NXP USA Inc. - KMPC866TVR133A Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc866tvr133a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4 Thermal Characteristics

Table 4 shows the thermal characteristics for the MPC866/859.

Table 4. MPC866/859 Thermal Resistance Data

Rating	Environment			Value	Unit
Junction-to-ambient ¹	Natural Convection	Single-layer board (1s)	R _{0JA} ²	37	°C/W
		Four-layer board (2s2p)	$R_{\theta JMA}^{3}$	23	
	Airflow (200 ft/min)	Single-layer board (1s)	R _{0JMA} 3	30	
		Four-layer board (2s2p)	R _{0JMA} 3	19	
Junction-to-board ⁴			$R_{\theta JB}$	13	
Junction-to-case ⁵			R _{θJC}	6	
Junction-to-package top ⁶	Natural Convection		Ψ_{JT}	2	
	Airflow (200 ft/min)		Ψ_{JT}	2	

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.

² Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and junction temperature per JEDEC JESD51-2.

Thermal Calculation and Measurement

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

Niuma	Ohovostavistis	33	MHz	40 I	MHz	50 MHz		66 MHz		11
NUM	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B22b	322b CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3)		13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	16.00	7.00	14.10	5.20	12.30	ns
B23	B23 CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00)		8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	B24 A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00)		—	4.30	_	3.00	_	1.80	—	ns
B24a	B24a A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 0 (MIN = 0.50 x B1 - 2.00)		—	10.50	_	8.00	_	5.60	_	ns
B25	B25 CLKOUT rising edge to \overline{OE} , $\overline{WE}(0:3)$ asserted (MAX = 0.00 x B1 + 9.00)		9.00	_	9.00	_	9.00	_	9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 x B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00)	35.90	—	29.30		23.00		16.90	_	ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00)	43.50	—	35.50	_	28.00	_	20.70	_	ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)$ negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00)		9.00		9.00	_	9.00		9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0,1, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	_	14.30	_	13.00	_	11.80	_	10.50	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0,1, CSNT = 1, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	18.00	7.00	14.30	5.20	12.30	ns

Table 9. Bus Operation Timings (continued)

Num	Charactariatia	33 MHz		33 MHz 40 MHz		50 MHz		66 MHz		Unit
Num			Max	Min	Max	Min	Max	Min	Max	Unit
B35	A(0:31), BADDR(28:30) to \overline{CS} valid, as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as requested by control bit BST2 in the corresponding word in the UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to GPL valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = $0.25 \times B1 - 2.00$)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁸ (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	_	6.00	_	6.00	—	ns
B38	CLKOUT falling edge to UPWAIT valid ⁸ (MIN = 0.00 x B1 + 1.00)	1.00		1.00	_	1.00	—	1.00	—	ns
B39	$\overline{\text{AS}}$ valid to CLKOUT rising edge ⁹ (MIN = 0.00 x B1 + 7.00)	7.00		7.00	_	7.00	—	7.00	_	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00)	7.00		7.00		7.00		7.00		ns
B41	$\overline{\text{TS}}$ valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B42	CLKOUT rising edge to \overline{TS} valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	—	2.00	—	2.00	—	ns
B43	$\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)	_	TBD	—	TBD	—	TBD	—	TBD	ns

Table 9. Bus Operation Timings (continued)

¹ For part speeds above 50 MHz, use 9.80 ns for B11a.

² The timing required for BR input is relevant when the MPC866/859 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC866/859 is selected to work with the external bus arbiter.

³ For part speeds above 50 MHz, use 2 ns for B17.

⁴ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of CLKOUT, in which the TA input signal is asserted.

⁵ For part speeds above 50 MHz, use 2 ns for B19.

⁶ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats, where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁷ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.

MPC866/MPC859 Hardware Specifications, Rev. 2

Figure 6 shows the timing for the external clock.

Figure 6. External Clock Timing

Figure 7 shows the timing for the synchronous output signals.

Figure 7. Synchronous Output Signals Timing

Bus Signal Timing

Figure 8 shows the timing for the synchronous active pull-up and open-drain output signals.

Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Output Signals Timing

Figure 9 shows the timing for the synchronous input signals.

Figure 9. Synchronous Input Signals Timing

Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 11)

MPC866/MPC859 Hardware Specifications, Rev. 2

Bus Signal Timing

Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

Figure 23 shows the timing for the asynchronous external master memory access controlled by the GPCM.

Figure 23. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)

Figure 24 shows the timing for the asynchronous external master control signals negation.

Figure 24. Asynchronous External Master—Control Signals Negation Timing

Table 10 shows the interrupt timing for the MPC866/859.

Table 10. Interrupt Timing

Num	Characteristic ¹	All Frequenc	Unit	
	Characteristic	Min	Max	Unit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00	_	ns
140	IRQx hold time after CLKOUT	2.00	_	ns
141	IRQx pulse width low	3.00	_	ns
142	IRQx pulse width high	3.00	_	ns
143	IRQx edge-to-edge time	4xT _{CLOCKOUT}	_	_
1 The	imings 130 and 140 describe the testing conditions under which the \overline{IRO} lines	are tested when h	aina daf	inod ac

The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC866/859 is able to support.

Bus Signal Timing

Figure 25 shows the interrupt detection timing for the external level-sensitive lines.

Figure 25. Interrupt Detection Timing for External Level Sensitive Lines

Figure 26 shows the interrupt detection timing for the external edge-sensitive lines.

Figure 26. Interrupt Detection Timing for External Edge Sensitive Lines

Table 11 shows the PCMCIA timing for the MPC866/859.

Table 11. PCMCIA Timing

Num	um Charactoristia		33 MHz		40 MHz		50 MHz		66 MHz	
Num	Onaracteristic	Min	Max	Min	Max	Min	Max	Min	Max	onn
P44	A(0:31), $\overline{\text{REG}}$ valid to PCMCIA Strobe asserted ¹ (MIN = 0.75 x B1 - 2.00)	20.70	—	16.70	—	13.00	—	9.40	_	ns
P45	A(0:31), $\overline{\text{REG}}$ valid to ALE negation ¹ (MIN = 1.00 x B1 - 2.00)	28.30	_	23.00	_	18.00	_	13.20	_	ns
P46	CLKOUT to $\overline{\text{REG}}$ valid (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P47	CLKOUT to REG invalid (MIN = 0.25 x B1 + 1.00)	8.60	—	7.30	—	6.00	—	4.80	_	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns

Bus Signal Timing

Figure 27 shows the PCMCIA access cycle timing for the external bus read.

Figure 27. PCMCIA Access Cycles Timing External Bus Read

Figure 28. PCMCIA Access Cycles Timing External Bus Write

Figure 29 shows the PCMCIA WAIT signals detection timing.

Figure 29. PCMCIA WAIT Signals Detection Timing

IEEE 1149.1 Electrical Specifications

Figure 36 shows the reset timing for the debug port configuration.

Figure 36. Reset Timing—Debug Port Configuration

11 IEEE 1149.1 Electrical Specifications

Table 15 shows the JTAG timings for the MPC866/859 shown in Figure 37 through Figure 40.

Num	Characteristic	All Freq	Unit	
Nulli	Characteristic	Min	Max	Omr
J82	TCK cycle time	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	_	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00		ns
J86	TMS, TDI data hold time	25.00		ns
J87	TCK low to TDO data valid	-	27.00	ns
J88	TCK low to TDO data invalid	0.00		ns
J89	TCK low to TDO high impedance	-	20.00	ns
J90	TRST assert time	100.00		ns
J91	TRST setup time to TCK low	40.00		ns
J92	TCK falling edge to output valid	-	50.00	ns
J93	TCK falling edge to output valid out of high impedance	-	50.00	ns
J94	TCK falling edge to output high impedance		50.00	ns
J95	Boundary scan input valid to TCK rising edge		_	ns
J96	TCK rising edge to boundary scan input invalid	50.00		ns

Table 15. JTAG Timing

Figure 46. Port C Interrupt Detection Timing

12.3 IDMA Controller AC Electrical Specifications

Table 18 shows the IDMA controller timings as shown in Figure 47 through Figure 50.

Num	Chavastavistis	All Free	Unit	
Num	Characteristic	Min	Max	Unit
40	DREQ setup time to clock high	7	_	ns
41	DREQ hold time from clock high	3	_	ns
42	SDACK assertion delay from clock high	_	12	ns
43	SDACK negation delay from clock low		12	ns
44	SDACK negation delay from TA low		20	ns
45	SDACK negation delay from clock high		15	ns
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})	7		ns

Table 18. IDMA Controller Timing

Figure 47. IDMA External Requests Timing Diagram

CPM Electrical Characteristics

Figure 69. SPI Slave (CP = 0) Timing Diagram

CPM Electrical Characteristics

12.12I²C AC Electrical Specifications

Table 28 shows the I^2C (SCL < 100 kHz) timings.

Table 28. I²C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	Onit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7	_	μs
203	Low period of SCL	4.7	—	μs
204	High period of SCL	4.0	—	μs
205	Start condition setup time	4.7	—	μs
206	Start condition hold time	4.0	—	μs
207	Data hold time	0	—	μs
208	Data setup time	250	—	ns
209	SDL/SCL rise time	—	1	μs
210	SDL/SCL fall time	—	300	ns
211	Stop condition setup time	4.7	—	μs

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 29 shows the I^2C (SCL > 100 kHz) timings.

Table 29. I^2C Timing (SCL > 100 kHz)

Num	Charactariatia	Expression	All Freq	Unit	
Num	Characteristic	Expression	Min	Мах	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions	—	1/(2.2 * fSCL)	_	s
203	Low period of SCL	—	1/(2.2 * fSCL)	—	s
204	High period of SCL	—	1/(2.2 * fSCL)	_	s
205	Start condition setup time	—	1/(2.2 * fSCL)	_	s
206	Start condition hold time	—	1/(2.2 * fSCL)	_	s
207	Data hold time	—	0	_	s
208	Data setup time	—	1/(40 * fSCL)	_	s
209	SDL/SCL rise time	—	—	1/(10 * fSCL)	s
210	SDL/SCL fall time	—	—	1/(33 * fSCL)	S
211	Stop condition setup time	—	1/2(2.2 * fSCL)	—	S

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Mechanical Data and Ordering Information

Name	Pin Number	Туре
IP_A5 UTPB_Split5 ² MII-RXERR	U5	Input
IP_A6 UTPB_Split6 ² MII-TXERR	Т6	Input
IP_A7 UTPB_Split7 ² MII-RXDV	Т3	Input
ALE_B DSCK/AT1	J1	Bidirectional Three-state
IP_B[0:1] IWP[0:1] VFLS[0:1]	H2, J3	Bidirectional
IP_B2 IOIS16_B AT2	J2	Bidirectional Three-state
IP_B3 IWP2 VF2	G1	Bidirectional
IP_B4 LWP0 VF0	G2	Bidirectional
IP_B5 LWP1 VF1	J4	Bidirectional
IP_B6 DSDI AT0	К3	Bidirectional Three-state
IP_B7 PTR AT3	H1	Bidirectional Three-state
OP0 MII-TXD0 UtpClk_Split ²	L4	Bidirectional
OP1	L2	Output
OP2 MODCK1 STS	L1	Bidirectional

Table 39. Pin Assignments (continued)

Mechanical Data and Ordering Information

Table 39.	Pin	Assignments	(continued)
-----------	-----	-------------	-------------

Name	Pin Number	Туре
OP3 MODCK2 DSDO	M4	Bidirectional
BADDR30 REG	К4	Output
BADDR[28:29]	M3, M2	Output
AS	L3	Input
PA15 RXD1 RXD4	C18	Bidirectional
PA14 TXD1 TXD4	D17	Bidirectional (Optional: Open-drain)
PA13 RXD2	E17	Bidirectional
PA12 TXD2	F17	Bidirectional (Optional: Open-drain)
PA11 L1TXDB RXD3	G16	Bidirectional (Optional: Open-drain)
PA10 L1RXDB TXD3	J17	Bidirectional (Optional: Open-drain)
PA9 L1TXDA RXD4	K18	Bidirectional (Optional: Open-drain)
PA8 L1RXDA TXD4	L17	Bidirectional (Optional: Open-drain)
PA7 CLK1 L1RCLKA BRGO1 TIN1	M19	Bidirectional
PA6 CLK2 TOUT1	M17	Bidirectional

Mechanical Data and Ordering Information

15.2 Mechanical Dimensions of the PBGA Package

For more information on the printed-circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to *Plastic Ball Grid Array Application Note* (order number: AN1231/D) available from your local Freescale sales office. Figure 79 shows the mechanical dimensions of the PBGA package.

Note: Solder sphere composition for MPC866XZP, MPC859PZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag

Figure 79. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package

MPC866/MPC859 Hardware Specifications, Rev. 2