NXP USA Inc. - KMPC866TZP133A Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc866tzp133a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Maximum Tolerated Ratings

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC866/859. Table 2 shows the maximum tolerated ratings, and Table 3 shows the operating temperatures.

Rating	Symbol	Value	Unit
Supply voltage ¹	VDDH	– 0.3 to 4.0	V
	VDDL	– 0.3 to 2.0	V
	VDDSYN	– 0.3 to 2.0	V
	Difference between VDDL to VDDSYN	100	mV
Input voltage ²	V _{in}	GND – 0.3 to VDDH	V
Storage temperature range	T _{stg}	–55 to +150	°C

Table 2. Maximum Tolerated Ratings

¹ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. See page 15.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than VDDH. This restriction applies to power-up and normal operation (that is, if the MPC866/859 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).

Rating	Symbol	Value	Unit		
Temperature ¹ (standard)	T _{A(min)}	0	°C		
	T _{j(max)}	95	°C		
Temperature (extended)	T _{A(min)}	-40	°C		
	T _{j(max)}	100	°C		

Table 3. Operating Temperatures

Minimum temperatures are guaranteed as ambient temperature, T_A. Maximum temperatures are guaranteed as junction temperature, T_i.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

Power Dissipation

5 Power Dissipation

Table 5 shows power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1 mode, where CPU frequency is twice the bus speed.

Die Revision	Bus Mode	CPU Frequency	Typical ¹	Maximum ²	Unit
0	1:1	50 MHz	110	140	mW
		66 MHz	150	180	mW
	2:1	66 MHz	140	160	mW
		80 MHz	170	200	mW
		100 MHz	210	250	mW
		133 MHz	260	320	mW

Table 5. Power Dissipation (P_D)

¹ Typical power dissipation at VDDL and VDDSYN is at 1.8 V. and VDDH is at 3.3 V.

² Maximum power dissipation at VDDL and VDDSYN is at 1.9 V, and VDDH is at 3.465 V.

NOTE

Values in Table 5 represent VDDL based power dissipation and do not include I/O power dissipation over VDDH. I/O power dissipation varies widely by application due to buffer current, depending on external circuitry. The VDDSYN power dissipation is negligible.

6 DC Characteristics

Table 6 shows the DC electrical characteristics for the MPC866/859.

Table 6. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage	VDDL (core)	1.7	1.9	V
	VDDH (I/O)	3.135	3.465	V
	VDDSYN ¹	1.7	1.9	V
	Difference between VDDL to VDDSYN	—	100	mV
Input high voltage (all inputs except EXTAL and EXTCLK) 2	VIH	2.0	3.465	V

Thermal Calculation and Measurement

Figure 3. Effect of Board Temperature Rise on Thermal Behavior

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

 $T_J = T_B + (R_{\theta JB} \times P_D)$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 $T_B = board temperature °C$

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

Thermal Calculation and Measurement

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

8 Power Supply and Power Sequencing

This section provides design considerations for the MPC866/859 power supply. The MPC866/859 has a core voltage (VDDL) and PLL voltage (VDDSYN) that operates at a lower voltage than the I/O voltage VDDH. The I/O section of the MPC866/859 is supplied with 3.3 V across VDDH and V_{SS} (GND).

Signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, and MII_MDIO are 5-V tolerant. All inputs cannot be more than 2.5 V greater than VDDH. In addition, 5-V tolerant pins cannot exceed 5.5 V and the remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down and normal operation.

One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which different voltages are derived. The following restrictions apply:

- VDDL must not exceed VDDH during power up and power down.
- VDDL must not exceed 1.9 V and VDDH must not exceed 3.465 V.

These cautions are necessary for the long term reliability of the part. If they are violated, the electrostatic discharge (ESD) protection diodes are forward-biased and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit shown in Figure 4 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and core power supplies on powerup and the 1N5820 diodes regulate the maximum potential difference on powerdown.

Figure 4. Example Voltage Sequencing Circuit

9 Layout Practices

Each V_{DD} pin on the MPC866/859 should be provided with a low-impedance path to the board's supply. Furthermore, each GND pin should be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1 μ F bypass capacitors located as close as possible to the four sides of the package. Each board designed should be characterized and additional appropriate decoupling capacitors should be used if required. The capacitor leads and associated printed-circuit traces connecting to chip V_{DD} and GND should be kept to less than 1/2" per capacitor lead. At a minimum, a four-layer board employing two inner layers as V_{DD} and GND planes should be used.

All output pins on the MPC866/859 have fast rise and fall times. Printed-circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times.

Bus Signal Timing

Figure 8 shows the timing for the synchronous active pull-up and open-drain output signals.

Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Output Signals Timing

Figure 9 shows the timing for the synchronous input signals.

Figure 9. Synchronous Input Signals Timing

Bus Signal Timing

Figure 12 through Figure 15 show the timing for the external bus read controlled by various GPCM factors.

Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)

Figure 34 shows the reset timing for the data bus configuration.

Figure 34. Reset Timing—Configuration from Data Bus

Figure 35 shows the reset timing for the data bus weak drive during configuration.

Figure 35. Reset Timing—Data Bus Weak Drive During Configuration

Figure 40. Boundary Scan (JTAG) Timing Diagram

12 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC866/859.

12.1 PIP/PIO AC Electrical Specifications

Table 16 shows the PIP/PIO AC timings as shown in Figure 41 through Figure 45.

Num	Charactoristia	All Freq	Unit	
Nulli	Characteristic	Min	Max	Onit
21	Data-in setup time to STBI low	0	_	ns
22	Data-In hold time to STBI high	2.5 – t3 ¹	_	clk
23	STBI pulse width	1.5	_	clk
24	STBO pulse width	1 clk – 5ns	_	ns
25	Data-out setup time to STBO low	2	_	clk
26	Data-out hold time from STBO high	5	_	clk
27	STBI low to STBO low (Rx interlock)	_	2	clk
28	STBI low to STBO high (Tx interlock)	2	_	clk
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	_	25	ns

¹ t3 = Specification 23

Figure 44. PIP TX (Pulse Mode) Timing Diagram

Figure 45. Parallel I/O Data-In/Data-Out Timing Diagram

12.2 Port C Interrupt AC Electrical Specifications

Table 17 shows timings for port C interrupts.

Table	17.	Port	С	Interrupt	Timing
-------	-----	------	---	-----------	--------

Num	Characteristic		33.34 MHz	
Num Characteristic		Min	Мах	Unit
35	Port C interrupt pulse width low (edge-triggered mode)	55	_	ns
36	Port C interrupt minimum time between active edges	55		ns

Figure 46 shows the port C interrupt detection timing.

MPC866/MPC859 Hardware Specifications, Rev. 2

CPM Electrical Characteristics

Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1)

Figure 65. CAM Interface REJECT Timing Diagram

12.9 SMC Transparent AC Electrical Specifications

Table 25 shows the SMC transparent timings as shown in Figure 66.

MPC866/MPC859 Hardware Specifications, Rev. 2

Figure 69. SPI Slave (CP = 0) Timing Diagram

12.12I²C AC Electrical Specifications

Mechanical Data and Ordering Information

Plastic ball grid array	0° to 95°C	50	MPC859DSLVR50A
Lead free		66	MPC859DSLVR66A
		100	MPC859PVR100A
			MPC859TVR100A
			MPC866PVR100A
			MPC866TVR100A
		133	MPC859PVR133A
			MPC859TVR133A
			MPC866PVR133A
			MPC866TVR133A
Plastic ball grid array	–40° to 100°C	50	MPC859DSLCVR50A
Lead free		66	MPC859DSLCVR66A
		100	MPC859PCVR100A
			MPC859TCVR100A
			MPC866PCVR100A
			MPC866TCVR100A

Table 38. MPC866/859 Package/Frequency Orderable (continued)

Mechanical Data and Ordering Information

Table 39.	Pin	Assignments	(continued)
-----------	-----	-------------	-------------

Name	Pin Number	Туре
OP3 MODCK2 DSDO	M4	Bidirectional
BADDR30 REG	К4	Output
BADDR[28:29]	M3, M2	Output
AS	L3	Input
PA15 RXD1 RXD4	C18	Bidirectional
PA14 TXD1 TXD4	D17	Bidirectional (Optional: Open-drain)
PA13 RXD2	E17	Bidirectional
PA12 TXD2	F17	Bidirectional (Optional: Open-drain)
PA11 L1TXDB RXD3	G16	Bidirectional (Optional: Open-drain)
PA10 L1RXDB TXD3	J17	Bidirectional (Optional: Open-drain)
PA9 L1TXDA RXD4	K18	Bidirectional (Optional: Open-drain)
PA8 L1RXDA TXD4	L17	Bidirectional (Optional: Open-drain)
PA7 CLK1 L1RCLKA BRGO1 TIN1	M19	Bidirectional
PA6 CLK2 TOUT1	M17	Bidirectional

Mechanical Data and Ordering Information

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
MII_COL	H4	Input
VSSSYN1	V1	PLL analog VDD and GND
VSSSYN	U1	Power
VDDSYN	T1	Power
GND	F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14	Power
VDDL	A8, M1, W8, H19, F4, F16, P4, P16, R1	Power
VDDH	E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14	Power
N/C	D6, D13, D14, U2, V2, T2	No-connect

¹ Classic SAR mode only

² ESAR mode only

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

email: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-0047 Japan 0120 191014 +81 3 3440 3569 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@ hibbertgroup.com

MPC866EC Rev. 2 2/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006.

