/Frequency Orderable (continued)

Plastic ball grid array	0° to 95°C	50	MPC859DSLVR50A
(VR suffix) Lead free		66	MPC859DSLVR66A
		100	MPC859PVR100A
			MPC859TVR100A
			MPC866PVR100A
			MPC866TVR100A
		133	MPC859PVR133A
			MPC859TVR133A
			MPC866PVR133A
			MPC866TVR133A
Plastic ball grid array	-40° to 100°C	50	MPC859DSLCVR50A
(CVR suffix) Lead free		66	MPC859DSLCVR66A
		100	MPC859PCVR100A
			MPC859TCVR100A
			MPC866PCVR100A
			MPC866TCVR100A

Mechanical Data and Ordering Information

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
MII_COL	H4	Input
VSSSYN1	V1	PLL analog VDD and GND
VSSSYN	U1	Power
VDDSYN	T1	Power
GND	F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14	Power
VDDL	A8, M1, W8, H19, F4, F16, P4, P16, R1	Power
VDDH	E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14	Power
N/C	D6, D13, D14, U2, V2, T2	No-connect


¹ Classic SAR mode only

² ESAR mode only

Mechanical Data and Ordering Information

15.2 Mechanical Dimensions of the PBGA Package

For more information on the printed-circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to *Plastic Ball Grid Array Application Note* (order number: AN1231/D) available from your local Freescale sales office. Figure 79 shows the mechanical dimensions of the PBGA package.

Note: Solder sphere composition for MPC866XZP, MPC859PZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag

Figure 79. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package

How to Reach Us:

Home Page:

www.freescale.com

email:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan

Freescale Semiconductor Japan Ltd. Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-0047 Japan 0120 191014 +81 3 3440 3569 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@
hibbertgroup.com

MPC866EC Rev. 2 2/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners

© Freescale Semiconductor, Inc. 2006.

