

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	· ·
USB	
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc859dslcvr50a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multiple-master operation on the same bus
- One inter-integrated circuit (I²C) port
 - Supports master and slave modes
 - Multiple-master environment support
- Time slot assigner (TSA) (MPC859DSL does not have TSA.)
 - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, and clocking
 - Allows dynamic changes
 - On MPC866P and MPC866T, can be internally connected to six serial channels (four SCCs and two SMCs); on MPC859P and MPC859T, can be connected to three serial channels (one SCC and two SMCs).
- Parallel interface port (PIP)
 - Centronics interface support
 - Supports fast connection between compatible ports on MPC866/859 or MC68360
- PCMCIA interface
 - Master (socket) interface, compliant with PCI Local Bus Specification (Rev 2.1)
 - Supports one or two PCMCIA sockets whether ESAR functionality is enabled
 - Eight memory or I/O windows supported
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two operate on data.
 - Supports conditions: = $\neq < >$
 - Each watchpoint can generate a breakpoint internally
- Normal high and normal low power modes to conserve power
- 1.8 V core and 3.3 V I/O operation with 5-V TTL compatibility; refer to Table 6 for a listing of the 5-V tolerant pins.
- 357-pin plastic ball grid array (PBGA) package
- Operation up to 133 MHz

Features

The MPC866/859 is comprised of three modules that each use a 32-bit internal bus: MPC8xx core, system integration unit (SIU), and communication processor module (CPM). The MPC866P block diagram is shown in Figure 1. The MPC859P/859T/859DSL block diagram is shown in Figure 2.

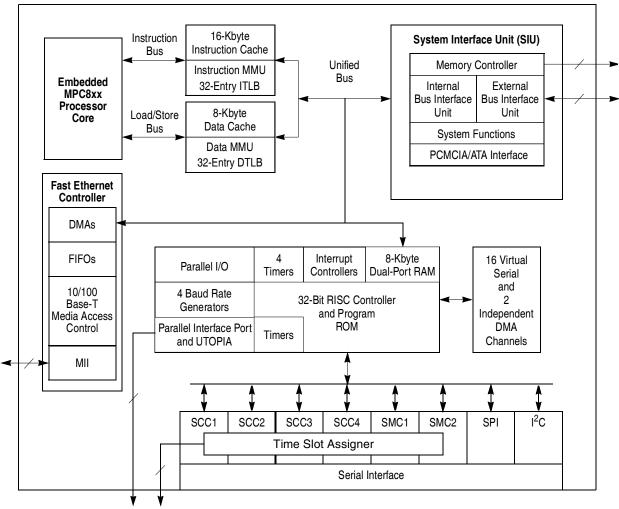
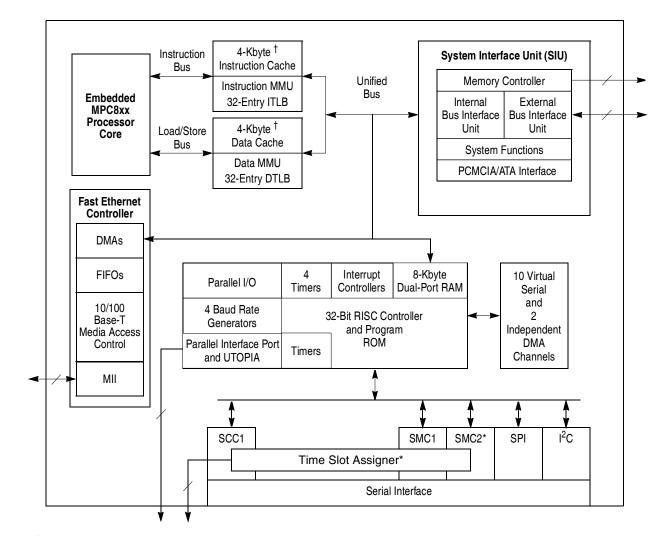



Figure 1. MPC866P Block Diagram

- [†] The MPC859P has a 16-Kbyte instruction cache and a 8-Kbyte data cache.
- * The MPC859DSL does not contain SMC2 nor the time slot assigner, and provides eight SDMA controllers.

Figure 2. MPC859P/859T/MPC859DSL Block Diagram

Maximum Tolerated Ratings

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC866/859. Table 2 shows the maximum tolerated ratings, and Table 3 shows the operating temperatures.

Rating	Symbol	Value	Unit
Supply voltage ¹	VDDH	- 0.3 to 4.0	V
	VDDL	- 0.3 to 2.0	V
	VDDSYN	- 0.3 to 2.0	V
	Difference between VDDL to VDDSYN	100	mV
Input voltage ²	V _{in}	V _{in} GND – 0.3 to VDDH	
Storage temperature range	T _{stg}	-55 to +150	°C

Table 2. Maximum Tolerated Ratings

¹ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. See page 15.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than VDDH. This restriction applies to power-up and normal operation (that is, if the MPC866/859 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).

	scruting rempere		
Rating	Symbol	Value	Unit
Temperature ¹ (standard)	T _{A(min)}	0	°C
	T _{j(max)}	95	°C
Temperature (extended)	T _{A(min)}	-40	°C
	T _{j(max)}	100	°C

Table 3. Operating Temperatures

Minimum temperatures are guaranteed as ambient temperature, T_A. Maximum temperatures are guaranteed as junction temperature, T_i.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

	Ohann sharia tia	33	MHz	40 I	MHz	50 I	MHz	66 I	MHz	
Num	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	16.00	7.00	14.10	5.20	12.30	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 0 (MIN = 0.50 x B1 - 2.00)	13.20	—	10.50	—	8.00	—	5.60	—	ns
B25	CLKOUT rising edge to \overline{OE} , $\overline{WE}(0:3)$ asserted (MAX = 0.00 x B1 + 9.00)	—	9.00	—	9.00		9.00		9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 x B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00)	35.90	—	29.30	—	23.00	—	16.90	_	ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00)	43.50	—	35.50	_	28.00	_	20.70	_	ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)$ negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00)	—	9.00	—	9.00	_	9.00	—	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0,1, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	_	14.30	_	13.00	_	11.80	_	10.50	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0,1, CSNT = 1, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	18.00	7.00	14.30	5.20	12.30	ns

Table 9. Bus Operation Timings (continued)

		33	MHz	40 1	MHz	50 I	MHz	66 MHz		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	_	18.00		18.00		14.30	_	12.30	ns
B29	\overline{WE} (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, CSNT = 0, EBDF = 0 (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	—	3.00	—	1.80	—	ns
B29a	$\overline{\text{WE}}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0 (MIN = 0.50 x B1 - 2.00)	13.20		10.50	_	8.00	_	5.60	_	ns
B29b	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3), High Z GPCM write access, ACS = 00, TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x B1-2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B29c	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0 (MIN = 0.50 x B1 - 2.00)	13.20		10.50	_	8.00	_	5.60	_	ns
B29d	$\overline{\text{WE}}$ (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29e	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29f	$\overline{\text{WE}}$ (0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 6.30)	5.00	_	3.00	_	1.10	_	0.00	_	ns
B29g	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 6.30)	5.00	_	3.00	_	1.10	_	0.00	_	ns
B29h	$\overline{\text{WE}}(0:3)$ negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 3.30)	38.40	_	31.10	_	24.20	_	17.50	_	ns
B29i	$ \overline{\text{CS}} \text{ negated to D(0:31), DP(0:3) High-Z} GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 3.30) $	38.40	_	31.10	_	24.20	_	17.50	_	ns

Table 9. Bus Operation Timings (continued)

Niumo	Okovertevistis	33	MHz	40	MHz	50 I	MHz	66	MHz	l l mit
Num	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Мах	Unit
B31d	CLKOUT falling edge to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns
B32	CLKOUT falling edge to \overline{BS} valid, as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid, as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32b	CLKOUT rising edge to \overline{BS} valid, as requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to \overline{BS} valid, as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32d	CLKOUT falling edge to $\overline{\text{BS}}$ valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns
B33	CLKOUT falling edge to $\overline{\text{GPL}}$ valid, as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to $\overline{\text{GPL}}$ valid, as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70		13.00		9.40	_	ns

Table 9. Bus Operation Timings (continued)

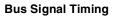


Figure 6 shows the timing for the external clock.

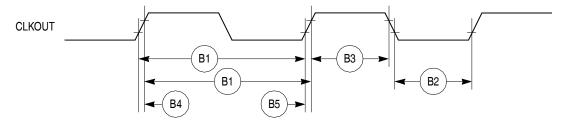


Figure 6. External Clock Timing

Figure 7 shows the timing for the synchronous output signals.

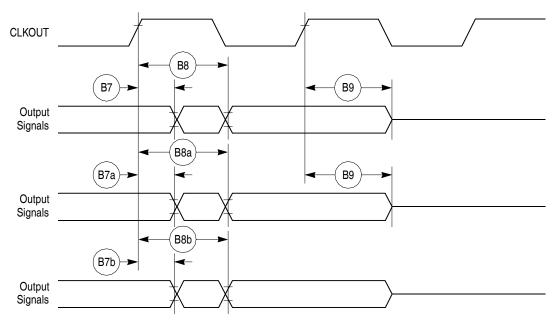


Figure 7. Synchronous Output Signals Timing

Figure 8 shows the timing for the synchronous active pull-up and open-drain output signals.

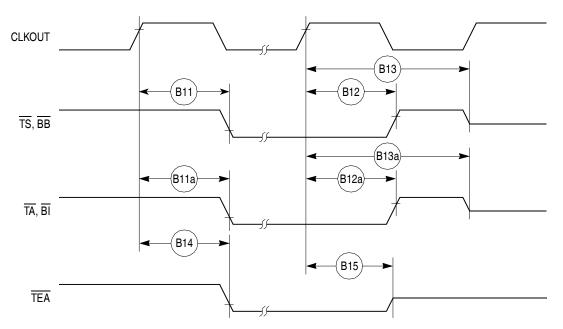


Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Output Signals Timing

Figure 9 shows the timing for the synchronous input signals.

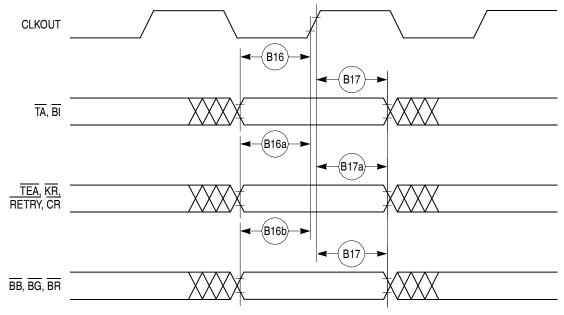


Figure 9. Synchronous Input Signals Timing

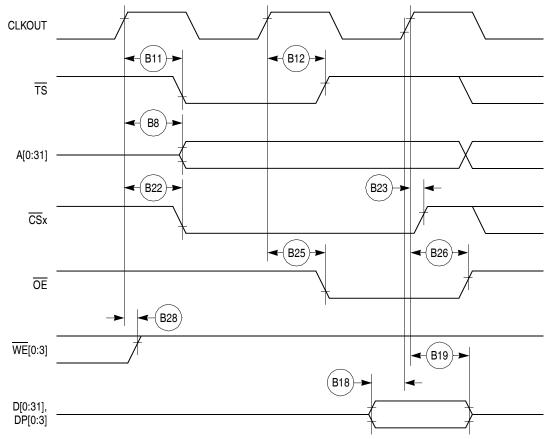
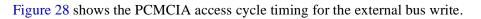



Figure 12 through Figure 15 show the timing for the external bus read controlled by various GPCM factors.

Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)

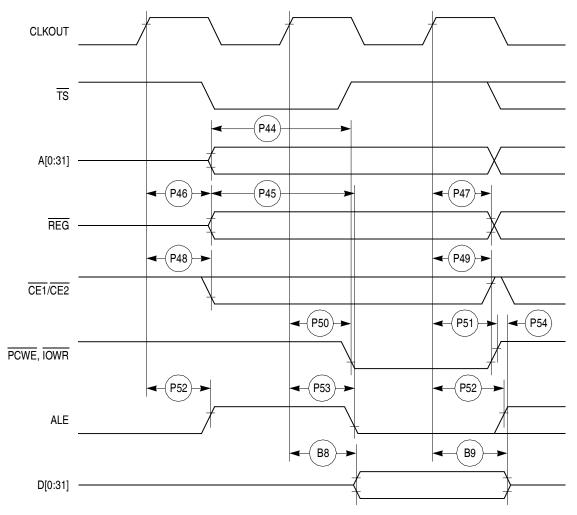


Figure 28. PCMCIA Access Cycles Timing External Bus Write

Figure 29 shows the PCMCIA WAIT signals detection timing.

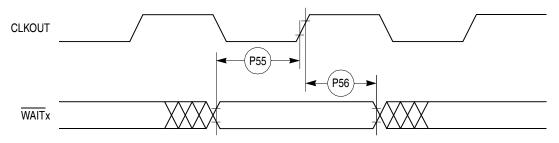


Figure 29. PCMCIA WAIT Signals Detection Timing

MPC866/MPC859 Hardware Specifications, Rev. 2

CPM Electrical Characteristics

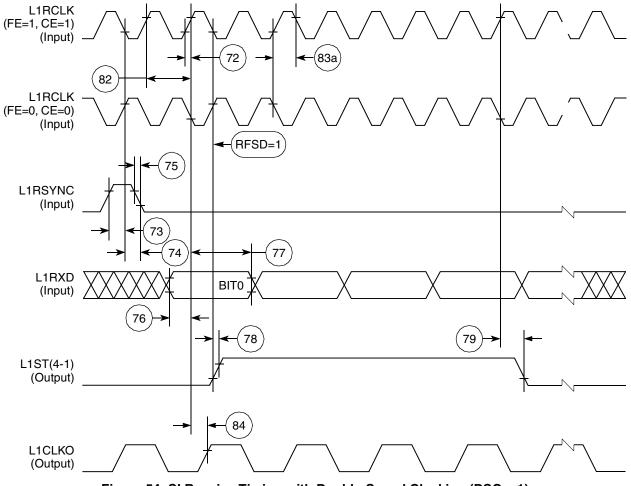


Figure 54. SI Receive Timing with Double-Speed Clocking (DSC = 1)

12.7 SCC in NMSI Mode Electrical Specifications

Table 22 shows the NMSI external clock timings.

Num	Characteristic	All Frequencie	Unit	
Num	Characteristic	Min	Max	Unit
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	-	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK +5	—	ns
102	RCLK1 and TCLK1 rise/fall time	_	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00	_	ns
106	RXD1 setup time to RCLK1 rising edge	5.00	—	ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	_	ns
108	CD1 setup time to RCLK1 rising edge	5.00	—	ns

Table 22. NMSI External Clock Timings

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

Table 23 shows the NMSI internal clock timings.

Table 23. NMSI Internal Clock Timings

Num	Characteristic	All Fr	Unit	
Nulli	Characteristic	Min	Max	Onit
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK1 and TCLK1 rise/fall time		—	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns
105	CTS1 setup time to TCLK1 rising edge	40.00	_	ns
106	RXD1 setup time to RCLK1 rising edge	40.00	_	ns
107	RXD1 hold time from RCLK1 rising edge ²	0.00	_	ns
108	CD1 setup time to RCLK1 rising edge	40.00	_	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

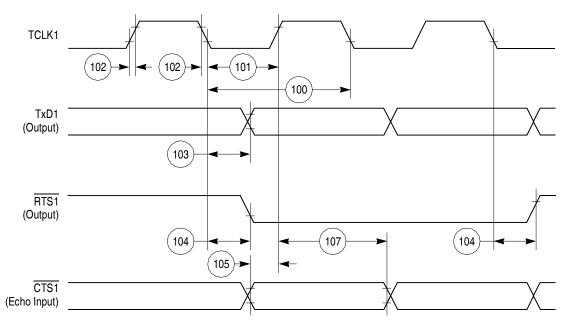


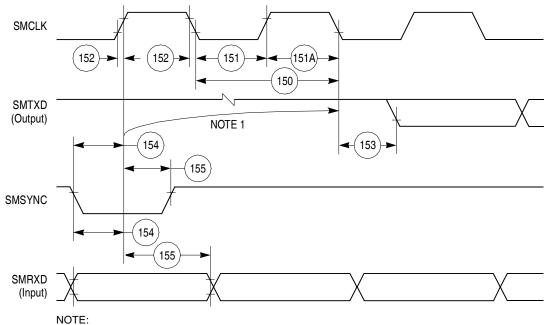
Figure 60. HDLC Bus Timing Diagram

12.8 Ethernet Electrical Specifications

Table 24 shows the Ethernet timings as shown in Figure 61 through Figure 65.Table 24. Ethernet Timing

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	Unit
120	CLSN width high	40		ns
121	RCLK1 rise/fall time	_	15	ns
122	RCLK1 width low	40	_	ns
123	RCLK1 clock period ¹	80	120	ns
124	RXD1 setup time	20	_	ns
125	RXD1 hold time	5	_	ns
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	_	ns
127	RENA width low	100	_	ns
128	TCLK1 rise/fall time	_	15	ns
129	TCLK1 width low	40	_	ns
130	TCLK1 clock period ¹	99	101	ns
131	TXD1 active delay (from TCLK1 rising edge)	—	50	ns
132	TXD1 inactive delay (from TCLK1 rising edge)	6.5	50	ns
133	TENA active delay (from TCLK1 rising edge)	10	50	ns

MPC866/MPC859 Hardware Specifications, Rev. 2



CPM Electrical Characteristics

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	Unit
150	SMCLK clock period ¹	100	_	ns
151	SMCLK width low	50	_	ns
151A	SMCLK width high	50	_	ns
152	SMCLK rise/fall time	—	15	ns
153	SMTXD active delay (from SMCLK falling edge)	10	50	ns
154	SMRXD/SMSYNC setup time	20	—	ns
155	RXD1/SMSYNC hold time	5	_	ns
¹ Svnc (CLK must be at least twice as fast as SMCLK.	•		•

Table 25. SMC Transparent Timing

Sync CLK must be at least twice as fast as SMCLK.

1. This delay is equal to an integer number of character-length clocks.

Figure 66. SMC Transparent Timing Diagram

CPM Electrical Characteristics

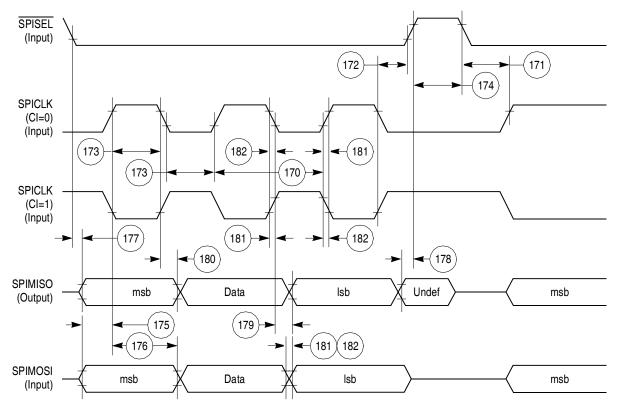


Figure 69. SPI Slave (CP = 0) Timing Diagram

Table 28 shows the I^2C (SCL < 100 kHz) timings.

Table 28. I²C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	Unit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7		μs
203	Low period of SCL	4.7	_	μs
204	High period of SCL	4.0	_	μs
205	Start condition setup time	4.7		μs
206	Start condition hold time	4.0	_	μs
207	Data hold time	0	_	μs
208	Data setup time	250	_	ns
209	SDL/SCL rise time	—	1	μs
210	SDL/SCL fall time	—	300	ns
211	Stop condition setup time	4.7	—	μs

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 29 shows the I^2C (SCL > 100 kHz) timings.

Table 29. I^2C Timing (SCL > 100 kHz)

Num	Characteristic	Expression	All Freq	Unit	
num	Characteristic	Expression	Min	Мах	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions	_	1/(2.2 * fSCL)	_	s
203	Low period of SCL	_	1/(2.2 * fSCL)	_	s
204	High period of SCL	—	1/(2.2 * fSCL)	_	s
205	Start condition setup time	—	1/(2.2 * fSCL)	_	s
206	Start condition hold time	—	1/(2.2 * fSCL)	_	s
207	Data hold time	—	0	_	s
208	Data setup time	—	1/(40 * fSCL)	_	s
209	SDL/SCL rise time	—	—	1/(10 * fSCL)	s
210	SDL/SCL fall time	—	—	1/(33 * fSCL)	s
211	Stop condition setup time	—	1/2(2.2 * fSCL)		s

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Mechanical Data and Ordering Information

15 Mechanical Data and Ordering Information

Table 37 shows information on the MPC866/859 derivative devices.

Table 37. MPC866/859 Derivatives

Device	Number of	Ethernet	Multi-Channel	ATM Support	Cache Size				
Device	SCCs ¹	Support	HDLC Support		Instruction	Data			
MPC866T	4	10/100 Mbps	Yes	Yes	4 Kbyte	4 Kbytes			
MPC866P	4	10/100 Mbps	Yes	Yes	16 Kbyte	8 Kbytes			
MPC859T	1 (SCC1)	10/100 Mbps	Yes	Yes	4 Kbyte	4 Kbytes			
MPC859DSL	1 (SCC1)	10/100 Mbps	No	Up to 4 addresses	4 Kbyte	4 Kbytes			

¹ Serial communications controller (SCC).

Table 38 identifies the packages and operating frequencies orderable for the MPC866/859 derivative devices.

Table 38. MPC866/859 Package/Frequency Orderable

Package Type	Temperature (Tj)	Frequency (MHz)	Order Number				
Plastic ball grid array	0° to 95°C	50	MPC859DSLZP50A				
(ZP suffix) Non lead free		66	MPC859DSLZP66A				
		100	MPC859PZP100A MPC859TZP100A MPC866PZP100A MPC866TZP100A				
		133	MPC859PZP133A MPC859TZP133A MPC866PZP133A MPC866TZP133A				
Plastic ball grid array	–40° to 100°C	50	MPC859DSLCZP50A				
(CZP suffix) Non lead free		66	MPC859DSLCZP66A				
		100	MPC859PCZP100A MPC859TCZP100A MPC866PCZP100A MPC866TCZP100A				

Mechanical Data and Ordering Information

15.1 Pin Assignments

Figure 78 shows the top view pinout of the PBGA package. For additional information, see the *MPC866 PowerQUICC Family User's Manual*.

<i>(</i>																			
	O PD10	O PD8	O PD3			O D4	() D1	() D2) D3	() D5		() D6	() D7) D29	O DP2				w
O PD14	O PD13	O PD9	O PD6	O M_Tx_		0 5 D13	() D27) D10	() D14) D18	〇 D20	〇 D24) D28	O DP1	O DP3	O DP0) N/C \		v 1
O PA0	O PB14	O PD15	O PD4	O PD5		() D8	() D23	〇 D11	〇 D16) D19	〇 D21	〇 D26) D30	O IPA5	O IPA4	O IPA2	⊖ N/C		U
O PA1	O PC5	O PC4	O PD11	O PD7) H D12	() D17	O D9	() D15) D22) D25) D31	O IPA6		O IPA1	O IPA7	⊖ N/C		T
O PC6	0 PA2	⊖ ₽B15	O PD12	0		0	0	0	0	0	0	0	0	O VDDH					R
O PA4	O PB17	O PA3		\bigcirc	$\left(\circ \right)$) GND	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	GND	0				C ET XTAL	Ρ
O PB19	O PA5) PB18	O PB16	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0					Ν
O PA7	0 PC8) PA6	O PC7	\bigcirc	0	\bigcirc	\bigcirc		BADDR28		O R29 VDD	M							
O PB22	O PC9) PA8	O PB20	\bigcirc	0	\bigcirc	0	О ОР0		O OP1		L							
O PC10	0 PA9	O PB23	O PB21	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc) GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		0 30 IPB6			к
O PC11	O PB24) PA10	O PB25	\bigcirc	0	\bigcirc	0	O IPB5	O IPB1	O IPB2	O	J							
			О тск	\bigcirc	0	\bigcirc	0	0	O M_COL		O IPB0	O IPB7	н						
	О тмs	O TDO	O PA11	\bigcirc	0	GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O GND	\bigcirc			O IPB4	O IPB3	G
O PB26	O PC12) PA12		\bigcirc			0	0	0	0	0	0				⊖ ⊤s			F
O PB27	O PC13) PA13	O PB29	\bigcirc	0	0	0	0	0	0	0	0	0	0	\bigcirc CS3	O BI	\bigcirc BG		Е
O PB28	O PC14	O PA14	O PC15	() A8	O N/C	⊖ N/C	() A15	() A19	() A25	() A18			⊖ N/C		\bigcirc CS2				D
O PB30	O PA15	O PB31	() A3	() A9	() A12	() A16	() A20) A24	() A26						$\frac{\bigcirc}{CS7}$		⊖ TA		С
() A0	() A1	() A4	() A6	() A10	() A13	() A17	() A21	() A23	() A22	O TSIZO		O M_CRS	\bigcirc WE2		$\frac{\bigcirc}{CS5}$				В
	() A2	() A5	() A7	() A11	() A14	() A27	() A29) A30	() A28) A31		BSA2							A
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

NOTE: This is the top view of the device.

Figure 78. Pinout of the PBGA Package

16 Document Revision History

Table 40 lists significant changes between revisions of this document.

Table 40. Document Revision History

Revision Number	Date	Substantive Changes
0	5/2002	Initial revision
1	11/2002	Added the 5-V tolerant pins, new package dimensions, and other changes.
1.1	4/2003	Added the Spec. B1d and changed spec. B1a. Added the Note Solder sphere composition for MPC866XZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag to Figure 15-79.
1.2	4/2003	Added the MPC859P.
1.3	5/2003	Changed the SPI Master Timing Specs. 162 and 164.
1.4	7-8/2003	 Added TxClav and RxClav to PB15 and PC15. Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. Added nontechnical reformatting.
1.5	3/14/2005	Updated document template.
2	2/10/2006	Updated orderable parts table.