NXP USA Inc. - KMPC866PZP133A Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc866pzp133a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

Table 1 shows the functionality supported by the members of the MPC866/859 family.

2 Features

Dort	Cache		Ethe	ernet	500	SMC
Fait	Instruction	Data	10T	10/100	300	3110
MPC866P	16 Kbytes	8 Kbytes	Up to 4	1	4	2
MPC866T	4 Kbytes	4 Kbytes	Up to 4	1	4	2
MPC859P	16 Kbytes	8 Kbytes	1	1	1	2
MPC859T	4 Kbytes	4 Kbytes	1	1	1	2
MPC859DSL	4 Kbytes	4 Kbytes	1	1	1 ¹	1 ²
MPC852T ³	4 KBytes	4 Kbytes	2	1	2	1

Table 1. MPC866 Family Functionality

¹ On the MPC859DSL, the SCC (SCC1) is for ethernet only. Also, the MPC859DSL does not support the Time Slot Assigner (TSA).

² On the MPC859DSL, the SMC (SMC1) is for UART only.

³ For more details on the MPC852T, please refer to the MPC852T Hardware Specifications.

The following list summarizes the key MPC866/859 features:

- Embedded single-issue, 32-bit PowerPCTM core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs)
 - The core performs branch prediction with conditional prefetch, without conditional execution
 - 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)
 - 16-Kbyte instruction cache (MPC866P and MPC859P) is four-way, set-associative with 256 sets;
 4-Kbyte instruction cache (MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets.
 - 8-Kbyte data cache (MPC866P and MPC859P) is two-way, set-associative with 256 sets; 4-Kbyte data cache(MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets.
 - Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks
 - Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis.
 - MMUs with 32-entry TLB, fully associative instruction and data TLBs
 - MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups.
 - Advanced on-chip-emulation debug mode
- The MPC866/859 provides enhanced ATM functionality over that of the MPC860SAR. The MPC866/859 adds major new features available in 'enhanced SAR' (ESAR) mode, including the following:
 - Improved operation, administration, and maintenance (OAM) support
 - OAM performance monitoring (PM) support
 - Multiple APC priority levels available to support a range of traffic pace requirements

MPC866/MPC859 Hardware Specifications, Rev. 2

Characteristic	Symbol	Min	Max	Unit
Input low voltage	VIL	GND	0.8	V
EXTAL, EXTCLK input high voltage	VIHC	0.7*(VDDH)	VDDH	V
Input leakage current, Vin = 5.5V (except TMS, $\overline{\text{TRST}}$, DSCK and DSDI pins) for 5 Volts Tolerant Pins ²	l _{in}	—	100	μA
Input leakage current, Vin = VDDH (except TMS, TRST, DSCK, and DSDI)	l _{in}	_	10	μA
Input leakage current, Vin = 0 V (except TMS, $\overline{\text{TRST}}$, DSCK and DSDI pins)	l _{in}	—	10	μA
Input capacitance ³	C _{in}	—	20	pF
Output high voltage, IOH = -2.0 mA, except XTAL, and Open drain pins	VOH	2.4	_	V
Output low voltage • IOL = 2.0 mA (CLKOUT) • IOL = 3.2 mA 4 • IOL = 5.3 mA 5 • IOL = 7.0 mA (TXD1/PA14, TXD2/PA12) • IOL = 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)	VOL	_	0.5	V

Table 6. DC Electrical Specifications (continued)

¹ The difference between VDDL and VDDSYN can not be more than 100 m V.

² The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, MII_MDIO are 5 V tolerant.

³ Input capacitance is periodically sampled.

 ⁴ A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1TSYNCB/PC7, CD3/L1RSYNCB/PC6, CTS4/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB, PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4, PD7/RTS3, PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].

⁵ BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).

Thermal Calculation and Measurement

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

Bus Signal Timing

Figure 8 shows the timing for the synchronous active pull-up and open-drain output signals.

Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Output Signals Timing

Figure 9 shows the timing for the synchronous input signals.

Figure 9. Synchronous Input Signals Timing

Bus Signal Timing

Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
P50	CLKOUT to \overline{PCOE} , \overline{IORD} , \overline{PCWE} , \overline{IOWR} assert time (MAX = 0.00 x B1 + 11.00)	_	11.00	_	11.00	_	11.00	_	11.00	ns
P51	CLKOUT to \overline{PCOE} , \overline{IORD} , \overline{PCWE} , \overline{IOWR} negate time (MAX = 0.00 x B1 + 11.00)	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
P52	CLKOUT to ALE assert time (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
P53	CLKOUT to ALE negate time (MAX = 0.25 x B1 + 8.00)		15.60	—	14.30	—	13.00	_	11.80	ns
P54	$\overline{\text{PCWE}}$, $\overline{\text{IOWR}}$ negated to D(0:31) invalid ¹ (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00		1.80	_	ns
P55	$\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ valid to CLKOUT rising edge ¹ (MIN = 0.00 x B1 + 8.00)	8.00		8.00		8.00		8.00	_	ns
P56	CLKOUT rising edge to $\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ invalid ¹ (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	—	ns

Table 11. PCMCIA Timing (continued)

¹ PSST = 1. Otherwise, add PSST times cycle time.

PSHT = 0. Otherwise, add PSHT times cycle time.

These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC866 PowerQUICC User's Manual.

Bus Signal Timing

Figure 27 shows the PCMCIA access cycle timing for the external bus read.

Figure 27. PCMCIA Access Cycles Timing External Bus Read

Figure 37. JTAG Test Clock Input Timing

Figure 38. JTAG Test Access Port Timing Diagram

Figure 39. JTAG TRST Timing Diagram

Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

MPC866/MPC859 Hardware Specifications, Rev. 2

CPM Electrical Characteristics

Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1)

Figure 68. SPI Master (CP = 1) Timing Diagram

12.11SPI Slave AC Electrical Specifications

Table 27 shows the SPI slave timings as shown in Figure 69 and Figure 70.

T	able	27	SPI	Slave	Timin	n
•	abie	Z I.	J F I	Jiave		У

Num	Charactoristia	All Freq	Unit	
Num		Min	Max	Onit
170	Slave cycle time	2	_	t _{cyc}
171	Slave enable lead time	15	_	ns
172	Slave enable lag time	15	_	ns
173	Slave clock (SPICLK) high or low time	1	_	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	_	t _{cyc}
175	Slave data setup time (inputs)	20	_	ns
176	Slave data hold time (inputs)	20	_	ns
177	Slave access time	_	50	ns

12.12I²C AC Electrical Specifications

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (external clock option)	Input		4	ns
	Duty cycle		40	60	%
	Frequency			33	MHz
U2	UTPB, SOC, Rxclav and Txclav active delay	Output	2	16	ns
U3	UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr setup time	Input	4	_	ns
U4	UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr hold time	Input	1	_	ns

Table 32. UTOPIA Slave (Split Bus Mode) Electrical Specifications

Figure 72 shows signal timings during UTOPIA receive operations.

Figure 72. UTOPIA Receive Timing

Mechanical Data and Ordering Information

Plastic ball grid array	0° to 95°C	50	MPC859DSLVR50A
Lead free		66	MPC859DSLVR66A
		100	MPC859PVR100A
			MPC859TVR100A
			MPC866PVR100A
			MPC866TVR100A
		133	MPC859PVR133A
			MPC859TVR133A
			MPC866PVR133A
			MPC866TVR133A
Plastic ball grid array	–40° to 100°C	50	MPC859DSLCVR50A
Lead free		66	MPC859DSLCVR66A
		100	MPC859PCVR100A
			MPC859TCVR100A
			MPC866PCVR100A
			MPC866TCVR100A

Table 38. MPC866/859 Package/Frequency Orderable (continued)

Table 39. Pin Assignments (continued)
-----------------------------	------------

Name	Pin Number	Туре
UPWAITB GPL_B4	B1	Bidirectional
GPL_A5	D3	Output
PORESET	R2	Input
RSTCONF	P3	Input
HRESET	N4	Open-drain
SRESET	P2	Open-drain
XTAL	P1	Analog Output
EXTAL	N1	Analog Input (3.3V only)
CLKOUT	W3	Output
EXTCLK	N2	Input (3.3V only)
TEXP	N3	Output
ALE_A MII-TXD1	К2	Output
CE1_A MII-TXD2	B3	Output
CE2_A MII-TXD3	A3	Output
WAIT_A SOC_Split ²	R3	Input
WAIT_B	R4	Input
IP_A0 UTPB_Split0 ² MII-RXD3	Т5	Input
IP_A1 UTPB_Split1 ² MII-RXD2	Τ4	Input
IP_A2 IOIS16_A UTPB_Split2 ² MII-RXD1	U3	Input
IP_A3 UTPB_Split3 ² MII-RXD0	W2	Input
IP_A4 UTPB_Split4 ² MII-RXCLK	U4	Input

Mechanical Data and Ordering Information

Table 39.	Pin	Assignments	(continued)
-----------	-----	-------------	-------------

Name	Pin Number	Туре
PC7 CTS3 L1TSYNCB SDACK2	M16	Bidirectional
PC6 CD3 L1RSYNCB	R19	Bidirectional
PC5 CTS4 L1TSYNCA SDACK1	T18	Bidirectional
PC4 CD4 L1RSYNCA	T17	Bidirectional
PD15 L1TSYNCA MII-RXD3 UTPB0	U17	Bidirectional
PD14 L1RSYNCA MII-RXD2 UTPB1	V19	Bidirectional
PD13 L1TSYNCB MII-RXD1 UTPB2	V18	Bidirectional
PD12 L1RSYNCB MII-MDC UTPB3	R16	Bidirectional
PD11 RXD3 MII-TXERR RXENB	T16	Bidirectional
PD10 TXD3 MII-RXD0 TXENB	W18	Bidirectional

Mechanical Data and Ordering Information

Name	Pin Number	Туре
PD9 RXD4 MII-TXD0 UTPCLK	V17	Bidirectional
PD8 TXD4 MII-MDC MII-RXCLK	W17	Bidirectional
PD7 RTS3 MII-RXERR UTPB4	T15	Bidirectional
PD6 RTS4 MII-RXDV UTPB5	V16	Bidirectional
PD5 REJECT2 MII-TXD3 UTPB6	U15	Bidirectional
PD4 REJECT3 MII-TXD2 UTPB7	U16	Bidirectional
PD3 REJECT4 MII-TXD1 SOC	W16	Bidirectional
TMS	G18	Input
TDI DSDI	H17	Input
TCK DSCK	H16	Input
TRST	G19	Input
TDO DSDO	G17	Output
MII_CRS	В7	Input
MII_MDIO	H18	Bidirectional
MII_TXEN	V15	Output

Table 39. Pin Assignments (continued)

16 Document Revision History

Table 40 lists significant changes between revisions of this document.

Table 40. Document Revision History

Revision Number	Date	Substantive Changes
0	5/2002	Initial revision
1	11/2002	Added the 5-V tolerant pins, new package dimensions, and other changes.
1.1	4/2003	Added the Spec. B1d and changed spec. B1a. Added the Note Solder sphere composition for MPC866XZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag to Figure 15-79.
1.2	4/2003	Added the MPC859P.
1.3	5/2003	Changed the SPI Master Timing Specs. 162 and 164.
1.4	7-8/2003	 Added TxClav and RxClav to PB15 and PC15. Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. Added nontechnical reformatting.
1.5	3/14/2005	Updated document template.
2	2/10/2006	Updated orderable parts table.

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK