NXP USA Inc. - KMPC859TZP133A Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc859tzp133a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Maximum Tolerated Ratings

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC866/859. Table 2 shows the maximum tolerated ratings, and Table 3 shows the operating temperatures.

Rating	Symbol	Value	Unit
Supply voltage ¹	VDDH	- 0.3 to 4.0	V
	VDDL	- 0.3 to 2.0	V
	VDDSYN	- 0.3 to 2.0	V
	Difference between VDDL to VDDSYN	100	mV
Input voltage ²	V _{in}	GND – 0.3 to VDDH	V
Storage temperature range	T _{stg}	-55 to +150	°C

Table 2. Maximum Tolerated Ratings

¹ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. See page 15.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than VDDH. This restriction applies to power-up and normal operation (that is, if the MPC866/859 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).

Rating	Symbol	Value	Unit				
Temperature ¹ (standard)	T _{A(min)}	0	°C				
	T _{j(max)}	95	°C				
Temperature (extended)	T _{A(min)}	-40	°C				
	T _{j(max)}	100	°C				

Table 3. Operating Temperatures

Minimum temperatures are guaranteed as ambient temperature, T_A. Maximum temperatures are guaranteed as junction temperature, T_i.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

4 Thermal Characteristics

Table 4 shows the thermal characteristics for the MPC866/859.

Table 4. MPC866/859 Thermal Resistance Data

Rating	Env	Environment					
Junction-to-ambient ¹	Natural Convection	Single-layer board (1s)	$R_{\theta JA}^2$	37	°C/W		
		Four-layer board (2s2p)	$R_{\theta JMA}^{3}$	23			
	Airflow (200 ft/min)	Single-layer board (1s)	$R_{\theta JMA}^{3}$	30			
		Four-layer board (2s2p)	$R_{\theta JMA}^{3}$	19			
Junction-to-board ⁴			$R_{\theta JB}$	13			
Junction-to-case 5			R _{θJC}	6			
Junction-to-package top ⁶	Natural Convection		Ψ_{JT}	2			
	Airflow (200 ft/min)		Ψ_{JT}	2			

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.

² Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and junction temperature per JEDEC JESD51-2.

Power Dissipation

5 Power Dissipation

Table 5 shows power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1 mode, where CPU frequency is twice the bus speed.

Die Revision	Bus Mode	CPU Frequency	Typical ¹	Maximum ²	Unit
0	1:1	50 MHz	110	140	mW
		66 MHz	150	180	mW
	2:1	66 MHz	140	160	mW
		80 MHz	170	200	mW
		100 MHz	210	250	mW
		133 MHz	260	320	mW

Table 5. Power Dissipation (P_D)

¹ Typical power dissipation at VDDL and VDDSYN is at 1.8 V. and VDDH is at 3.3 V.

² Maximum power dissipation at VDDL and VDDSYN is at 1.9 V, and VDDH is at 3.465 V.

NOTE

Values in Table 5 represent VDDL based power dissipation and do not include I/O power dissipation over VDDH. I/O power dissipation varies widely by application due to buffer current, depending on external circuitry. The VDDSYN power dissipation is negligible.

6 DC Characteristics

Table 6 shows the DC electrical characteristics for the MPC866/859.

Table 6. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage	VDDL (core)	1.7	1.9	V
	VDDH (I/O)	3.135	3.465	V
	VDDSYN ¹	1.7	1.9	V
	Difference between VDDL to VDDSYN	—	100	mV
Input high voltage (all inputs except EXTAL and EXTCLK) ²	VIH	2.0	3.465	V

Thermal Calculation and Measurement

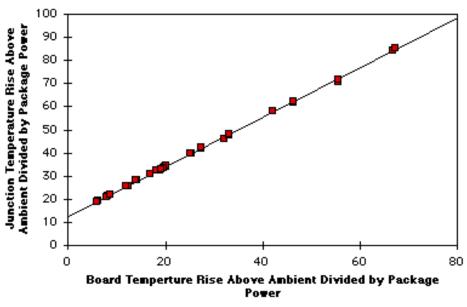


Figure 3. Effect of Board Temperature Rise on Thermal Behavior

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

 $T_J = T_B + (R_{\theta JB} \times P_D)$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 $T_B = board temperature °C$

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

Bus Signal Timing

This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6" are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{DD} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, please refer to Section 14.4.3, Clock Synthesizer Power (VDDSYN, VSSSYN, VSSSYN1), in the *MPC866 User's Manual*.

10 Bus Signal Timing

The maximum bus speed supported by the MPC866/859 is 66 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC866/859 used at 100 MHz must be configured for a 50-MHz bus). Table 7 and Table 8 show the frequency ranges for standard part frequencies.

Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Part Freq	50 MHz		66 MHz		
	Min	Мах	Min	Мах	
Core	40	50	40	66.67	
Bus	40	50	40	66.67	

 Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

Part Freq	50 I	50 MHz		MHz	100	MHz	133	MHz
	Min	Мах	Min	Мах	Min	Max	Min	Max
Core	40	50	40	66.67	40	100	40	133.34
Bus	20	25	20	33.33	20	50	20	66.67

Table 9 shows the timings for the MPC866/859 at 33, 40, 50, and 66 MHz bus operation. The timing for the MPC866/859 bus shown in this table assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay.

 Table 9. Bus Operation Timings

Num	Characteristic	33 I	MHz	40 I	MHz	50 I	MHz	66 I	MHz	Unit
Num	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	onn
B1	Bus Period (CLKOUT) See Table 7		_		—	—	—		—	ns
B1a	EXTCLK to CLKOUT phase skew	- 2	+2	- 2	+2	- 2	+2	- 2	+2	ns
B1b	CLKOUT frequency jitter peak-to-peak		1		1	—	1	_	1	ns
B1c	Frequency jitter on EXTCLK		0.50		0.50	—	0.50		0.50	%

Num	Characteristic	33 I	MHz	40 N	MHz	50 I	MHz	66 MHz		Unit
num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Мах	Unit
B35	A(0:31), BADDR(28:30) to \overline{CS} valid, as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30		3.00		1.80	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20		10.50		8.00		5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as requested by control bit BST2 in the corresponding word in the UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to \overline{GPL} valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁸ (MIN = 0.00 x B1 + 6.00)	6.00		6.00		6.00		6.00	—	ns
B38	CLKOUT falling edge to UPWAIT valid ⁸ (MIN = 0.00 x B1 + 1.00)	1.00		1.00	_	1.00		1.00	_	ns
B39	$\overline{\text{AS}}$ valid to CLKOUT rising edge ⁹ (MIN = 0.00 x B1 + 7.00)	7.00		7.00		7.00		7.00	—	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B41	$\overline{\text{TS}}$ valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B42	CLKOUT rising edge to \overline{TS} valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	—	ns
B43	$\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)	_	TBD	_	TBD	_	TBD	_	TBD	ns

Table 9. Bus Operation Timings (continued)

¹ For part speeds above 50 MHz, use 9.80 ns for B11a.

² The timing required for BR input is relevant when the MPC866/859 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC866/859 is selected to work with the external bus arbiter.

³ For part speeds above 50 MHz, use 2 ns for B17.

⁴ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of CLKOUT, in which the TA input signal is asserted.

⁵ For part speeds above 50 MHz, use 2 ns for B19.

⁶ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats, where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁷ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.

MPC866/MPC859 Hardware Specifications, Rev. 2

Figure 10 shows normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

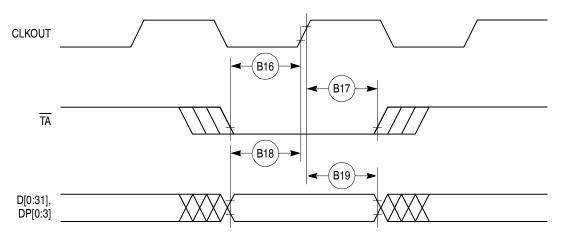


Figure 10. Input Data Timing in Normal Case

Figure 11 shows the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

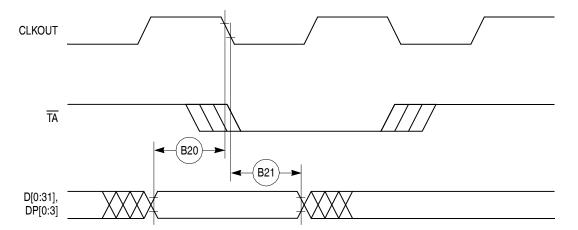


Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Bus Signal Timing

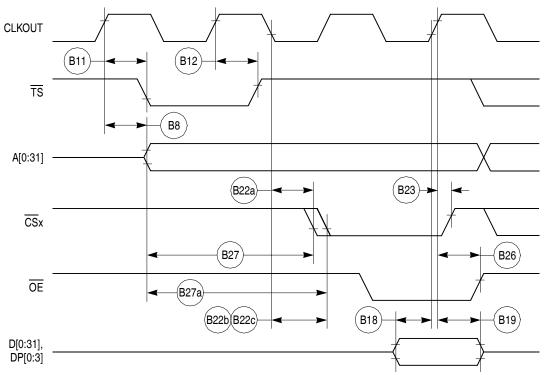


Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

Figure 34 shows the reset timing for the data bus configuration.

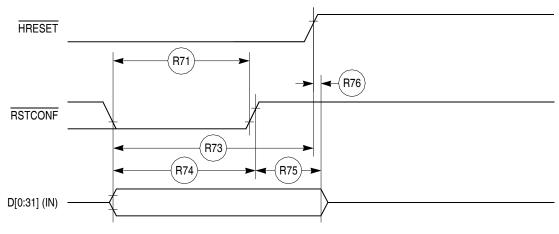


Figure 34. Reset Timing—Configuration from Data Bus

Figure 35 shows the reset timing for the data bus weak drive during configuration.

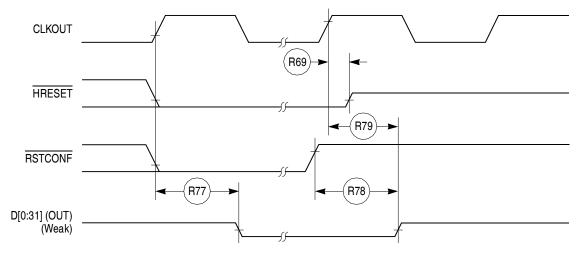


Figure 35. Reset Timing—Data Bus Weak Drive During Configuration

12.5 Timer AC Electrical Specifications

Table 20 shows the general-purpose timer timings as shown in Figure 52.

Table 20. Timer Timing

Num	Characteristic	All Freq	Unit	
	Characteristic	Min	Max	Onit
61	TIN/TGATE rise and fall time	10		ns
62	TIN/TGATE low time	1	_	clk
63	TIN/TGATE high time	2	_	clk
64	TIN/TGATE cycle time	3	_	clk
65	CLKO low to TOUT valid	3	25	ns

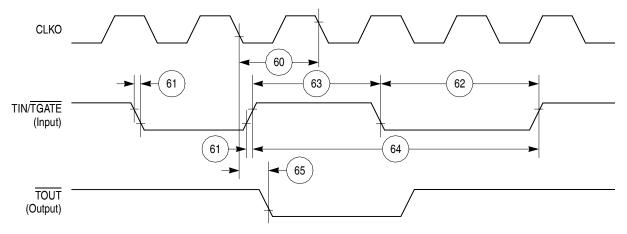


Figure 52. CPM General-Purpose Timers Timing Diagram

12.6 Serial Interface AC Electrical Specifications

Table 21 shows the serial interface timings as shown in Figure 53 through Figure 57.

Table 21. SI Timing

Num	Characteristic	All F	Unit	
Nulli	Characteristic	Min	Мах	Onic
70	L1RCLK, L1TCLK frequency (DSC = 0) ^{1, 2}	—	SYNCCLK/2.5	MHz
71	L1RCLK, L1TCLK width low (DSC = 0) 2	P + 10	_	ns
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	_	ns
72	L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time	—	15.00	ns
73	L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)	20.00	—	ns

CPM Electrical Characteristics

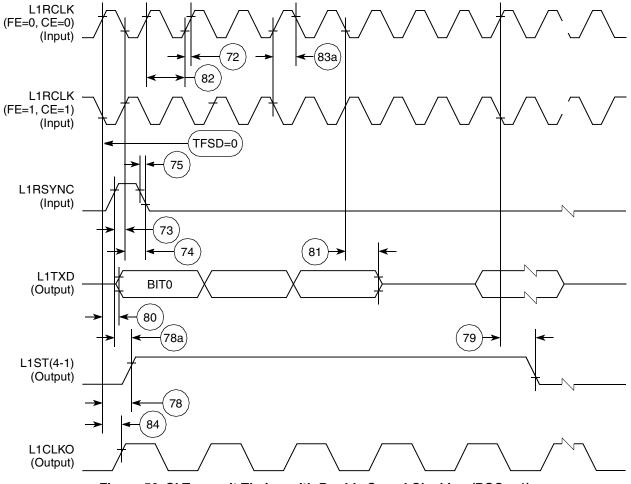
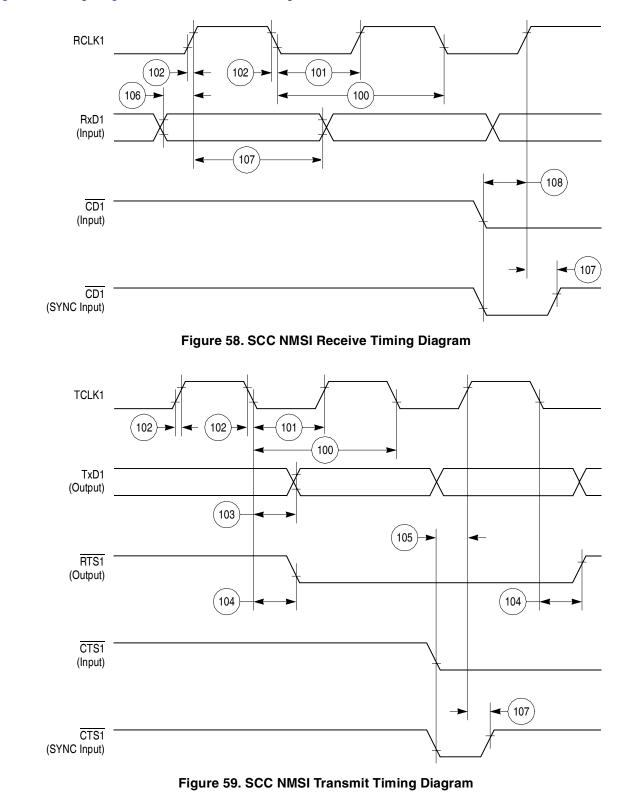



Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1)

Figure 58 through Figure 60 show the NMSI timings.

MPC866/MPC859 Hardware Specifications, Rev. 2

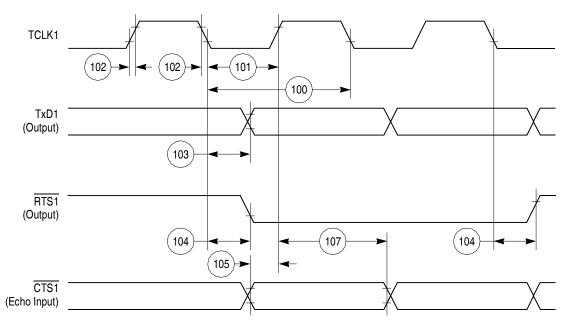
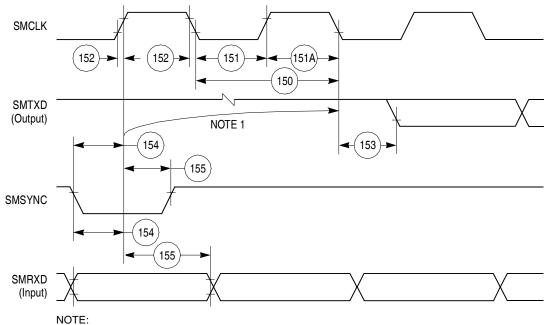


Figure 60. HDLC Bus Timing Diagram

12.8 Ethernet Electrical Specifications

Table 24 shows the Ethernet timings as shown in Figure 61 through Figure 65.Table 24. Ethernet Timing

Num	Characteristic	All Frequencies		Unit
Num			Max	Unit
120	CLSN width high	40		ns
121	RCLK1 rise/fall time	_	15	ns
122	RCLK1 width low	40	_	ns
123	RCLK1 clock period ¹	80	120	ns
124	RXD1 setup time	20	_	ns
125	RXD1 hold time	5	_	ns
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	_	ns
127	RENA width low	100	_	ns
128	TCLK1 rise/fall time	_	15	ns
129	TCLK1 width low	40	_	ns
130	TCLK1 clock period ¹	99	101	ns
131	TXD1 active delay (from TCLK1 rising edge)		50	ns
132	TXD1 inactive delay (from TCLK1 rising edge)	6.5	50	ns
133	TENA active delay (from TCLK1 rising edge)	10	50	ns


MPC866/MPC859 Hardware Specifications, Rev. 2

Num	Characteristic	All Freq	Unit	
		Min	Мах	Unit
150	SMCLK clock period ¹	100	_	ns
151	SMCLK width low	50	_	ns
151A	SMCLK width high	50	_	ns
152	SMCLK rise/fall time	—	15	ns
153	SMTXD active delay (from SMCLK falling edge)	10	50	ns
154	SMRXD/SMSYNC setup time	20	—	ns
155	RXD1/SMSYNC hold time	5	_	ns
Sync CLK must be at least twice as fast as SMCLK.				

Table 25. SMC Transparent Timing

Sync CLK must be at least twice as fast as SMCLK.

1. This delay is equal to an integer number of character-length clocks.

Figure 66. SMC Transparent Timing Diagram

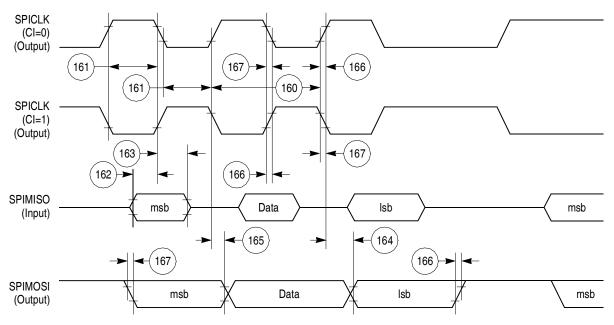


Figure 68. SPI Master (CP = 1) Timing Diagram

12.11SPI Slave AC Electrical Specifications

Table 27 shows the SPI slave timings as shown in Figure 69 and Figure 70.

Num	Characteristic	All Freq	Unit	
Nulli		Min	Max	
170	Slave cycle time	2	_	t _{cyc}
171	Slave enable lead time	15	_	ns
172	Slave enable lag time	15	_	ns
173	Slave clock (SPICLK) high or low time	1	_	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	_	t _{cyc}
175	Slave data setup time (inputs)	20	_	ns
176	Slave data hold time (inputs)	20	_	ns
177	Slave access time	_	50	ns

UTOPIA AC Electrical Specifications

Figure 71 shows the I^2C bus timing.

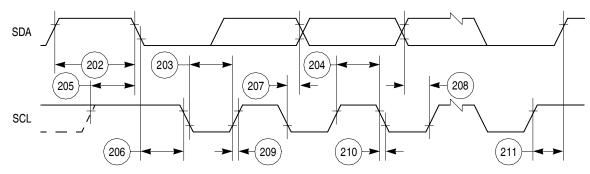


Figure 71. I²C Bus Timing Diagram

13 UTOPIA AC Electrical Specifications

Table 30 through Table 32 show the AC electrical specifications for the UTOPIA interface.

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output	—	4	ns
	Duty cycle		50	50	%
	Frequency		_	33	MHz
U2	UTPB, SOC, RxEnb, TxEnb, RxAddr, and TxAddr-active delay (and PHREQ and PHSEL active delay in MPHY mode)	Output	2	16	ns
U3	UTPB, SOC, Rxclav and Txclav setup time	Input	4	—	ns
U4	UTPB, SOC, Rxclav and Txclav hold time	Input	1	—	ns

Table 30. UTOPIA Master (Muxed Mode) Electrical Specifications

Table 31. UTOPIA Master (Split Bus Mode) Electrical Specifications

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output	_	4	ns
	Duty cycle		50	50	%
	Frequency		_	33	MHz
U2	UTPB, SOC, RxEnb, TxEnb, RxAddr and TxAddr active delay (PHREQ and PHSEL active delay in MPHY mode)	Output	2	16	ns
U3	UTPB_Aux, SOC_Aux, Rxclav, and Txclav setup time	Input	4	_	ns
U4	UTPB_Aux, SOC_Aux, Rxclav, and Txclav hold time	Input	1		ns

Figure 73 shows signal timings during UTOPIA transmit operations.

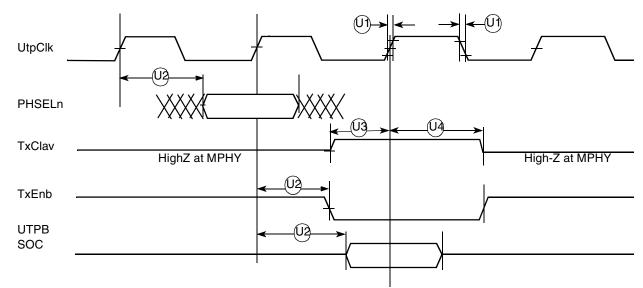


Figure 73. UTOPIA Transmit Timing

14 FEC Electrical Characteristics

This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

14.1 MII Receive Signal Timing (MII_RXD [3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency -1%. Table 33 shows the timings for MII receive signal.

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
MЗ	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 33. MII Receive Signal Timing

Figure 74 shows the timings for MII receive signal.

Mechanical Data and Ordering Information

Name	Pin Number	Туре
PA5 CLK3 L1TCLKA BRGO2 TIN2	N18	Bidirectional
PA4 CLK4 TOUT2	P19	Bidirectional
PA3 CLK5 BRGO3 TIN3	P17	Bidirectional
PA2 CLK6 TOUT3 L1RCLKB	R18	Bidirectional
PA1 CLK7 BRGO4 TIN4	T19	Bidirectional
PA0 CLK8 TOUT4 L1TCLKB	U19	Bidirectional
PB31 SPISEL REJECT1	C17	Bidirectional (Optional: Open-drain)
PB30 SPICLK RSTRT2	C19	Bidirectional (Optional: Open-drain)
PB29 SPIMOSI	E16	Bidirectional (Optional: Open-drain)
PB28 SPIMISO BRGO4	D19	Bidirectional (Optional: Open-drain)
PB27 I2CSDA BRGO1	E19	Bidirectional (Optional: Open-drain)
PB26 I2CSCL BRGO2	F19	Bidirectional (Optional: Open-drain)

Table 39. Pin Assignments (continued)

Mechanical Data and Ordering Information

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
MII_COL	H4	Input
VSSSYN1	V1	PLL analog VDD and GND
VSSSYN	U1	Power
VDDSYN	T1	Power
GND	F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14	Power
VDDL	A8, M1, W8, H19, F4, F16, P4, P16, R1	Power
VDDH	E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14	Power
N/C	D6, D13, D14, U2, V2, T2	No-connect

¹ Classic SAR mode only

² ESAR mode only

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK